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1 Some linear algebra concepts

Recall that the eigenvalues of a real matrix M are the values λ ∈ C such that Mx = λx for some
nonzero vector x ∈ Cn. Such a vector x is called an eigenvector associated to λ, and (λ, x) is called
an eigenpair of M . Recall that:

1. An n× n matrix M has exactly n eigenvalues (counted with their multiplicity).

2. The eigenvalues of M are the roots of the characteristic polynomial of M , that is, the polynomial
det(M − zI) of degree n, in the variable z.

3. A real matrix can have complex eigenvalues; for example the matrix

�
0 −1
1 0

�
has eigenvalues

+i, and −i where i is the imaginary root of −1.

4. Complex eigenvalues appear in conjugate pairs : if a+ bi is an eigenvalue of M (with a, b ∈ R),
then a− bi is an eigenvalue of M .

5. A real symmetric matrix has n real eigenvalues.

A diagonal matrix is a square matrix D such that i �= j implies Dij = 0. An upper triangular matrix
is a square matrix T such that i > j implies Tij = 0.

An orthogonal matrix Q is a square matrix such that the products QQ� and Q�Q are both equal to
the identity matrix I. (With Q� we denote the transpose of Q if Q is a real matrix; if it is complex,
we mean the conjugate transpose, that is, the transpose of a matrix in which each element a + bi is
replaced by a− bi).

A permutation matrix A has entries Aij = 1 iff j = π(i) and 0 otherwise, for some bijective function
π : {1, . . . , n} → {1, . . . , n}. Every permutation matrix is orthogonal.

Theorem 1.1 (Diagonal form). If A ∈ Rn×n is a real and symmetric matrix, then there exist a real
orthogonal matrix Q ∈ Rn×n and a real diagonal matrix D ∈ Rn×n such that A = QDQ�. The
elements on the diagonal of D correspond to the eigenvalues of A.
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Theorem 1.2 (Schur form). If A ∈ Rn×n is a real matrix, then there exist a complex orthogonal
matrix Q ∈ Cn×n and a complex upper triangular matrix T ∈ Cn×n such that A = QTQ�. The
elements on the diagonal of T correspond to the eigenvalues of A.

Theorem 1.3 (Gershgorin’s Circle Theorem). Let A ∈ Cn×n, and let Ri be the sum of the moduli of
the off-diagonal elements in the ith row of A: Ri =

�
j �=i |Aij |. Then each eigenvalue of A lies in the

union of the circles
λ ∈ C : |λ−Aii| ≤ Ri, i = 1, 2, . . . , n.

Additionally, if the ith disk is disjoint from the others, then it contains precisely one of A’s eigenvalues.

Proof. For the first part, is enough to show that for any eigenvalue λ of A, there exists some i =
1, 2, . . . , n such that |λ−Aii| ≤ Ri. Consider an eigenpair (λ, x) of A and let i be an index such that
|xi| is maximum. Note that |xi| > 0 since x �= 0. Also,

�n
j=1Aijxj = λxi, or equivalently,

�

j �=i

Aijxj = (λ−Aii)xi.

If we take absolute values of both sides, and use the triangular inequality |a+ b| ≤ |a|+ |b|,

|λ−Aii| |xi| =

������
�

j �=i

Aijxj

������
≤

�

j �=i

|Aij | |xj | ≤ |xi|
�

j �=i

|Aij | = |xi|Ri.

Dividing by |xi| gives the first claim. We will not prove the second claim.

2 The adjacency matrix and the incidence matrix

The adjacency matrix of a digraph G(V,E) is a matrix A ∈ Rn×n (n = |V |) defined by

Aij =

�
1 if (i, j) ∈ E

0 otherwise.

The same definition is used for (undirected) graphs; in that case, A is symmetric and has an all-zero
diagonal. If the edges have weights wij , it is natural to define Aij to be the weight of edge (i, j) if an
edge (i, j) exists, and 0 if there is no edge (i, j):

Aij =

�
wij if (i, j) ∈ E

0 otherwise.

The incidence matrix of a digraph G(V,E) is a matrix B ∈ Rn×m (n = |V |, m = |E|) defined by

Bve =





+1 if v is the tail of e

−1 if v is the head of e

0 if otherwise.

