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1 Games: examples and definitions

Game theory deals with situations in which multiple rational, self-interested entities (individuals,
firms, nations, etc.) have to interact.

A normal-form game tries to model a situation in which the entities have to take their decisions
simultaneously and independently.

An example is the following Rock-Paper-Scissors game. We can represent it by a table in which
the rows correspond to decisions of Player 1, and the columns to decisions of Player 2.

P1, P2 rock paper scissors

rock draw P2 wins P1 wins

paper P1 wins draw P2 wins

scissors P2 wins P1 wins draw

Definition 1.1. A normal form game is given by:

• a set N (set of players); often we use N = {1, 2, . . . , n}

• for each i ∈ N , a nonempty set Si (strategies of player i)

The set S := S1 × S2 × . . .× Sn is called the set of states of the game.

• for each i ∈ N , a function ui : S → R (utility or payoff function)

Example 1.2 (Rock-Paper-Scissors).

u1, u2 rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Notice that Rock-Paper-Scissors is a zero-sum game: in any state of the game, the sum of the utilities
of the players is constant. The Rock-Paper-Scissors game is also finite: the set N of players has finite
cardinality, as do the strategy sets S1, . . . , Sn.
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Example 1.3 (Prisoner’s dilemma). Two suspects are interrogated in separate rooms. Each of them
can confess or not confess their crime. If both confess, they get 4 years each in prison. If one confess
and the other does not, the one that confessed gets 1 year and the other 5. If both are silent, they get
2 years each.

Like in this case, sometimes it is more natural to use cost functions (ci)i∈N instead of utility
functions (ui)i∈N ; it is equivalent, since we can always define ui := −ci.

c1, c2 confess silent

confess 4, 4 1, 5

silent 5, 1 2, 2

Notice that the Prisoner’s dilemma is not a zero-sum game; however it is a finite game.
So far we saw two-player games, but obviously there are games with more players.

Example 1.4 (Bandwidth sharing). A group of n users has to share a common Internet connection
with finite bandwidth. Each user can decide what fraction of the bandwidth to use (any amount
between none and all). The payoff of each user is higher if this fraction is higher, but is lower if the
remaining available bandwidth is too small (packets get delayed too much).

We can model this by defining

• N := {1, . . . , n};

• Si := [0, 1] for each i ∈ N ;

• ui(s) := si · (1 −
∑

j∈N sj), where si ∈ Si is the strategy selected by player i and s =
(s1, s2, . . . , sn).

Notice that this game is not finite: the set of players is finite, but the strategy sets have infinite
cardinality.

Example 1.5 (“Chicken”). Two drivers are headed against each other on a single lane road. Each of
them can continue straight ahead or deviate. If both deviate, they both get low payoff. If one deviates
while the other continues, he is a “Chicken” and will get low payoff, while the payoff for the other
player will be high. If both continue straight ahead, however, a disaster will occur which will cost a
lot to the players, as both cars will be destroyed.

u1, u2 deviate straight

deviate 0, 0 -1, 5

straight 5, -1 -100, -100

Notice that the type of games we discussed (normal-form games) are “one-shot” in the sense that
players move simultaneously and interact only once. There are also model of games in which players
move one after the other (extensive games) or in which the same game is played many times (repeated
games). However, in the course we will focus on normal-form games.
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Representing the game computationally

When we need to process a game computationally, we have to find some means of representing the
game in a concise way. In a normal-form game with a constant number of players, we can represent the
whole payoff table explicitly; its size will be polynomial in the total number of strategies. If the number
of players is not constant (as in the bandwidth sharing game) we need to represent the functions that
compute the payoffs, by encoding them in some formalism (e.g. as C programs or Turing machines).

We also notice that in general we cannot represent real values; in most cases we will need to assume
that the codomain of the payoff functions is not R, but rather Z or Q.

2 Solution concepts

After we have modeled a game, we would like to know which states of the game represent outcomes
that are likely to occur, assuming that players are self-interested and rational. There are different
ways to do this; each of them gives rise to a different solution concept. Different solution concepts
have different interpretations, advantages and drawbacks.

