Submodular Maximization

Seffi Naor

Lecture 3

4th Cargese Workshop on Combinatorial Optimization

Recap: a continuous relaxation for maximization

Recap: a continuous relaxation for maximization

Multilinear Extension:

$$F(x) = \sum_{R \subseteq \mathcal{N}} f(R) \prod_{u_i \in R} x_i \prod_{u_i \notin R} (1 - x_i) , \forall x \in [0, 1]^{\mathcal{N}}$$

- Simple probabilistic interpretation.
- $x \text{ integral } \Rightarrow F(x) = f(x)$.

Recap: a continuous relaxation for maximization

Multilinear Extension:

$$F(x) = \sum_{R \subseteq \mathcal{N}} f(R) \prod_{u_i \in R} x_i \prod_{u_i \notin R} (1 - x_i) , \ \forall x \in [0, 1]^{\mathcal{N}}$$

- Simple probabilistic interpretation.
- $x \text{ integral } \Rightarrow F(x) = f(x)$.

Multilinear Relaxation

- What are the properties of *F*?
- It is neither convex nor concave.

Properties of the Multilinear Extension

Lemma

The multilinear extension *F* satisfies:

- If f is non-decreasing, then $\frac{\partial F}{\partial x_i} \geqslant 0$ everywhere in the cube for all i.
- If f is submodular, then $\frac{\partial^2 F}{\partial x_i \partial x_j} \leqslant 0$ everywhere in the cube for all i,j.

Properties of the Multilinear Extension

Lemma

The multilinear extension *F* satisfies:

- If f is non-decreasing, then $\frac{\partial F}{\partial x_i} \geqslant 0$ everywhere in the cube for all i.
- If f is submodular, then $\frac{\partial^2 F}{\partial x_i \partial x_j} \leqslant 0$ everywhere in the cube for all i, j.

Useful for proving:

Theorem

The multilinear extension F satisfies:

- If f is non-decreasing, then F is non-decreasing in every direction \vec{d} .
- If f is submodular, then F is concave in every direction $\vec{d} \geqslant 0$.
- If f is submodular, then F is convex in every direction $\vec{e}_i \vec{e}_j$ for all $i, j \in \mathcal{N}$.

Properties of the Multilinear Extension

Summarizing:

$$\underbrace{f^+(x)}_{\text{concave closure}} \geqslant \underbrace{F(x)}_{\text{multilinear ext.}} \geqslant \underbrace{f^-(x)}_{\text{convex closure}} = \underbrace{f^L(x)}_{\text{Lovasz ext}}$$

Any extension can be described as $\mathbb{E}[f(R)]$ where R is chosen from a distribution that preserves the x_i values (marginals).

- concave closure maximizes expectation but is hard to compute.
- concave closure minimizes expectation and has a nice characterization (Lovasz extension).
- Multilinear extension is somewhere in the "middle".

constrained submodular maximization problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

$$\max f(S)$$
s.t. $S \in \mathcal{M}$

constrained submodular maximization problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

$$\max f(S)$$

$$s.t. S \in \mathcal{M}$$

following the paradigm for relaxing linear maximization problems

 $\mathcal{P}_{\mathcal{M}}$ - convex hull of feasible sets (characteristic vectors)

$$\max F(x)$$
s.t. $x \in \mathcal{P}_{\mathcal{M}}$

constrained submodular maximization problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

$$\max f(S)$$

$$s.t. S \in \mathcal{M}$$

following the paradigm for relaxing linear maximization problems

 $\mathcal{P}_{\mathcal{M}}$ - convex hull of feasible sets (characteristic vectors)

$$\max F(x)$$
s.t. $x \in \mathcal{P}_{\mathcal{M}}$

comparing linear and submodular relaxations

- optimizing a fractional solution:
 - linear: easy
 - submodular: not clear ...

constrained submodular maximization problem

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

$$\max f(S)$$
s.t. $S \in \mathcal{M}$

following the paradigm for relaxing linear maximization problems

 $\mathcal{P}_{\mathcal{M}}$ - convex hull of feasible sets (characteristic vectors)

$$\max F(x)$$
s.t. $x \in \mathcal{P}_{\mathcal{M}}$

comparing linear and submodular relaxations

- optimizing a fractional solution:
 - linear: easy
 - submodular: not clear ...
- rounding a fractional solution:
 - linear: hard (problem dependent)
 - submodular: easy (pipage for matroids)

Work of [Ageev-Sviridenko-04], [Călinescu-Chekuri-Pál-Vondrák-08].