In the case of an undirected graph, we can orient its edges arbitrarily, and use the incidence matrix
of the resulting digraph. For some purposes, the choice of orientation will not matter.
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2.1 A taste of spectral graph theory: an example

We will show that the adjacency matrix A of a directed graph has the following property: the eigen-
values of A are all 0 if and only if A represents an acyclic digraph.

Exercise 2.1. Prove the easy direction: if A is the adjacency matrix of a directed acyclic graph, then
all eigenvalues of A are 0. Hint: find a suitable Schur decomposition A = QTQ�, with Q� = Q−1,
and use the fact that if A = QTQ−1, the matrices A and T have the same eigenvalues.

What is the number N
(r)
ij of walks of given length r between two nodes i and j in a given graph or

directed graph? If r = 1, the answer is simply Aij . If r = 2, the answer is

N
(2)
ij =

n�

k=1

AikAkj = [A2]ij

where [A2]ij denotes the ijth element of the matrix A2. Similarly, N
(3)
ij = [A3]ij , and one can show

by induction that

N
(r)
ij = [Ar]ij .

A special case is when i = j, so we are counting the number of closed walks of length r that start and
end in i. The total number Lr of closed walks of length r in the network is the sum of this quantity
over all possible starting points i:

Lr =
n�

i=1

[Ar]ii = trAr,

where trM is the trace of M (the sum of the elements on M ’s main diagonal).

Exercise 2.2. (Circularity of the trace operator.) Prove that tr(XY ) = tr(Y X) for any pair of
matrices X ∈ Ra×b, Y ∈ Rb×a.

By using the Schur decomposition of A, we can show that Lr =
�n

i=1 κ
r
i , where κ1, . . . ,κn are the

eigenvalues of A. Indeed, notice that if x is an eigenvector of A with eigenvalue κ, then QTQ�x =
Ax = κx, and multiplying by Q� both sides we get (Q�Q)TQ�x = κQ�x, that is, TQ�x = κQ�x,
so Q�x is an eigenvector of T with the same eigenvalue κ. So (using tr(XY ) = tr(Y X) for square
matrices X,Y ),

Lr = trAr = tr(QT rQ�) = tr(Q�QT r) = trT r =
�

i

κri .

This fact can be used to complete the proof, as the following exercise asks.

Exercise 2.3. Using the above formula for Lr, show that if A is the adjacency matrix of a directed
graph and all of the eigenvalues of A are 0, then the digraph is acyclic.

Exercise 2.4. A matrix A is nilpotent if there is some integer k > 0 such that Ak is an all-zero matrix.
Prove that a nonnegative matrix A is nilpotent if and only if the support digraph of A is acyclic.
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3 The graph Laplacian

3.1 Undirected, unweighted graphs

Given an undirected graph G(V,E), let deg(i) be the number of edges incident to node i ∈ V (the
degree of v). We define the degree matrix of G as follows:

D =




deg(1) 0 0 · · ·
0 deg(2) 0 · · ·
0 0 deg(3) · · ·
...

...
...

. . .




Then if A is the adjacency matrix of G, the matrix L
def
= D − A is called the Laplacian of G. Note

that we have

Lij =





deg(i) if i = j

−1 if i �= j and {i, j} ∈ E

0 otherwise.

If we orient arbitrarily the edges of G, obtaining a digraph
−→
G , and let B be the signed incidence

matrix of
−→
G , we have

L(G) = B(
−→
G)B(

−→
G)�.

Exercise 3.1. Check that, for an unweighted graph G, BB� = D − A = L, independently of the

orientation of the edges of
−→
G .

A graph can be built by combining edges together; the Laplacian can be built by adding simple
matrices together, one for each edge. Namely, for any (oriented) edge e ∈ E, consider its incidence
vector χe defined by χe(i) = +1 if i is the tail of e, χe(i) = −1 if i is the head of i, and χe(i) = 0
otherwise (note that χe is a column of the B matrix).

If e = (i, j), the rank-1 matrix χeχ
�
e is given by:

χeχ
�
e =




i j

. . .
... . . .

... . . .
. . . 1 . . . −1 . . .

. . .
... . . .

... . . .
. . . −1 . . . 1 . . .

. . .
... . . .

... . . .