2.1 Dominant strategy equilibrium

Consider a state of a game Γ = (N, (Si)i∈N , (ui)i∈N ). The utility of a player i in state s ∈ S will
depend on both the action of player i himself (si) as well as on the actions of the other players, which
we denote conventionally by s−i. So we can rewrite ui(s) (utility of player i in state s) as ui(si, s−i).
Be careful when reading (or using) this notation: we are not reordering the components of the vector
s, we are just writing them differently. For example, with (zi, s−i) we simply mean the state vector
that is obtained from s by replacing the i-th component of state s with zi.

The idea of a dominant strategy equilibrium is that if a player has an action that is the best among
his actions independently of what the other players do, then this is certainly a possible outcome of the
game. This is formalized as follows.

Definition 2.1. State s ∈ S is a dominant strategy equilibrium if for all i ∈ N and for all s′ ∈ S,

ui(si, s
′
−i) ≥ ui(s′i, s′−i).

(In terms of costs: ci(si, s
′
−i) ≤ ci(s′i, s′−i).)

Example 2.2 (Dominant strategy in the Prisoner’s dilemma). Is (silent,silent) a dominant strategy
in the Prisoner’s dilemma game? The answer is no: if s =(silent,silent), there is a player (i = 1) and
there is an alternative state s′ =(confess,silent) for which c1(silent, silent) > c1(confess, silent). This
contradicts the definition.

Is (confess,confess) a dominant strategy? We have to check 8 cases (2 players times 4 states) to
be sure, but the answer is yes. The point is that no matter what the other player is doing, for each
player it is cheaper to confess. So (confess,confess) is a dominant strategy.

A dominant strategy equilibrium represents a “strong” type of equilibrium: every player can rely
on his strategy independently of what the others are doing. Unfortunately, it has a big drawback: it
does not always exist!
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Exercise 2.1. Show that the Chicken game has no dominant strategy equilibrium.

Since it does not always exist, we cannot use the dominant strategy equilibrium concept to predict
what will happen in a game : the players will certainly do something, and this something will not in
general be a dominant strategy equilibrium, simply because the game might not admit one.

2.1.1 Finding dominant strategy equilibriums

How do we find, given a game, its dominant strategy equilibriums? If the game is finite and there
is a constant number of players this can be done efficiently. Since there is a polynomial number of
states (|S1| · |S2| · . . . |Sn|, where n is constant) we simply check for every state whether it satisfies the
condition in the definition of dominant strategy equilibrium.

2.2 Pure Nash equilibrium

The idea of a pure Nash equilibrium is of that of calling a state an equilibrium if for every player,
assuming that other players are not changing their action, the player is selecting his “best” action.
That is, no player has an incentive to deviate unilaterally from his action; no one has an interest to
alter the “status quo”.

Definition 2.3. A state s ∈ S is a pure Nash equilibrium (PNE) if for all i ∈ N and for all s′i ∈ Si,

ui(si, s−i) ≥ ui(s′i, s−i).

The definition is superficially very similar to that of dominant strategy: take your time to appre-
ciate the difference.

However, there is a similarity and in fact every dominant strategy equilibrium is also a pure Nash
equilibrium (can you see why?).

The converse is not true: some games without dominant strategy equilibriums have pure Nash
equilibria.

Example 2.4 (PNE in the Chicken game). Is the state s =(straight,straight) a PNE in the Chicken
game? The answer is no: there is a player (i = 1) and an alternative strategy s′i (deviate) such that
−1 = u1(straight,straight) < u1(deviate,straight) = −100. This contradicts the definition.

Is the state s =(deviate,straight) a PNE in the Chicken game? Let’s see. If player 1 knows
that player 2 is going straight, deviating (-1) is better than going straight (-100). On the other
hand, if player 2 knows that player 1 is deviating, going straight (5) is better than deviating (0). So
(deviate,straight) is a PNE.

Notice that PNE need not be unique: in fact, in the Chicken game, there are two PNE (which is
the other one?).

Let’s look at a more complicated example.

Example 2.5 (PNE in the Bandwidth sharing game). Let’s see what player i will do when the
strategies of the other players are s1, . . . , si−1, si+1, . . . , sn. Let’s define t :=

∑
j 6=i si. From the point

of view of player i, the quantity t is a constant. By definition of the payoffs we have ui(s) = si·(1−t−si).
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Player i can control the one-dimensional variable si ∈ [0, 1]. If we take the derivative of ui(s) with
respect to si we obtain

∂

∂si
ui(s) = 1− t− 2si.

