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Continuous Relaxation

Recap: a continuous relaxation for maximization
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Continuous Relaxation

Recap: a continuous relaxation for maximization

Multilinear Extension:

F(x)= Y fR) [T x [T(-x), vxelo, )

RCN ui€R  u;¢R

@ Simple probabilistic interpretation.
@ xintegral = F(x) = f(x).
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Continuous Relaxation

Recap: a continuous relaxation for maximization

Multilinear Extension:

F(x)= Y fR) [T x [T(-x), vxelo, )

RCN ui€R  u;¢R

@ Simple probabilistic interpretation.
@ xintegral = F(x) = f(x).

Multilinear Relaxation

@ What are the properties of F?

@ It is neither convex nor concave.
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Properties of the Multilinear Extension

The multilinear extension F satisfieS'

@ If f is non-decreasing, then > 0 everywhere in the cube for all i.

@ If f is submodular, then a a < 0 everywhere in the cube for all 7, .
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Properties of the Multilinear Extension

The multilinear extension F satisfieS'

@ If f is non-decreasing, then > 0 everywhere in the cube for all i.

@ If f is submodular, then a a < 0 everywhere in the cube for all 7, .

Useful for proving:

The multilinear extension F satisfies:

@ If f is non-decreasing, then F is non-decreasing in every direction d.
e If f is submodular, then F is concave in every direction d > 0.

@ If f is submodular, then F is convex in every direction &; — e for all
i,jeN.
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Properties of the Multilinear Extension

Summarizing:

ff) =2 F) 2 () = f@)
—— N~ S——— ~——
concave closure multilinear ext. convex closure Lovasz ext.

Any extension can be described as E[f(R)] where R is chosen from a
distribution that preserves the x; values (marginals).

@ concave closure maximizes expectation but is hard to compute.

@ concave closure minimizes expectation and has a nice characterization
(Lovasz extension).

@ Multilinear extension is somewhere in the “middle”.
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Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsets M C 2V

max f(9S)
st SeM
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Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsets M C 2V

max f(9S)
st SeM

v

following the paradigm for relaxing linear maximization problems

‘P - convex hull of feasible sets (characteristic vectors)

max F(x)
s.t. XG'PM
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Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsets M C 2V

max f(9S)
st SeM

v

following the paradigm for relaxing linear maximization problems

P m - convex hull of feasible sets (characteristic vectors)

max F(x)
s.t. XG'PM

comparing linear and submodular relaxations

@ optimizing a fractional solution:

e linear: easy
@ submodular: not clear ...

v
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Continuous Relaxation

constrained submodular maximization problem

Family of allowed subsets M C 2V

max f(9S)
st. SeM

v

following the paradigm for relaxing linear maximization problems

P m - convex hull of feasible sets (characteristic vectors)

max F(x)
s.t. x € Py

comparing linear and submodular relaxations

@ optimizing a fractional solution:
e linear: easy
e submodular: not clear ...

@ rounding a fractional solution:

e linear: hard (problem dependent)
@ submodular: easy (pipage for matroids)

v
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Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrék-08].
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Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrék-08].
For a matroid M, the matroid polytope associated with it:

Py ={xeo 1V © Y X <ry(S) VSC M}

i€S

where r4(+) is the rank function of M.

The extreme points of P, correspond to characterstic vectors of
indepenedent sets in M.
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Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].
For a matroid M, the matroid polytope associated with it:

PM—{XGOl sz\ SQM}

i€S

where r4(+) is the rank function of M.

The extreme points of P, correspond to characterstic vectors of
indepenedent sets in M.

Observation: if f is linear, a point x can be rounded by writing it as a convex
sum of extreme points.
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Pipage Rounding on Matroids

Work of [Ageev-Sviridenko-04],[Calinescu-Chekuri-Pal-Vondrak-08].
For a matroid M, the matroid polytope associated with it:

PM—{XGOl sz\ SQM}

i€S

where r4(+) is the rank function of M.

The extreme points of P, correspond to characterstic vectors of
indepenedent sets in M.

Observation: if f is linear, a point x can be rounded by writing it as a convex
sum of extreme points.