Work of [Ageev-Sviridenko-04],[Călinescu-Chekuri-Pál-Vondrák-08].

For a matroid \mathcal{M} , the matroid polytope associated with it:

$$\mathcal{P}_{\mathcal{M}} = \{ x \in [0,1]^{\mathcal{N}} : \sum_{i \in S} x_i \leqslant r_{\mathcal{M}}(S) \ \forall S \subseteq \mathcal{M} \}$$

where $r_{\mathcal{M}}(\cdot)$ is the rank function of \mathcal{M} .

The extreme points of $\mathcal{P}_{\mathcal{M}}$ correspond to characterstic vectors of independent sets in $\mathcal{M}.$

Work of [Ageev-Sviridenko-04], [Călinescu-Chekuri-Pál-Vondrák-08].

For a matroid \mathcal{M} , the matroid polytope associated with it:

$$\mathcal{P}_{\mathcal{M}} = \{ x \in [0,1]^{\mathcal{N}} : \sum_{i \in S} x_i \leqslant r_{\mathcal{M}}(S) \ \forall S \subseteq \mathcal{M} \}$$

where $r_{\mathcal{M}}(\cdot)$ is the rank function of \mathcal{M} .

The extreme points of $\mathcal{P}_{\mathcal{M}}$ correspond to characterstic vectors of independent sets in \mathcal{M} .

Observation: if f is linear, a point x can be rounded by writing it as a convex sum of extreme points.

Work of [Ageev-Sviridenko-04],[Călinescu-Chekuri-Pál-Vondrák-08].

For a matroid \mathcal{M} , the matroid polytope associated with it:

$$\mathcal{P}_{\mathcal{M}} = \{ x \in [0,1]^{\mathcal{N}} : \sum_{i \in S} x_i \leqslant r_{\mathcal{M}}(S) \ \forall S \subseteq \mathcal{M} \}$$

where $r_{\mathcal{M}}(\cdot)$ is the rank function of \mathcal{M} .

The extreme points of $\mathcal{P}_{\mathcal{M}}$ correspond to characterstic vectors of independent sets in \mathcal{M} .

Observation: if f is linear, a point x can be rounded by writing it as a convex sum of extreme points.

Question: What do we do if f is (general) submodular?

Rounding general submodular function f:

- if x is non-integral, there are $i, j \in \mathcal{N}$ for which $0 < x_i, x_j < 1$.
- recall, F is convex in every direction $e_i e_j$.
- ullet hence, F is non-decreasing in one of the directions $\pm (e_i-e_j)$

Rounding general submodular function f:

- if x is non-integral, there are $i, j \in \mathcal{N}$ for which $0 < x_i, x_j < 1$.
- recall, F is convex in every direction $e_i e_j$.
- ullet hence, F is non-decreasing in one of the directions $\pm (e_i-e_j)$

Rounding Algorithm:

- suppose direction $e_i e_j$ is non-decreasing
- δ max change (due to a tight set A)
- if either $x_i + \delta$ or $x_j \delta$ are integral **progress**
- else there exists a tight set $A' \subset A$, $i \in A'$, $j \notin A'$ (|A'| < |A|)
- recurse on A' **progress**
- eventually: minimal tight set (contained in all tight sets) in which any pair of coordinates can be increased/decreased - progress

The Continuous Greedy Algorithm [Călinescu-Chekuri-Pál-Vondrák-08]

- computes an approximate fractional solution
- *f* is monotone (for now ...)
- $\bullet \ \mathcal{P}_{\mathcal{M}} \ \text{is downward closed} \ (\vec{0} \in \mathcal{P}_{\mathcal{M}}) \\$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

$$\begin{split} \vec{x}(0) &= \vec{0} \\ \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \ \leadsto \ \frac{\partial x_i(t)}{\partial t} = y_i^*(t) \end{split}$$

Continuous Greedy - Analysis

[Călinescu-Chekuri-Pál-Vondrák-08]

$$F\left(ec{x}(t)
ight) \geqslant \left(1-e^{-t}
ight) F(\mathbf{1}_{\mathsf{OPT}})$$

Continuous Greedy - Analysis

[Călinescu-Chekuri-Pál-Vondrák-08]

$$F\left(ec{x}(t)
ight) \geqslant \left(1-e^{-t}
ight) F(\mathbf{1}_{\mathsf{OPT}})$$

When to stop the algorithm?