By standard analysis we know that the maximum of ui is achieved when ∂
∂si
ui(s) = 0 (or, possibly,

when si is at an extreme point of [0, 1], but this is not the case in our example because we get the
worst possible payoff in that case). So the player will select si = 1

2(1− t) = 1
2(1−

∑
j 6=i sj). This will

be true for all i ∈ N , so by symmetry we find out that si = 1/(n+ 1) for all i.

Unfortunately, although the PNE solution concept applies to a larger class of games, it has basically
the same problem as that of a dominant strategy equilibrium: it does not always exist.

Exercise 2.2. Show that the Rock-Paper-Scissors game has no PNE.

2.2.1 Finding pure Nash equilibria

When the game is finite and the number of players is constant, we can find efficiently all pure Nash
equilibria of the game via a simple enumeration of all states, as we did in the case of dominant strategy
equilibriums.

2.3 Mixed Nash equilibrium

So far there was no way for a player to interpolate between two actions: either he selects action si or
he performs another action sj . We now relax this constraint by allowing the player to choose actions
with certain probabilities. For example he might choose action s1 with probability 1/4, action s2 with
probability 1/3, and action s3 with probability 5/12. Such strategies are called mixed, in contrast
with the usual deterministic pure strategies. Pure strategies are perhaps more natural, but often the
strategies arising in a game are in fact mixed strategies.

Definition 2.6. A mixed strategy for player i is a probability distribution on the set of Si of pure
strategies. That is, it is a function pi : Si → [0, 1] such that

∑
si∈Si

pi(si) = 1. A mixed state is a
family (pi)i∈N consisting of one mixed strategy for each player.

Notice that every pure state s has probability p(s) := p1(s1) · p2(s2) · . . . · pn(sn) of being realized.
Thus, a mixed state (pi)i∈N induces an expected payoff for player i equal to

∑
s∈S p(s) · ui(s).

This is the expected payoff of a state selected probabilitically by the players according to their mixed
strategies.

We can now define the notion of mixed Nash equilibrium (MNE).

Definition 2.7. A mixed state is a mixed Nash equilibrium if no player can unilaterally improve his
expected payoff by switching to a different mixed strategy.

Since mixed strategies generalize pure strategies, it is not hard to see that every PNE is also a
MNE. The opposite is not true. In fact, there are games without PNE that admit MNE. More than
that: the surprising fact is that any finite game (game where N and S are finite) admits at least one
mixed Nash equilibrium!
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Theorem 2.1 (Nash 1950). Every finite game admits at least one mixed Nash equilibrium.

Example 2.8 (MNE for the Rock-Paper-Scissors game). We saw that the Rock-Paper-Scissors game
has no pure Nash equilibria. According to Nash’s Theorem it should have at least one equilibrium. In
fact, we claim that if we define p := (1/3, 1/3, 1/3), then (p, p) is a MNE.

Let’s verify this. Consider for example player 1. We should check that when player 2 uses probabil-
ity distribution p, player 1 has no incentive to play a mixed strategy different from p. (We should also
do a similar check with the roles of the players reversed, but in this case everything will be symmetric.)

If player 2 uses mixed strategy p, and player 1 uses a generic mixed strategy q = (a, b, c) where
a+ b+ c = 1, then the expected payoff for player 1 becomes

a · 1/3 · (0) + a · 1/3 · (−1) + a · 1/3 · (+1)+

b · 1/3 · (+1) + b · 1/3 · (0) + b · 1/3 · (−1)+

c · 1/3 · (−1) + c · 1/3 · (+1) + c · 1/3 · (0) = 0.

So the expected payoff is a constant (0) no matter what a, b and c are! This means that there is no
point for player 1 in changing them. Similarly, when player 1 plays (1/3, 1/3, 1/3), player 2 has no
incentive to change his strategy from (1/3, 1/3, 1/3). The two players “lock” each other in the mixed
Nash equilibrium.

At this point you might wonder why another mixed state, like (1/2, 1/4, 1/4) for both players, is
not a MNE. The reason is that if e.g. player 2 plays something different from (1/3, 1/3, 1/3), then
the player 1 is no longer indifferent between his possible responses. In this case, when player 2 plays
(1/2, 1/4, 1/4), it will be more convenient for player 1 to play (0, 1, 0) than to play (1/2, 1/4, 1/4): since
player 2 is playing Rock more often than Paper or Scissors, it is best for player 1 to always play Paper
(you can check this by computing the expected payoff for player 1). So ((1/2, 1/4, 1/4), (1/2, 1/4, 1/4))
is not a MNE.

