Lagrange multipliers and KKT conditions

Vincenzo Bonifaci

May 5, 2016

The method of Lagrange multipliers allows one to write necessary conditions for any smooth optimization problem with equality constraints. It can be further generalized to inequality constraints, yielding the Karush-Kuhn-Tucker (KKT) conditions. Lagrange multipliers and KKT conditions have many uses in applied mathematics; often, the multiplier variables also have interesting interpretations.

1 Method of Lagrange multipliers

Consider a smooth ${ }^{1}$ real-valued function $F(x, y)$ defined over $\mathbb{R}^{n \times m}\left(x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}\right)$. We study the constrained minimization problem:

$$
\begin{array}{cl}
\min F(x, y) & \tag{P}\\
\text { s.t. } h_{k}(x, y)=0 & k=1, \ldots, l \\
x_{i} \geq 0 & i=1, \ldots, n \\
y_{j} \gtrless 0 & j=1, \ldots, m,
\end{array}
$$

where each h_{k} is an linear (affine) constraint.
For a vector $\lambda \in \mathbb{R}^{l}$, let

$$
L(x, y, \lambda) \stackrel{\text { def }}{=} F(x, y)+\lambda^{\top} h(x, y)=F(x, y)+\sum_{k=1}^{l} \lambda_{k} h_{k}(x, y) .
$$

The theory of Lagrange multipliers asserts that if (x, y) is an optimal solution to (P), then there exists a set of real values $\lambda_{1}, \ldots, \lambda_{l}$ with the following properties:

1. For each $j=1, \ldots, m, \frac{\partial}{\partial y_{j}} L(x, y, \lambda)=0$;
2. For each $i=1, \ldots, n$, if $x_{i}>0$, then $\frac{\partial}{\partial x_{i}} L(x, y, \lambda)=0$;
3. For each $i=1, \ldots, n$, if $x_{i}=0$, then $\frac{\partial}{\partial x_{i}} L(x, y, \lambda) \geq 0$.
[^0]Example 1.1. Consider $\min \left\{x^{2}+y^{2}: x+y \geq 1\right\}$. We transform the inequality constraint into an equality constraint by adding a variable $z \geq 0$ and rewriting the feasible region as $\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $x+y=1+z, z \geq 0\}$. The Lagrange function is

$$
L(x, y, z, \lambda)=x^{2}+y^{2}+\lambda(x+y-z-1) .
$$

Condition 1 gives $2 x+\lambda=0$ and $2 y+\lambda=0$. Thus, $2 x+\lambda=2 y+\lambda$, i.e., $x=y$ is necessary for optimality of (x, y). Condition 2 gives: if $z>0$, then $-\lambda=0$. Condition 3 gives: if $z=0$, then $-\lambda \geq 0$. But $\lambda=0$ is impossible, since it would imply $x=y=0$ which is not feasible. Thus $z=0$ and $x+y=1+z=1$, from which we obtain $x=y=1 / 2$.

2 Karush-Kuhn-Tucker conditions

The method of Lagrange multipliers is a special case of a more general result due to Karush, Kuhn, and Tucker (KKT). In this case we consider the constrained optimization problem

$$
\begin{align*}
\min & F(x) \tag{P}\\
\text { s.t. } h_{k}(x) & =0 \\
g_{j}(x) & \leq 0
\end{aligned} \quad \begin{aligned}
& \\
& \\
&
\end{align*} \quad j=1, \ldots, l ., m . m .
$$

where $x \in \mathbb{R}^{n}, F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function, and each h_{k}, g_{j} is also a smooth function from \mathbb{R}^{n} to \mathbb{R}.

The KKT conditions apply whenever the constraints are linear (affine) or, alternatively, whenever there exists a point \bar{x} such that $h_{k}(\bar{x})=0$ for each k and $g_{j}(\bar{x})<0$ for each j. If this is true, assume that x is an optimal point; then Karush, Kuhn and Tucker proved that there must exist real values $\mu_{j}(j=1, \ldots, m), \lambda_{k}(k=1, \ldots, l)$ such that:

$$
\nabla F(x)+\mu^{\top} \nabla g(x)+\lambda^{\top} \nabla h(x)=0,
$$

or in other words, for each $i=1, \ldots, n$,

$$
\frac{\partial}{\partial x_{i}} F(x)+\sum_{j=1}^{m} \mu_{j} \frac{\partial}{\partial x_{i}} g_{j}(x)+\sum_{k=1}^{l} \lambda_{k} \frac{\partial}{\partial x_{i}} h_{k}(x)=0 .
$$

[^0]: 1 "Smooth", here, means differentiable and with a continuous derivative.