Continuous Greedy - Analysis

[Călinescu-Chekuri-Pál-Vondrák-08]

$$F\left(\vec{x}(t)\right) \geqslant \left(1 - e^{-t}\right) F(\mathbf{1}_{\mathsf{OPT}})$$

When to stop the algorithm?

$$t=1 \quad \Rightarrow \quad \left\{ \begin{array}{c} \quad \vec{x}(1) \text{ feasible (convex combination of feasible vectors)} \\ \quad F\left(\vec{x}(1)\right) \geqslant \left(1-\frac{1}{e}\right) F(\mathbf{1}_{\mathsf{OPT}}) \end{array} \right.$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t}$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t}$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t)$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

We obtain a differential equation:

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

We obtain a differential equation:

$$\left\{ \begin{array}{c} \frac{\partial F(\vec{x}(t))}{\partial t} \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \\ F\left(\vec{x}(0)\right) \geqslant 0 \end{array} \right.$$

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

We obtain a differential equation:

$$\left\{ \begin{array}{c} \frac{\partial F(\vec{x}(t))}{\partial t} \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \\ F\left(\vec{x}(0)\right) \geqslant 0 \end{array} \right.$$

The solution is:

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

We obtain a differential equation:

$$\left\{ \begin{array}{c} \frac{\partial F(\vec{x}(t))}{\partial t} \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \\ F\left(\vec{x}(0)\right) \geqslant 0 \end{array} \right.$$

The solution is:

$$F\left(\vec{x}(t)\right) \geqslant \left(1 - e^{-t}\right) F(\mathbf{1}_{\mathsf{OPT}})$$

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

We obtain a differential equation:

$$\left\{ \begin{array}{c} \frac{\partial F(\vec{x}(t))}{\partial t} \geqslant F\left(\mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \\ F\left(\vec{x}(0)\right) \geqslant 0 \end{array} \right.$$

The solution is:

$$F\left(\vec{x}(t)\right) \geqslant \left(1 - e^{-t}\right) F(\mathbf{1}_{\mathsf{OPT}})$$

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is $\left(1-\frac{1}{e}\right)$ -hard.

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is $\left(1-\frac{1}{e}\right)$ -hard.

Are we done?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is $\left(1 - \frac{1}{e}\right)$ -hard.

Are we done?

Submodular Welfare:

$$\left(1-\left(1-\frac{1}{k}\right)^k\right)\text{-hard}\qquad \bigg\{$$

 $1 - \frac{1}{\rho}$

[Călinescu-Chekuri-Pál-Vondrák-08]

[Dobzinski-Schapira-06]

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrák-07]

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is $\left(1 - \frac{1}{e}\right)$ -hard.

Are we done?

Submodular Welfare:

 $1 - \frac{1}{\rho}$

[Călinescu-Chekuri-Pál-Vondrák-08]

[Dobzinski-Schapira-06]

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrák-07]

Is the case of two players special?

[Nemhauser-Wolsey-78]

Maximizing a monotone submodular f over a matroid is $\left(1 - \frac{1}{e}\right)$ -hard.

Are we done?

Submodular Welfare:

$$\frac{\frac{k}{2k-1}}{\left(1-\left(1-\frac{1}{k}\right)^k\right)} \text{-hard} \qquad \begin{cases} \text{[Khooleton of the context of the context$$

[Călinescu-Chekuri-Pál-Vondrák-08]

[Dobzinski-Schapira-06]

[Khot-Lipton-Markakis-Mehta-05]

[Mirrokni-Schapira-Vondrák-07]

Is the case of two players special?

 $1 - \frac{1}{\rho}$

② Greedy and Continuous Greedy fail for **non-monotone** *f*.