2.3.1 Finding mixed Nash equilibria

Finding MNE is considerably harder than finding dominant strategy equilibriums or PNE, even when
the game is finite and there are only a constant number of players, and even when there are only two
players. Apparently we have to check for an infinite set of mixed states, so it is not even clear that
we can do it in finite time!

Luckily, there are some notions that can help us.

Definition 2.9. A mixed strategy pi is a best response to mixed strategies p1, . . . , pi−1, pi+1, . . . , pn
if for all mixed strategies p′i of player i,∑

s∈S
p1(s1) . . . pi(si) . . . pn(sn) · ui(s) ≥

∑
s∈S

p1(s1) . . . p
′
i(si) . . . pn(sn) · ui(s).

That is, a best response attains the maximum possible expected utility among all possible mixed
strategies of this player. In fact, we can now say that a mixed state is a MNE if and only if every
player is playing a best response strategy.
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Definition 2.10. The support of a mixed strategy pi is the set of all pure strategies that have nonzero
probability in it: supp(pi) := {j ∈ Si : pi(j) > 0}.

Example 2.11. If pi = (13 , 0, 0, 1
2 ,

1
6) then the support of pi is {1, 4, 5}.

The following characterization will be very useful for computing mixed Nash equilibria.

Theorem 2.2. A mixed strategy pi is a best response if and only if all pure strategies in supp(pi) are
best responses.

Proof. If all strategies in supp(pi) are best responses, then since the mixed strategy is a convex
combination of them, it will have the same expected payoff and also be a best response.

On the other hand, if mixed strategy pi is a best response, all pure strategies in its support are
best responses: suppose this was not the case, then by decreasing the probability of the pure strategy
with worst expected payoff, and redistributing the remaining probability proportionally for the other
pure strategies in the support, we could improve the expected payoff. But then pi would not be a best
response.

Thus the hard part in finding a MNE is finding the right supports.
Suppose that we are given a finite two-player game. This can be completely specified by two

payoff matrices A = (aij)ij , B = (bij)ij ∈ Rm1×m2 (which is why these games are also called bimatrix
games), where S1 = {1, . . . ,m1} and S2 = {1, . . . ,m2} are the strategy sets. If we knew the supports
I ⊆ S1 and J ⊆ S2, to check whether there is a MNE with these supports it would be enough to check
whether the following system has a solution in the (vector) variables x, y:

∑
j∈J

yjakj ≤
∑
j∈J

yjaij ∀k ∈ S1, ∀i ∈ I (1)

∑
i∈I

xibik ≤
∑
i∈I

xibij ∀k ∈ S2, ∀j ∈ J (2)∑
i∈I

xi = 1 (3)∑
i∈J

yj = 1 (4)

xi ≥ 0 ∀i ∈ I (5)

yj ≥ 0 ∀j ∈ J. (6)

Intuitively, the equations (1) state that every pure strategy in the support of x (that is, I) is a best
response to mixed strategy y: no other pure strategy k in S1 can achieve better expected payoff.
Similarly, equations (2) state that every pure strategy in the support of y is a best response to mixed
strategy x. Equations (3)–(6) simply state that x and y are in fact mixed strategies (probability
distributions on S1 and S2, respectively).

Theorem 2.3. There is an algorithm that finds a MNE of a bimatrix game (A,B) where A,B ∈
Qm1×m2 in time 2m1+m2 · poly(bits(A) + bits(B)).
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Proof. We simply enumerate all possible supports I ⊆ S1,J ⊆ S2 and for each of them check whether
the above linear system is feasible. If it is, then (x, y) is a MNE.

Example 2.12. Let’s go back to the Chicken game.

u1, u2 deviate straight

deviate 0, 0 -1, 5

straight 5, -1 -100, -100

We saw that the game has two pure Nash equilibria: (deviate,straight) and (straight,deviate). Let’s
see if it has one mixed Nash equilibrium. It is easy to see that in this case, when the support of one of
the players has size one, the other player best response is a single pure strategy. Thus, since we already
investigated the PNE of this game, any other MNE (if there is one) will necessarily have a support of
size at least two for both players. So there is no need to enumerate all the possible supports I and J :
we can directly take I = J = {d, s} where d and s are shorthand for “deviate” and “straight”.

