Techniques to lower bound extension complexity

Thomas Rothvoss

UW Seattle

Known lower bounds on extended formulation

	Kaibel, Weltge	Razborov's symmetry arg.	Inform. theory	SA + Fourier
COR/ TSP	yes [KW'13]	yes [FMPTdW'11]	yes [BM12+BP13]	?
approx. COR	?	yes [BFPS'12]	yes [BM12+BP13]	?
matching	?	yes [R'13]	yes [BP'14]	?
approx CSPs	?	?	?	yes [CLRS'13]

• Given polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

- Given polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
- Write $P = \{x \in \mathbb{R}^n \mid \exists y : Bx + Cy \leq d\}$

 $\operatorname{xc}(P) := \min \left\{ \begin{array}{ll} Q \text{ polyhedron} \\ \# \text{facets of } Q \mid & p \text{ linear map} \\ p(Q) = P \end{array} \right\}$

Slack-matrix

Write:
$$P = \operatorname{conv}(\{x_1, \dots, x_v\}) = \{x \in \mathbb{R}^n \mid Ax \le b\}$$

Slack-matrix

Slack-matrix

Non-negative rank:

$$\operatorname{rk}_{+}(S) = \min\{r \mid \exists U \in \mathbb{R}_{\geq 0}^{f \times r}, V \in \mathbb{R}_{\geq 0}^{r \times v} : S = UV\}$$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Factorization $S = UV \Rightarrow$ extended formulation:

• Let $P = \{x \in \mathbb{R}^n \mid \exists y \ge \mathbf{0} : Ax + Uy = b\}$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Factorization $S = UV \Rightarrow$ extended formulation:

• Let
$$P = \{x \in \mathbb{R}^n \mid \exists y \ge \mathbf{0} : Ax + Uy = b\}$$

• For vertex
$$x^j$$
: $A_i x^j + U_i V^j = b_i$.

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Factorization $S = UV \Rightarrow$ extended formulation:

- Let $P = \{x \in \mathbb{R}^n \mid \exists y \ge \mathbf{0} : Ax + Uy = b\}$
- For vertex x^j : $A_i x^j + U_i V^j = b_i$.

$$\bullet A_i x > b_i \Longrightarrow A_i x + \underbrace{U_i y}_{>0} > b_i.$$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Extended form. \Rightarrow factorization:

• Given an extension $Q = \{(x, y) \mid Bx + Cy \le d\}$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Extended form. \Rightarrow factorization:

• Given an extension $Q = \{(x, y) \mid Bx + Cy < d\}$

 S_{ij}

$$\langle u(i), v(j)
angle =$$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

Extended form. \Rightarrow factorization:

- Given an extension $Q = \{(x, y) \mid Bx + Cy \le d\}$
- For facet i:

u(i) := conic comb of i

$$\langle u(i), v(j)
angle =$$

 S_{ij}

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

 $\langle u(i), v(j)
angle = S_{ij}$

Theorem (Yannakakis '88)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $\operatorname{xc}(P) = \operatorname{rk}_+(S)$.

$$\langle u(i), v(j) \rangle = \underbrace{u(i)^T d}_{=b_i} - \underbrace{u(i)B}_{=A_i} x_j - \underbrace{u(i)C}_{=\mathbf{0}} y_j = S_{ij}$$

Observation $rk_+(S) \ge rectangle-covering-number(S).$

Observation

Observation

Observation

Observation

Correlation polytope (1)

The correlation polytope is

$$COR = \operatorname{conv}\{bb^T : b \in \{0,1\}^n\}$$

Correlation polytope (1)

The correlation polytope is

$$COR = \operatorname{conv}\{bb^T : b \in \{0,1\}^n\}$$

Example: For n = 2,

$$COR = \operatorname{conv}\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

Correlation polytope (1)

The correlation polytope is

$$COR = \operatorname{conv}\{bb^T : b \in \{0,1\}^n\}$$

Example: For n = 2,

$$COR = \operatorname{conv}\left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

Theorem (Fiorini, Massar, Pokutta, Tiwary, de Wolf '12) $\operatorname{xc}(\operatorname{COR}) \geq 2^{\Omega(n)}.$

Correlation polytope (2)

Lemma

For all $a \in \{0, 1\}^n$, $(2\text{diag}(a) - aa^T) \bullet Y \leq 1$ is a feasible inequality for $Y \in COR$.

Correlation polytope (2)

Lemma

For all $a \in \{0, 1\}^n$, $(2\text{diag}(a) - aa^T) \bullet Y \leq 1$ is a feasible inequality for $Y \in COR$.

• Suffices to check slack for $Y = bb^T$.