Question: What do we do if f is (general) submodular?
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Pipage Rounding on Matroids

Rounding general submodular function f:

e if x is non-integral, there are i, j € A for which 0 < x;, x; < 1.
o recall, F is convex in every direction e; — e;.
@ hence, F is non-decreasing in one of the directions +(e; — ¢;)
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Pipage Rounding on Matroids

Rounding general submodular function f:

o if x is non-integral, there are i, j € A/ for which 0 < x;, x; <1
o recall, F is convex in every direction e; — e;.
@ hence, F is non-decreasing in one of the directions +(e; — ¢;)

Rounding Algorithm:

@ suppose direction ¢; — e; is non-decreasing

6 - max change (due to a tight set A)

if either x; + 6 or x; — 6 are integral - progress

else there exists a tight set A’ C A,ie A', j ¢ A’ (|A] < |A])
recurse on A’ - progress

eventually: minimal tight set (contained in all tight sets) in which any pair
of coordinates can be increased/decreased - progress
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Continuous Greedy

The Continuous Greedy Algorithm [Calinescu-Chekuri-Pal-Vondrak-08]

@ computes an approximate fractional solution
@ f is monotone (for now ...)
@ Py, is downward closed (0 € P /)
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Continuous Greedy
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

O
X(0) =0
" n JF (%(t ; ()
j (t)—argmaX{Zg,f))-yi : yGPM} - %:yi(t)
i=1 !
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Continuous Greedy

X(0) =0

Y T S

i=1
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

/

/
Y/

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

/

/
Y/

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy

X(0) =0
" 9F (X(t)) ax; (t)

y (t)—argmax{izla%-yi : ]/EPM} ~ T:yl(t)
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Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F(%(t)) > (1 —¢") F(1opT)

=L
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Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F(%(t)) > (1 —¢") F(1opT)

@ When to stop the algorithm?
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Continuous Greedy - Analysis

[Calinescu-Chekuri-Pal-Vondrak-08]

F(#(t) > (1- ™) F(lop)

@ When to stop the algorithm?

f1 = ¥(1) feasible (convex combination of feasible vectors)
F(#(1)) > (1- 1) F(10pr)
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Continuous Greedy - Analysis (Cont.)

Proof:
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Continuous Greedy - Analysis (Cont.)

Proof:

IF (%(1))
of
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Continuous Greedy - Analysis (Cont.)

Proof:
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Continuous Greedy - Analysis (Cont.)

Proof:
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Continuous Greedy - Analysis (Cont.)

Proof:
aF(f(t)) . n aF(f(t)) axl(t) _ aF(f(t)) .
ot _i; ax; ot _i; o, Vi (t)
Sy OFED)
icOPT ox;
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Continuous Greedy - Analysis (Cont.)

Proof:
OF (X(t)) _ y~ OF (X(t)) oxi(t) _ <~ OF (X(t) .
ot _1.; o ot _,.; o, Vi)
N OF (¥(t)) _ y F(f(t)w{z})—F(f(t))
icopT  O%i icOPT 1—x(t)
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Continuous Greedy - Analysis (Cont.)

Proof:
OF (aft(t)) _ é oF éift)) . axalgt) _ ,-; oF E(;Zt)) 0
N aFéf(t)) ¥y F(%() V1) — F(3()
icopT %% i€OPT 1—x;(t)
> ieng [F () V1) - FE®)]
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Continuous Greedy - Analysis (Cont.)

Proof:
OF (aft(t)) _ é oF éift)) . axalgt) _ ,-; oF E(;Zt)) )
. aFéf(t)) ¥y F (i’(t) \/1{1'}) — F(X(t))
icopT %% i€OPT 1—x;(t)
> L [F(I0 1) - F )
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Continuous Greedy - Analysis (Cont.)

Proof:
OF (X(t)) _ y~ oF (¥(t)) oxi(t) _ §~ OF (X(H) .
ot _1.; ox; ot _,.; o, Vi)
OF (F(t)) y F(f(t)w{i})—F(f(t))
Tuoer 9% et 1—x(t)
> F(z(t)viy) —F(Z
> L [F(EO V1) - FE0)]
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Continuous Greedy - Analysis (Cont.)