The linear program then gives us:

yd · 0 + ys · (−1) = yd · 5 + ys · (−100)

xd · 0 + xs · (−1) = xd · 5 + xs · (−100)

yd + ys = 1

xd + xs = 1

xd, xs, yd, ys ≥ 0.

The solution is xd = yd = 99/104, xs = ys = 5/104. So we discovered another equilibrium. In this
equilibrium both players will deviate from their route with high probability, but each of them has a
small probability (5/104) of going straight.

Exercise 2.3. Find all MNE of the following bimatrix game.

u1, u2 Action 1 Action 2

Action 1 2, 1 0, 3

Action 2 1, 2 4, 1

Remark 2.1. It is not known whether finding a Nash equilibrium of a finite two-player game is a
problem that can be solved in polynomial time, although there is some complexity-theoretic evidence
that it is not. However the problem is definitely not NP-hard: in fact, the associated decision problem
is trivial, as the answer is always “yes”!

2.3.2 The case of zero-sum games

In the special case where we have a zero-sum two-player game, it turns out that there is a polynomial
time algorithm to find a Nash equilibrium. In fact, consider such a game; this can be specified by a
single matrix A = (aij)ij , whose entries represent simultaneously the payoffs for the first (row) player
as well as the costs for the second (column) player.
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Assume that the column player knows that row player is playing mixed strategy x. Then the
column player will look at the expected payoff vector xA, and since he wants to minimize his loss,
he will only play strategies that correspond to minimum entries in this vector. So if we now consider
things from the point of view of the row player, he can secure himself a payoff of v if he selects a
mixed strategy x such that no matter what the second player plays, the payoff will be at least v. We
thus have the following linear program for maximizing the “safety level” v:

v∗ = max v∑
i∈S1

xiaij ≥ v ∀j ∈ S2∑
i∈S1

xi = 1

xi ≥ 0 ∀i ∈ S1.

Similarly, for the column player we get the following program:

u∗ = minu∑
j∈S2

yjaij ≤ u ∀i ∈ S1∑
j∈S2

yj = 1

yj ≥ 0 ∀j ∈ S2.

We notice that these linear programs are duals of each other! We can now prove the following.

Theorem 2.4. Optimum solutions for the above pair of linear programs give mixed strategies that
form a Nash equilibrium of the two-person zero-sum game.

Proof. By linear duality v∗ = u∗. If the players play this pair of strategies, the row player cannot
increase his win, as the column player is guaranteed by his strategy not to lose more than u∗. Similarly,
the column player cannot decrease his loss under v∗. This means that the pair of strategies is at
equilibrium.

Corollary 2.5. There is a polynomial time algorithm for finding a mixed Nash equilibrium in a
two-player zero-sum game.

In fact, the quantity v∗ = u∗ is called the value of the zero-sum game: it is the payoff that the
first player can ensure for himself by playing the game at the best of his possibilities. Notice that the
value might be negative: in that case it would be better for the first player not to play at all!

Example 2.13. Consider the following zero-sum game.

u1 = −u2 Action 1 Action 2

Action 1 2 -1

Action 2 1 3
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x1

v

x1 ≥ 0

x1 + 1 ≤ v

−4x1 + 3 ≤ v

( 2
5 ,

7
5 )

Figure 1: Example 2.13

The first LP becomes:

max v

x1 · 2 + x2 · 1 ≥ v
x1 · (−1) + x2 · 3 ≥ v
x1 + x2 = 1

x1, x2 ≥ 0.

If we substitute x2 = 1 − x1, we can rewrite the main inequalities as x1 + 1 ≥ v and −4x1 + 3 ≥ v.
From these we find out (Figure 1) that the best possible value of v is 7/5, obtained when x1 = 2/5,
x2 = 3/5. Similarly for the column player, we obtain that y1 = 4/5, y2 = 1/5.