Continuous Greedy:

$$\begin{cases} \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F(\vec{x}(t))}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \\ \frac{\partial x_i(t)}{\partial t} &= y_i^*(t) \end{cases}$$

Continuous Greedy:

$$\begin{cases} \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F(\vec{x}(t))}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \\ \frac{\partial x_i(t)}{\partial t} &= y_i^*(t) \end{cases}$$

Measured Continuous Greedy:

$$\begin{cases} \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F(\vec{x}(t))}{\partial x_i} \cdot (\mathbf{1} - \mathbf{x_i(t)}) \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \\ \frac{\partial x_i(t)}{\partial t} &= (\mathbf{1} - \mathbf{x_i(t)}) \cdot y_i^*(t) \end{cases}$$

Continuous Greedy:

$$\begin{cases} \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F(\vec{x}(t))}{\partial x_i} \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \\ \frac{\partial x_i(t)}{\partial t} &= y_i^*(t) \end{cases}$$

Measured Continuous Greedy:

$$\begin{cases} \vec{y}^*(t) &= \operatorname{argmax} \left\{ \sum_{i=1}^n \frac{\partial F(\vec{x}(t))}{\partial x_i} \cdot (\mathbf{1} - \mathbf{x_i(t)}) \cdot y_i \ : \ \vec{y} \in \mathcal{P}_{\mathcal{M}} \right\} \\ \frac{\partial x_i(t)}{\partial t} &= (\mathbf{1} - \mathbf{x_i(t)}) \cdot y_i^*(t) \end{cases}$$

Intuition:

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} = \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)}$$

Continuous greedy ignores the current position $x_i(t)$.

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:

- monotone f: $F(\vec{x}(t)) \geqslant (1 e^{-t}) F(\mathbf{1}_{\mathsf{OPT}}).$
- $\textbf{2} \ \ \text{non-monotone} \ f \colon \ \ F\left(\vec{x}(t) \right) \geqslant t e^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}}).$

[Feldman-N-Schwartz-11]

The measured continuous greedy algorithm achieves:

- ② non-monotone f: $F(\vec{x}(t)) \ge te^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}})$.

Non-Monotone f:

- Stopping at $t = 1 \implies (1/e)$ -approximation.
- All known rounding procedures work for non-monotone f as well. (matroid and O(1) knapsack)
- Greedy methods fail in the discrete setting.

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t}$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t}$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot (\mathbf{1} - \mathbf{x_{i}(t)}) \cdot y_{i}^{*}(t)$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t)$$

$$\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right)$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

monotone: $\geqslant F(\mathbf{1}_{\mathsf{OPT}}) - F(\vec{x}(t))$ yielding same factor as continuous greedy

Proof:

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} &= \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \frac{\partial x_{i}(t)}{\partial t} = \sum_{i=1}^{n} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \cdot y_{i}^{*}(t) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \frac{\partial F\left(\vec{x}(t)\right)}{\partial x_{i}} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &= \sum_{i \in \mathsf{OPT}} \frac{F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right)}{1 - x_{i}(t)} \cdot \left(\mathbf{1} - \mathbf{x_{i}(t)}\right) \\ &\geqslant \sum_{i \in \mathsf{OPT}} \left[F\left(\vec{x}(t) \vee \mathbf{1}_{\{i\}}\right) - F\left(\vec{x}(t)\right) \right] \\ &\geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \end{split}$$

monotone: $\geqslant F(\mathbf{1}_{\mathsf{OPT}}) - F(\vec{x}(t))$ yielding same factor as continuous greedy

non-monotone: how to lower bound $F(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}})$?

• $x_i(t)$ cannot be too large:

$$\begin{cases} &\frac{\partial x_i(t)}{\partial t} \leqslant 1 - x_i(t) \\ &x_i(0) = 0 \end{cases}$$

$$\downarrow \downarrow$$

$$x_i(t) \leqslant 1 - e^{-t}.$$

• $x_i(t)$ cannot be too large:

$$\begin{cases} &\frac{\partial x_i(t)}{\partial t} \leqslant 1 - x_i(t) \\ &x_i(0) = 0 \end{cases}$$

$$\downarrow \downarrow$$

$$x_i(t) \leqslant 1 - e^{-t}.$$

 $\forall S \subseteq \mathcal{N} \text{ and } \vec{y} \in [0,1]^{\mathcal{N}} \text{ s.t. } \max_{i \in \mathcal{N}} \{y_i\} = y_{\max}$:

$$F(\mathbf{1}_S \vee \vec{y}) \geqslant (1 - y_{\max}) F(\mathbf{1}_S).$$

Intuition: by submodularity (decreasing marginals), when "0" coordinates are increased to $y_{\rm max}$, loss to $F(\mathbf{1}_S)$ is at most a $y_{\rm max}$ -fraction

