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1 Random graph models: G(n,m) (Erdős-Rényi, variant 1)

Let Ω be the number of simple graphs on n nodes with m edges. If we associate a probability
Pr(G) = 1/Ω to each such graph, we obtain the G(n,m) model.

The expected average degree of a graph in the G(n,m) model, c := E[ 1n
∑

v∈V deg(v)] is exactly 2m/n.
However, the expected values of other quantities are quite difficult to compute.

2 Random graph models: G(n, p) (Erdős-Rényi, variant 2)

Let 0 ≤ p ≤ 1. If we associate a probability p to every pair of nodes among n nodes, and sample a
graph where every edge is independently present with probability p, we obtain the G(n, p) model. In
this model, the probability associated to a specific graph with m edges is

pm(1− p)(
n
2)−m.

The probability of getting some graph with exactly m edges is

P (m) :=

((n
2

)
m

)
pm(1− p)(

n
2)−m.

2.1 Number of edges

Let Xij be the indicator random variable representing whether i is linked to j or not. The expected
“number of edges” between two specific nodes i and j is E[Xij ] = p ·1+(1−p) ·0 = p. Therefore the ex-
pected number of edges of a G(n, p) random graph is E[

∑
i,j:i<j Xij ] =

∑
i,j:i<j E[Xij ] = p

∑
i,j:i<j 1 =(

n
2

)
p. Note that this must also equal E[m] =

∑(n2)
m=0mP (m).

2.2 Average degree

What about expected average degree? Call the average degree c and recall that c = 2m/n. Therefore,

E[c] = E[2m/n] = (2/n)

(n2)∑
m=0

mP (m) =
2

n

(
n

2

)
p = (n− 1)p.

1
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2.3 Degree distribution

The probability that a specific node is linked to k specific others is pk(1− p)n−1−k. So the probability
of being linked to exactly k any others is

pk :=

(
n− 1

k

)
pk(1− p)n−1−k.

So G(n, p) has a binomial degree distribution. In the limit of n→∞ (keeping c = (n− 1)p constant),
we show that it approaches the Poisson distribution pk = λke−λ/k!, with λ = c. Indeed,

log((1− p)n−1−k) = (n− 1− k) log(1− c

n− 1
)

' −(n− 1− k)
c

n− 1
→ −c.

So (1− p)n−1−k → e−c as n→∞. Additionally,(
n− 1

k

)
=

(n− 1)!

(n− 1− k)!k!
' (n− 1)k

k!
,

so

pk →
(n− 1)k

k!
pke−c =

(n− 1)k

k!

(
c

n− 1

)k
e−c = e−c

ck

k!
.

Why should we care about this calculation? The point is that the Poisson distribution is highly
concentrated, with a short tail: the tail probability decreases like ck/k!. Instead, in most social
networks we know from measurements that the tail probability of the degree distribution decreases
much more slowly, like 1/kα. Therefore, the Erdős-Rényi model is not a good model of social networks,
at least from the point of view of the average degree.

2.4 Clustering coefficient

The clustering coefficient is another example of parameter that, for most social networks, is not
predicted correctly by the random graph model G(n, p).

Remember that the clustering coefficient is the probability that a random path of length 2 (u–v–z)
is part of a triangle (u–v–z–u). In the G(n, p) model, this probability is exactly p (why?). For fixed
degree c = p(n − 1), as n → ∞, this probability goes down like c/(n − 1) = O(1/n). In fact, even
if the average degree is increasing with the size of the network (say, c = O((log n)r), which seems a
conservative assumption for most social networks observed in practice), the clustering coefficient of
the G(n, p) model tends to zero as n→∞. But in social networks observed in practice, the clustering
coefficient has been found to be lower-bounded by a non-negligible constant, independently of the size
of the network.
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2.5 Giant components

When p gets larger, the probability that a connected component of size Θ(n) will form in the network
(a giant component) also gets larger. We consider a heuristic argument to determine the ratio of the
size of the giant component to n, as a function of p (in the limit of large n).

Let u be the expected fraction of nodes in the random graph that do not belong to the giant component.
Note that u is also the probability that a randomly chosen node does not belong to a giant component.

The probability, for a specific node i, of not being connected to the giant component through another
specific node j, is 1− p+ pu: with prob. 1− p, i is not adjacent to j; with probability pu, i is adjacent
to j, but j is not in the giant component.

The probability of not being connected to the giant component through any other node is therefore

u = (1− p+ pu)n−1 =

(
1− c

n− 1
(1− u)

)n−1
,

and taking logs,

log u = (n− 1) log

(
1− c

n− 1
(1− u)

)
' −(n− 1)

c

n− 1
(1− u) = −c(1− u),

so u satisfies u = e−c(1−u), and z := 1− u (the fraction of nodes in the giant component) satisfies

z = 1− e−cz.

This equation in z can be solved numerically, or graphically. There is only the solution z = 0 for small
c, and there are two solutions for large c. The transition takes place when

d

dz
(1− e−cz)

∣∣∣∣
z=0

= 1,

giving ce−c·0 = 1, i.e., c = 1. So we do not expect a giant component unless c > 1.

Do we really expect a giant component when c > 1? Consider a large enough set T of s nodes. If we
expand this set by adding its immediate neighbors not in it, we expect to find p(n − s) edges out of
each node in T to nodes out of T . But

p(n− s) = c
n− s
n− 1

' c,

so when c > 1 the size of the periphery gets larger by the constant factor c.

Can there be two giant components? It can again be argued that for large n this happens only with
vanishing probability. Indeed, if there are two giant components with fractions z1 and z2 of the total
number of nodes, there are z1n · z2n ways to connect them, and none of this potential edges should
be in the graph, which happens with probability

q := (1− p)z1z2n2
=

(
1− c

n− 1

)z1z2n2

.
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Taking logs and using the second order Taylor approximation ln(1− x) ' −x− x2/2 yields

log q = z1z2

(
n2 log(1− c

n− 1
)

)
' z1z2(−c(n+ 1)− c2/2) = cz1z2(−n− (c/2 + 1)).

But for large n, log q → −∞, so q → 0.