Note that the orientation of e is relevant for the signs in χe, but is irrelevant for the signs in χeχ
�
e .

Now, the Laplacian can be alternatively expressed as the combination of the rank-1 matrix elements
χeχ

�
e :

L =
�

e∈E
χeχ

�
e .
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The graph Laplacian, being a real and symmetric matrix, has n real eigenvalues. The decomposition
L = BB� implies that L can only have non-negative eigenvalues: if v is any eigenvector of L, say with
eigenvalue λ, then

λv�v = v�Lv = (v�B)(B�v) = (B�v)�(B�v) ≥ 0

and dividing both sides by v�v > 0 shows that λ is nonnegative. (In other words, L is a positive
semidefinite matrix. This can also be seen by Gershgorin’s circle theorem.)

The Laplacian potential associated with a graph is the positive semidefinite quadratic form

Φ(x) = x�Lx =
1

2

n�

i,j=1

Aij(xi − xj)
2 =

�

{i,j}∈E
(xi − xj)

2.

The eigenvalues of the Laplacian of a graph are conventionally indexed from the smallest to the largest:
λ1 ≤ λ2 ≤ . . . ≤ λn. The eigenvalues of L(G) contain useful information about the graph G. For
example, if a graph has exactly c connected components, then λ1 = λ2 = . . . = λc = 0, while λc+1 > 0.
In other words, the number of connected components equals the dimension of the null space of L:
c = dimker(L) = n− rank(L).

Note that since a graph has always at least one connected component, λ1 is always 0. In fact, the
vector 1 = (1, 1, . . . , 1) is always an eigenvector of L, with eigenvalue 0 (exercise: verify this).

As a special case, λ2 > 0 if and only if the graph is connected. The second eigenvalue is also known
as the algebraic connectivity of the graph.

3.2 Weighted graphs

The Laplacian can be extended to weighted graphs in a straightforward way. Instead of letting A
be the adjacency matrix, we define A to be a weighted adjacency matrix, with Aij = wij if {i, j} is
an edge with weight wij , and Aij = 0 if {i, j} is not an edge. Similarly, instead of letting D be the
diagonal degree matrix, we let D be the diagonal matrix of node volumes,

D =




vol(1) 0 0 · · ·
0 vol(2) 0 · · ·
0 0 vol(3) · · ·
...

...
...

. . .




where vol(i) is the total weight of the edges incident to node i. Then we define L
def
= D−A, as before,

so that

Lij =





vol(i) if i = j

−wij if i �= j and {i, j} ∈ E

0 otherwise.

In this case, L = BCB�, where C is an m×m diagonal matrix with diagonal entries (we)e∈E , where
we is the weight associated to edge e. If we ≥ 0 for all edges e ∈ E, we can show that all eigenvalues
of L are nonnegative, exactly like in the unweighted case.

We also have L =
�

e∈E weχeχ
�
e . Finally, the Laplacian potential becomes

�
{i,j}∈E wij(xi − xj)

2.
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3.3 Digraphs

Can we extend the Laplacian matrix to directed graphs? The most natural way to do so is to define

Lij =





deg+(i) if i = j

−1 if i �= j and (i, j) ∈ E

0 otherwise.

Here deg+(i) is the number of arcs leaving node i (the out-degree of i). Thus L = D+ −A, where D+

is the diagonal matrix with the out-degrees of the nodes on the diagonal. Note that, when the digraph
is symmetric ((i, j) ∈ E iff (j, i) ∈ E), then this coincides with the Laplacian of the corresponding
undirected graph.

Unfortunately, many convenient properties of the graph Laplacian do not hold for the digraph Lapla-
cian: for example, in general L is not symmetric and its eigenvalues may be complex numbers. How-
ever, they have a nonnegative real part.

Let Δ+ = maxi deg
+(i). Then, by Gershgorin’s circle theorem, all eigenvalues of L are located in the

disk of radius Δ+ centered at (Δ+, 0) in the complex plane. In particular, they have nonnegative real
part.

In general, it is still true that rank(L) = n−c, where c is the number of strongly connected components
of the digraph. If the digraph is strongly connected, then rank(L) = n− 1. It is also the case that 0
is always an eigenvalue of L, since L · 1 = 0. However, 1�L does not necessarily equal 0�.