• $x_i(t)$ cannot be too large:

$$\begin{cases} &\frac{\partial x_i(t)}{\partial t} \leqslant 1 - x_i(t) \\ &x_i(0) = 0 \end{cases}$$

$$\downarrow \downarrow$$

$$x_i(t) \leqslant 1 - e^{-t}.$$

 $\forall S \subseteq \mathcal{N} \text{ and } \vec{y} \in [0,1]^{\mathcal{N}} \text{ s.t. } \max_{i \in \mathcal{N}} \{y_i\} = y_{\max}$:

$$F(\mathbf{1}_S \vee \vec{y}) \geqslant (1 - y_{\text{max}}) F(\mathbf{1}_S).$$

Intuition: by submodularity (decreasing marginals), when "0" coordinates are increased to $y_{\rm max}$, loss to $F(\mathbf{1}_S)$ is at most a $y_{\rm max}$ -fraction

$$F\left(\vec{x}(t) \lor \mathbf{1}_{\mathsf{OPT}}\right) \geqslant e^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}}).$$

$$\begin{split} \frac{\partial F\left(\vec{x}(t)\right)}{\partial t} \geqslant F\left(\vec{x}(t) \vee \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right) \\ \geqslant e^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}}) - F\left(\vec{x}(t)\right) \end{split}$$

$$\frac{\partial F\left(\vec{x}(t)\right)}{\partial t} \geqslant F\left(\vec{x}(t) \lor \mathbf{1}_{\mathsf{OPT}}\right) - F\left(\vec{x}(t)\right)$$
$$\geqslant e^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}}) - F\left(\vec{x}(t)\right)$$

Solving the differential equation with $F(\vec{x}(0)) \ge 0$ gives:

$$F(\vec{x}(t)) \geqslant te^{-t} \cdot F(\mathbf{1}_{\mathsf{OPT}}).$$

Non-Monotone f Guarantee

$$F\left(\vec{x}(1)\right) \geqslant \left(\frac{1}{e}\right) \cdot F(\mathbf{1}_{\mathsf{OPT}})$$

Monotone f Guarantee

$$F\left(\vec{x}(t)\right) \geqslant F(\mathbf{1}_{\mathsf{OPT}}) \left(1 - e^{-t}\right)$$

Monotone f Guarantee

$$F(\vec{x}(t)) \geqslant F(\mathbf{1}_{OPT}) (1 - e^{-t})$$

Note: $\vec{x}(t)$ gains the same value but advances less:

$$x_i(t) \leqslant 1 - e^{-t}$$

 \Rightarrow one might possibly stop at times t > 1 and still be feasible!

Submodular MAX-SAT

- CNF formula and a monotone submodular function f defined over the clauses
- Goal: find an assignment ϕ maximizing f (over clauses satisfied by ϕ)

Submodular MAX-SAT

- ullet CNF formula and a monotone submodular function f defined over the clauses
- Goal: find an assignment ϕ maximizing f (over clauses satisfied by ϕ)

Optimizing over a Partition Matroid

- each x_i is replaced by a group $\{(x_i, 0), (x_i, 1)\}$
- only one element can be chosen from a group (guarantees feasibility)
- $C_{x,v}$ clauses satisfied by setting $x \leftarrow v$
- for a set of clauses $S: g(S) = f(\bigcup_{(x,v) \in S} C_{x,v})$
- \bullet g is submodular (by submodularity of f)

Submodular MAX-SAT

- CNF formula and a monotone submodular function f defined over the clauses
- Goal: find an assignment ϕ maximizing f (over clauses satisfied by ϕ)

Optimizing over a Partition Matroid

- each x_i is replaced by a group $\{(x_i, 0), (x_i, 1)\}$
- only one element can be chosen from a group (guarantees feasibility)
- $C_{x,v}$ clauses satisfied by setting $x \leftarrow v$
- for a set of clauses $S: g(S) = f(\bigcup_{(x,v) \in S} C_{x,v})$
- g is submodular (by submodularity of f)

submodular MAX SAT can be represented as a monotone submodular maximization problem over a matroid

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T_0 total time in which (x,0) is increased
- T_1 total time in which (x, 1) is increased

Clearly,
$$T_0 + T_1 \leqslant T$$

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T_0 total time in which (x,0) is increased
- T_1 total time in which (x, 1) is increased

Clearly,
$$T_0 + T_1 \leqslant T$$

By properties of measured greedy:

$$(x,0) \leqslant 1 - e^{-T_0}, \quad (x,1) \leqslant 1 - e^{-T_1}$$

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T_0 total time in which (x,0) is increased
- T_1 total time in which (x,1) is increased