Proof:

We obtain a differential equation:
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Continuous Greedy - Analysis (Cont.)

Proof:
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Continuous Greedy - Analysis (Cont.)

Proof:
OF (R(t)) & OF (R(H) axi(t) (& oF (R(H)
ot _i; ax; ot _i; o, Vi (t)
FED) ¢ F(2(0) V1)~ FE®)
Tudor 9% bt 1—x;(t)
= F(Xx 1 ; —F(%
>iE§PT[ (70 v 1) —FEW)]

The solution is:
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Continuous Greedy - Analysis (Cont.)

Proof:

The solution is:
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Continuous Greedy - Analysis (Cont.)

Proof:

The solution is:
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Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is (1 = %)-hard.
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Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is (1 = %)-hard.

Are we done?
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Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is (1 = %)-hard.

Are we done?
@ Submodular Welfare:
1-1
e

K
2k—1

(1 -(1- %)k>-hard

[Calinescu-Chekuri-Pal-Vondrak-08]
[Dobzinski-Schapira-06]
[Khot-Lipton-Markakis-Mehta-05]
[Mirrokni-Schapira-Vondrék-07]
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Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is (1 = %)-hard.

Are we done?

@ Submodular Welfare:
1-— % [Calinescu-Chekuri-Pal-Vondrak-08]

% [Dobzinski-Schapira-06]

k Khot-Lipton-Markakis-Mehta-05
(1 -(1-14) >-hard hortip | ]
[Mirrokni-Schapira-Vondrék-07]

Is the case of two players special?
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Continuous Greedy - Tight?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is (1 = %)-hard.

Are we done?

@ Submodular Welfare:
1-— % [Calinescu-Chekuri-Pal-Vondrak-08]

% [Dobzinski-Schapira-06]

k Khot-Lipton-Markakis-Mehta-05
(1 -(1-14) >-hard hortip | ]
[Mirrokni-Schapira-Vondrék-07]

Is the case of two players special?
@ Greedy and Continuous Greedy fail for non-monotone f.
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Measured Continuous Greedy

Continuous Greedy:
{y*(t) = argmax{ . aFgﬁEm AR TRS PM}

s =it
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Measured Continuous Greedy

Continuous Greedy:

{y*(t) = argmax{ . aFgﬁEm AR TRS PM}

Measured Continuous Greedy:
{**(t) — argmax {x7, P (1 xi(0) i FE Py}
S = (X))

<

QU
=
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Measured Continuous Greedy

Continuous Greedy:

{y*(t) = argmax{ . aFgﬁEm AR TRS PM}

Measured Continuous Greedy:
{?*(f) — argmax {2, 000 (1-xi(6) 3 : §€ P

WO = (1-x(0) -y ()

Intuition:

oF(x(t) _F <5€'(t) V1{i}) — F(X(t))

Bx,- 1-— x,-(t)
Continuous greedy ignores the current position x;(f).
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Measured Continuous Greedy

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:
@ monotone f: F(%(t)) = (1—e ") F(10pT)-
@ non-monotone f: F (¥(t)) > te~t - F(1ppt)-
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Measured Continuous Greedy

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:
@ monotone f: F(%(t)) = (1—e ") F(10pT)-
@ non-monotone f: F (¥(t)) > te~t - F(1ppt)-

Non-Monotone f:
@ Stoppingatt =1 = (1/e)-approximation.

@ All known rounding procedures work for non-monotone f as well.
(matroid and O(1) knapsack)

@ Greedy methods fail in the discrete setting.
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Measured Continuous Greedy - Non-Monotone f

Proof:
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Measured Continuous Greedy - Non-Monotone f

Proof:

JF (X(t))
ot
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Measured Continuous Greedy - Non-Monotone f

OF (3(t) _ {1 9F (3(t) (1)

aH l.; ox; ot
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Measured Continuous Greedy - Non-Monotone f

OF (X(t)) _ ¥~ OF (¥(t)) oxi(t) _
ot =) ox;  of =)

i=1 i=1

(IR A0
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Measured Continuous Greedy - Non-Monotone f