2.3.3 Degenerate games

Sometimes it can happen that we have a “degenerate” kind of equilibrium. Consider a zero-sum game
given by the following matrix: (

2 4
2 5

)
By solving for the second player’s equilibrium strategy we find y1 = 1, y2 = 0. However if we write
the LP for the first player:

max v

2x1 + 2x2 ≥ v
4x1 + 5x2 ≥ v
x1 + x2 = 1

x1, x2 ≥ 0.

we find out that any probability distribution (x1, x2) is feasible (and v = 2). What is happening? The
point is that, as the second player will play the first column, it does not really matter which row the
first player selects. So we have infinitely many MNE, of the form ((ε, 1− ε), (1, 0)) for any ε ∈ [0, 1].
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2.3.4 Dominated strategies

Another useful concept to keep in mind in the study of equilibria is that of a dominated strategy.

Definition 2.14. A pure strategy si of a player i ∈ N is strictly dominated by a strategy s′i of the
same player if, for each combination s−i of strategies of the remaining players,

ui(si, s−i) < ui(s
′
i, s−i).

Thus, a strictly dominated strategy is a strategy for which there is an alternative that is always
strictly better for the player, independently of the actions of the others. As such, it is not rational to
play a strictly dominated strategy and in fact it can be easily proven that they are never part of a
Nash equilibrium.

A useful preprocessing step, when analyzing a game, is then to eliminate from it strategies that are
strictly dominated. Since the strategy is strictly dominated, we are not “forgetting” any equilibrium
in this way. This procedure can be iterated until no strategy is strictly dominated.

Example 2.15. Consider the following bimatrix game (A,B):

A =

(
0 2 5
2 4 −1

)
, B =

(
4 5 −1
2 −3 0

)
Looking at A, we see that no strategy of the row player is strictly dominated. Looking at B, we see

that the third column is strictly dominated by the first one. We can thus eliminate the third column
and obtain the simpler, but equivalent, game:

A =

(
0 2
2 4

)
, B =

(
4 5
2 −3

)
In this new game, the first row in matrix A is strictly dominated by the second row. Thus player 1
will never play the first row. We obtain the even simpler game:

A =
(

2 4
)
, B =

(
2 −3

)
We can finally conclude that player 2 will select the column that gives payoff 2. We have thus reached
a pure Nash equilibrium where both players have payoff 2. This is also a PNE of the original game,
and from what we said it must be the only one (whether pure or mixed), because all the strategies we
discarded cannot be part of an equilibrium.

The notion of strictly dominated strategy can be weakened to allow for equality of the payoffs, as
follows.

Definition 2.16. A pure strategy si of a player i ∈ N is weakly dominated by a strategy s′i of the
same player if, for each combination s−i of strategies of the remaining players,

ui(si, s−i) ≤ ui(s′i, s−i).

Differently from strictly dominated strategies, we cannot eliminate weakly dominated strategies
from a game while being sure that we do not remove a Nash equilibrium. In fact, if we did so in the
example of Section 2.3.3, we would end up with a single pure equilibrium (where player 1 plays the
second row and player 2 the first column), while we have already seen that the game had infinitely
many Nash equilibria.
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2.3.5 Other game examples

Example 2.17 (2/3 of the Mean). There are n players. Each player i selects a real number xi between
0 and 100 (inclusive). Let A :=

∑
i xi/n be the average of the numbers. The players whose number

was closest to 2A/3 get a payoff of 1, the others get 0.

Exercise 2.4. Determine the pure Nash equilibria of “2/3 of the Mean”.

Example 2.18 (Color the Nodes). Consider an undirected graph where each node represents a player.
Each player selects a color: black or white. The payoff for player i is the number of adjacent nodes
that have color different from i, minus the number of adjacent nodes having the same color as i.

Exercise 2.5. Prove that there is always at least one pure Nash equilibrium in “Color the Nodes”.

Example 2.19 (Catching the Votes). Each of n people chooses whether or not to become a political
candidate, and if so which position to take. There is a continuum of citizens, each of whom has
a favorite position; the distribution of favorite positions is given by a density function. A candidate
attracts the votes of those citizens whose favorite positions are closer to his position than to the position
of any other candidate; if k candidates choose the same position then each receives the fraction 1/k of
the votes that the position attracts. The winner of the competition is the candidate who receives the
most votes. Each person prefers to be the unique winning candidate than to tie for first place, prefers
to tie for first place than to stay out of the competition, and prefers to stay out of the competition
than to enter and lose.

Exercise 2.6. Formulate “Catching the Votes” as a strategic game and find the set of pure Nash
equilibria when n = 2.