Correlation polytope (2)

Lemma

For all $a \in \{0, 1\}^n$, $(2\text{diag}(a) - aa^T) \bullet Y \leq 1$ is a feasible inequality for $Y \in COR$.

• Suffices to check slack for $Y = bb^T$.

Correlation polytope (3)

Correlation polytope (3)

slack matrix S

Observations:

 \blacktriangleright S is a submatrix of the "real" slack-matrix

Correlation polytope (3)

slack matrix \boldsymbol{S}

Observations:

 \blacktriangleright S is a submatrix of the "real" slack-matrix

► We have

$$S_{ab} = \begin{cases} 1 & |a \cap b| = 0 \\ 0 & |a \cap b| = 1 \end{cases}$$

Incomplete slack matrices

Lemma

For a polytope $P = \{x \mid Ax \leq b\}$ and $X = \{x_1, \ldots, x_v\} \subseteq P$ define a matrix S with $S_{i,j} := b_i - A_i x_j$. Then

 $\operatorname{rk}_{\geq 0}(S) = \min\{\operatorname{xc}(Q) : X \subseteq Q \subseteq \mathbf{P}\}\$

Incomplete slack matrices

Lemma

For a polytope $P = \{x \mid Ax \leq b\}$ and $X = \{x_1, \ldots, x_v\} \subseteq P$ define a matrix S with $S_{i,j} := b_i - A_i x_j$. Then

$$\operatorname{rk}_{\geq 0}(S) = \min\{\operatorname{xc}(Q) : X \subseteq Q \subseteq \mathbf{P}\}\$$

• disjoint pairs $Q_0 := \{(a, b) : |a \cap b| = 0\}$
Correlation polytope (3) V S $a \rightarrow 0$ $a \rightarrow 0$ 1 $a = \begin{cases} 1 & |a \cap b| = 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{cases}$ $S_{ab} = \begin{cases} 1 & |a \cap b| = 0 \\ 0 & |a \cap b| = 1 \end{cases}$

- disjoint pairs $Q_0 := \{(a, b) : |a \cap b| = 0\}$
- forbidden pairs $Q_1 := \{(a, b) : |a \cap b| = 1\}$

- disjoint pairs $Q_0 := \{(a, b) : |a \cap b| = 0\}$
- forbidden pairs $Q_1 := \{(a, b) : |a \cap b| = 1\}$

- disjoint pairs $Q_0 := \{(a, b) : |a \cap b| = 0\}$
- forbidden pairs $Q_1 := \{(a, b) : |a \cap b| = 1\}$

Theorem (Razborov '91)

Any rectangle R has $\mu_0(R) \le (1 + \varepsilon)\mu_1(R) + 2^{-\Theta(n)}$.

► Define $\mu_0(R) := \frac{|R \cap Q_0|}{|Q_0|}$ uniform measure

- disjoint pairs $Q_0 := \{(a, b) : |a \cap b| = 0\}$
- forbidden pairs $Q_1 := \{(a, b) : |a \cap b| = 1\}$

Theorem (Razborov '91)

Any rectangle R has $\mu_0(R) \le (1+\varepsilon)\mu_1(R) + 2^{-\Theta(n)}$.

- ► Define $\mu_0(R) := \frac{|R \cap Q_0|}{|Q_0|}$ uniform measure
- Applying Razborov

$$\mu_0(R) \le (1+\varepsilon)\underbrace{\mu_1(R)}_{=0} + 2^{-\Theta(n)} \le 2^{-\Theta(n)}$$

• We consider tuples $a, b \subseteq [4n - 1]$ with |a| = |b| = n

• We consider tuples $a, b \subseteq [4n - 1]$ with |a| = |b| = n

► Define

$$Q_0 = \{(a,b) : |a| = |b| = n \text{ and } |a \cap b| = 0\}$$

$$Q_1 = \{(a,b) : |a| = |b| = n \text{ and } |a \cap b| = 1\}$$

• We consider tuples $a, b \subseteq [4n - 1]$ with |a| = |b| = n

► Define

$$Q_0 = \{(a,b) : |a| = |b| = n \text{ and } |a \cap b| = 0\}$$

$$Q_1 = \{(a,b) : |a| = |b| = n \text{ and } |a \cap b| = 1\}$$

• A **rectangle** is of the form $R = A \times B$

• We consider tuples $a, b \subseteq [4n - 1]$ with |a| = |b| = n

► Define

$$\begin{array}{rcl} Q_0 & = & \{(a,b): |a| = |b| = n \text{ and } |a \cap b| = 0\} \\ Q_1 & = & \{(a,b): |a| = |b| = n \text{ and } |a \cap b| = 1\} \end{array}$$