Proof
OF (X(t)) _ y~ OF (X(t)) oxi(t) _ <~ OF (¥(t)) *
ot - i; axi : oF l'; axi : (1 - Xi<t)) Vi (t)
>y EEO) 0
icOPT i
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Measured Continuous Greedy - Non-Monotone f

Proof
oF (% " OF (¥ 0x; o OF (¥ ;
F(axt(t)) _ i; Fé?;ft)) . xait) _ i; Fézft)) (1—x (1) - yi(b)
> 3 e o)
icOPT i
F(Z() Vg ) — F(X(t))
=¥ ( 1_{;)@) o)
icOPT !
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Measured Continuous Greedy - Non-Monotone f

Proof
JF (% . OF (X ox; ~ OF (¥ !
F(axt(t)) :El Fé};ft)). xait) :i; Fézft)) (1= x(8) -y (D)
>y EEO) 0
icopT %
o (R0 vag) —FEe)
- z'egh 1—x(t) vl
> F(%(t) V1) —F(*
>ieOPT[ ( (t)\/ {}) ( (t))]
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Measured Continuous Greedy - Non-Monotone f

Proof
JF (% . OF (X ox; ~ OF (¥ !
> ¥ O )
i€OPT i
F(%(t) V1) —F(X(t)
_ O _“? =)
icOPT 1= xi(t)
> F(Xx 1) —F(%
>i6§h[ (7 V1) - F@E®)]

> F(¥() V1opr) — F (%(1))
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Measured Continuous Greedy - Non-Monotone f

Proof
JF (% . OF (X ox; ~ OF (¥ !
> ¥ O )
i€OPT i
F(%(t) V1) —F(X(t)
_ O _“? =)
icOPT 1= xi(t)
> F(Xx 1) —F(%
>i6§h[ (7 V1) - F@E®)]

> F(¥() V1opr) — F (%(1))
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Measured Continuous Greedy - Non-Monotone f

Proof
JF (% . OF (X ox; ~ OF (¥ !
F(axt(t)) :El Fga;ft)), xait) :i; ngft)) 1 x(0) -y
>y EEO) 0
icopT 9%
F(%(5) V1) = F(3()
z'egh 1—x(t) 1)
> F(%(t)v1; ) —F (%
- ieOPT[ ( (t) v {}) ( (t))]

> F(¥() V1opr) — F (%(1))

monotone: > F (1op7) — F (X(t)) yielding same factor as continuous greedyJ
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Measured Continuous Greedy - Non-Monotone f

Proof
JF (% . OF (X ox; ~ OF (¥ !
>y HE.ax)
icOPT i
F(%(t) V1) —F(X(t)
_ (¥ _{}> = - x)
icOPT 1=xi(t)
> F(Xx 1) —F(%
>ie§5T[ ( (t)V {}) ( (t))]

> F(¥() V1opr) — F (%(1))

monotone: > F (1op7) — F (X(t)) yielding same factor as continuous greedyJ

non-monotone: how to lower bound F (¥(¢) V 10pT)? J
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Measured Continuous Greedy - Non-Monotone f (Cont.)

@ x;(t) cannot be too large:
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Measured Continuous Greedy - Non-Monotone f (Cont.)

@ x;(t) cannot be too large:

Q VS C N and ]7 S [0,1}'/\[ s.t. max;cpr {y,} = Ymax-
F(1sV¥) 2 (1= ymax) F(15).

Intuition: by submodularity (decreasing marginals), when “0”
coordinates are increased t0 ymax, l0ss to F(15) is at most a
Ymax-fraction
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Measured Continuous Greedy - Non-Monotone f (Cont.)

@ x;(t) cannot be too large:

Q VS C N and ]7 S [0,1}'/\[ s.t. max;cpr {y,} = Ymax-
F(1sV¥) 2 (1= ymax) F(15).

Intuition: by submodularity (decreasing marginals), when “0”
coordinates are increased t0 ymax, l0ss to F(15) is at most a
Ymax-fraction

F(%(t) V1opT) = e " - F(1opT)- J
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Measured Continuous Greedy - Non-Monotone f (Cont.)
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Measured Continuous Greedy - Non-Monotone f (Cont.)