Clearly, $T_0 + T_1 \leqslant T$

By properties of measured greedy:

$$(x,0) \le 1 - e^{-T_0}, \quad (x,1) \le 1 - e^{-T_1}$$

$$(x,1) + (x,1) \le (1 - e^{-T_0}) + (1 - e^{-T_1}) \le 2 - e^{-T_0} - e^{T_0 - T}$$
 $(T_0 + T_1 \le T)$

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T_0 total time in which (x,0) is increased
- T_1 total time in which (x, 1) is increased

Clearly, $T_0 + T_1 \leqslant T$

By properties of measured greedy:

$$(x,0) \le 1 - e^{-T_0}, \quad (x,1) \le 1 - e^{-T_1}$$

$$(x,1)+(x,1)\leqslant (1-e^{-T_0})+(1-e^{-T_1})\leqslant 2-e^{-T_0}-e^{T_0-T} \qquad (T_0+T_1\leqslant T)$$
 When is $2-e^{-T_0}-e^{T_0-T}$ maximized? $T_0=T/2$

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T₀ total time in which (x, 0) is increased
- T_1 total time in which (x,1) is increased

Clearly, $T_0 + T_1 \leqslant T$

By properties of measured greedy:

$$(x,0) \le 1 - e^{-T_0}, \quad (x,1) \le 1 - e^{-T_1}$$

$$(x,1)+(x,1)\leqslant (1-e^{-T_0})+(1-e^{-T_1})\leqslant 2-e^{-T_0}-e^{T_0-T} \qquad (T_0+T_1\leqslant T)$$
 When is $2-e^{-T_0}-e^{T_0-T}$ maximized? $T_0=T/2$

Matroid constraints need to be satisfied:

$$2 - e^{-T_0} - e^{T_0 - T} \le 2(1 - e^{-T/2}) \le 1$$

Yielding: $T \leqslant 2 \ln 2$

Question: for which T>1 can we run the measured continuous greedy algorithm and stay feasible?

For variable x:

- T₀ total time in which (x, 0) is increased
- T_1 total time in which (x, 1) is increased

Clearly, $T_0 + T_1 \leqslant T$

By properties of measured greedy:

$$(x,0) \le 1 - e^{-T_0}, \quad (x,1) \le 1 - e^{-T_1}$$

$$(x,1)+(x,1)\leqslant (1-e^{-T_0})+(1-e^{-T_1})\leqslant 2-e^{-T_0}-e^{T_0-T} \qquad (T_0+T_1\leqslant T)$$
 When is $2-e^{-T_0}-e^{T_0-T}$ maximized? $T_0=T/2$

Matroid constraints need to be satisfied:

$$2 - e^{-T_0} - e^{T_0 - T} \le 2(1 - e^{-T/2}) \le 1$$

Yielding: $T \leqslant 2 \ln 2$

Approximation factor is $(1 - e^{-T})$: $\frac{3}{4}$ for $T = 2 \ln 2$.

$$\mathcal{P} = \left\{ x \mid \sum_{i \in \mathcal{N}} a_{i,j} x_i \leqslant b_j, 1 \leqslant j \leqslant m, \ 0 \leqslant x_i \leqslant 1, \forall i \in \mathcal{N} \right\}$$
$$d(\mathcal{P}) \triangleq \min_{1 \leqslant j \leqslant m} \left\{ \frac{b_j}{\sum_{i \in \mathcal{N}} a_{i,j}} \right\}$$

[Feldman-N-Schwartz-11]

$$ec{x}(t)\in\mathcal{P}$$
 if
$$t\leqslant rac{\ln\left(rac{1}{1-d(\mathcal{P})}
ight)}{d(\mathcal{P})}\ \ (*).$$

Note: $(*) \geqslant 1$ since $d(\mathcal{P}) > 0$.

Measured Continuous Greedy - Results

Problem	Result	Previous	Hardness
Submodular Welfare k players	$1 - \left(1 - \frac{1}{k}\right)^k$	$\max\left\{1-\frac{1}{e},\frac{k}{2k-1}\right\}$	$1-\left(1-rac{1}{k} ight)^k$
Submodular Max-SAT	3/4	2/3	3/4
non-monotone <i>f</i> matroid	1/e	≈ 0.325	≈ 0.478
non-monotone f O(1) knapsack	1/ _e	≈ 0.325	≈ 0.491