\%
m
=

(t) V1opr) — F (¥(t))
>e ' F(1opr) — F(¥(t))
Solving the differential equation with F (¥(0)) > 0 gives:

F(%(t) > te~" - E(1opr).

Non-Monotone f Guarantee
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Measured Continuous Greedy - Monotone f

Monotone f Guarantee

F(%(t)) > F(1opr) (1 —¢7)
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Measured Continuous Greedy - Monotone f

Monotone f Guarantee

F(%(t)) > F(1opr) (1 —¢7)

Note: ¥(t) gains the same value but advances less:
xi(t) < 1-— e_t

= one might possibly stop at times ¢ > 1 and still be feasible!
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Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

@ CNF formula and a monotone submodular function f defined over the
clauses

@ Goal: find an assignment ¢ maximizing f (over clauses satisfied by ¢)
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Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

@ CNF formula and a monotone submodular function f defined over the
clauses

@ Goal: find an assignment ¢ maximizing f (over clauses satisfied by ¢)

Optimizing over a Partition Matroid

@ each x; is replaced by a group {(x;,0), (x;,1)}
@ only one element can be chosen from a group (guarantees feasibility)

@ Cy, - clauses satisfied by setting x — v
o for a set of clauses S: g(S) = f(U(y)esCx0)
@ g is submodular (by submodularity of f)
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Measured Continuous Greedy - Monotone f

Submodular MAX-SAT

@ CNF formula and a monotone submodular function f defined over the
clauses

@ Goal: find an assignment ¢ maximizing f (over clauses satisfied by ¢)

Optimizing over a Partition Matroid

@ each x; is replaced by a group {(x;,0), (x;,1)}
@ only one element can be chosen from a group (guarantees feasibility)

@ Cy, - clauses satisfied by setting x — v
o for a set of clauses S: g(S) = f(U(y)esCx0)
@ g is submodular (by submodularity of f)

submodular MAX SAT can be represented as a monotone submodular
maximization problem over a matroid
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Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?
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Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T
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Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T

By properties of measured greedy:
(x,0)<1— e D, (x,1)<1- e I

Seffi Naor Submodular Maximization



Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T

By properties of measured greedy:
(x,0)<1— e D, (x,1)<1- e I

D+ < A=)+ (1—eTyg2—eTo—eloT  (Ty+Ty <T)
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Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T

By properties of measured greedy:
(x,0)<1— e D, (x,1)<1- e I

D+ < A=)+ (1—eTyg2—eTo—eloT  (Ty+Ty <T)
When is 2 — e~ To — ¢To—T maximized? Ty = T/2
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Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T

By properties of measured greedy:
(x,0)<1— e D, (x,1)<1- e I

D+ < A=)+ (1—eTyg2—eTo—eloT  (Ty+Ty <T)
When is 2 — e~ To — ¢To—T maximized? Ty = T/2

Matroid constraints need to be satisfied:
2—e T _el-T<21-eT/2) <1
Yielding: T < 2In2
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Measured Continuous Greedy - Monotone f

Question: for which T > 1 can we run the measured continuous greedy
algorithm and stay feasible?

For variable x:
o T - total time in which (x, 0) is increased
@ Tj - total time in which (x, 1) is increased
Clearly, Ty +T1 < T

By properties of measured greedy:
(x,0)<1— e D, (x,1)<1- e I

D+ < A=)+ (1—eTyg2—eTo—eloT  (Ty+Ty <T)
When is 2 — e~ To — ¢To—T maximized? Ty = T/2

Matroid constraints need to be satisfied:
2—e T _el-T<21-eT/2) <1
Yielding: T < 2In2

Approximation factor is (1 —e~7): 2 for T = 2In2. |
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Measured Continuous Greedy - Monotone f (Cont.)

Note: (x) > 1 since d (P) > 0.
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Measured Continuous Greedy - Results

Problem Result Previous Hardness
Submodular Welfare k k
_(1_1 —1, K } _(1_-1
k players 1 (1 k> max {1 = 1 (1 k)
Submodular Max-SAT 3/4 2/3 3/4
non-monotone f 1/e ~ 0.325 ~ 0.478
matroid
non-monotone f 1/e ~ 0.325 ~ 0.491

O(1) knapsack
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