- A **rectangle** is of the form $R = A \times B$
- Measure of rectangle: $\mu_0(R) = \Pr_{(a,b) \in Q_0}[(a,b) \in R]$

Example 1:

• Partition $[4n-1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

Example 1:

• Partition $[4n-1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

• Take $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\} \to R := A \times B$

Example 1:

• Partition $[4n - 1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

• Take $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\} \to R := A \times B$

• Then $\mu_1(R) = 0$ and $\mu_0(R) = 2^{-\Theta(n)}$

Example 1:

• Partition $[4n-1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

$$T_A$$
 T_B

• Take $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\} \to R := A \times B$

• Then $\mu_1(R) = 0$ and $\mu_0(R) = 2^{-\Theta(n)}$

Example 2:

• Fix a symbol i.

Example 1:

• Partition $[4n-1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

• Take $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\} \to R := A \times B$

• Then $\mu_1(R) = 0$ and $\mu_0(R) = 2^{-\Theta(n)}$

Example 2:

• Fix a symbol i.

• Let $A := \{a : i \in a\}$ and $B := \{b : i \in b\} \rightarrow R := A \times B$

Example 1:

• Partition $[4n-1] = T_A \dot{\cup} T_B$ with $|T_A| \approx |T_B|$

• Take $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\} \to R := A \times B$

• Then $\mu_1(R) = 0$ and $\mu_0(R) = 2^{-\Theta(n)}$

Example 2:

• Fix a symbol i.

- Let $A := \{a : i \in a\}$ and $B := \{b : i \in b\} \rightarrow R := A \times B$
- ▶ The measures are

$$\mu_1(R) = \Theta\left(\frac{1}{n}\right)$$
 and $\mu_0(R) = 0$

A **partition** is a tuple $T = (T_A, T_B, i)$

Observation: We can generate a uniform random $(a, b) \in Q_0$ as follows:

Observation: We can generate a uniform random $(a, b) \in Q_0$ as follows:

1. Take a random partition T

A **partition** is a tuple $T = (T_A, T_B, i)$

Observation: We can generate a uniform random $(a, b) \in Q_0$ as follows:

- 1. Take a random partition T
- 2. Take $a \subseteq T_A$ and $b \subseteq T_B$

A **partition** is a tuple $T = (T_A, T_B, i)$

Observation: We can generate a uniform random $(a, b) \in Q_0$ as follows:

- 1. Take a random partition T
- 2. Take $a \subseteq T_A$ and $b \subseteq T_B$

Hence

$$\mu_0(R) = \Pr_{(a,b) \in Q_0}[a \in A, b \in B]$$

A **partition** is a tuple $T = (T_A, T_B, i)$

Observation: We can generate a uniform random $(a, b) \in Q_0$ as follows:

- 1. Take a random partition T
- 2. Take $a \subseteq T_A$ and $b \subseteq T_B$

Hence

$$\mu_0(R) = \Pr_{(a,b) \in Q_0}[a \in A, b \in B] = \mathop{\mathbb{E}}_T \left[\Pr_{a \subseteq T_A}[a \in A] \cdot \Pr_{b \subseteq T_B}[b \in B] \right]$$

Observation: We can generate a uniform random $(a, b) \in Q_1$ as follows:

Observation: We can generate a uniform random $(a, b) \in Q_1$ as follows:

1. Take a random partition

Observation: We can generate a uniform random $(a, b) \in Q_1$ as follows:

- 1. Take a random partition
- 2. Take $a \subseteq T_A \cup \{i\} : i \in a \text{ and } b \subseteq T_B \cup \{i\} : i \in b$

Observation: We can generate a uniform random $(a, b) \in Q_1$ as follows:

- 1. Take a random partition
- 2. Take $a \subseteq T_A \cup \{i\} : i \in a \text{ and } b \subseteq T_B \cup \{i\} : i \in b$

Hence

$$\mu_1(R) = \Pr_{(a,b)\in Q_1}[a \in A, b \in B] = \mathop{\mathbb{E}}_T \Big[\Pr_{\substack{a \subseteq T_A \cup \{i\}\\i \in a}}[a \in A] \cdot \Pr_{\substack{b \subseteq T_B \cup \{i\}\\i \in b}}[b \in B] \Big]$$

Easy case I - Small partitions

Goal: $\mu_0(R) \le (1+\varepsilon)\mu_1(R) + 2^{-\Theta(n)}$

Easy case I - Small partitions Goal: $\mu_0(R) \le (1 + \varepsilon)\mu_1(R) + 2^{-\Theta(n)}$

Measure:

$$\mu_0(R) = \mathop{\mathbb{E}}_T \left[\Pr_{a \subseteq T_A}[a \in A] \cdot \Pr_{b \subseteq T_B}[b \in B] \right]$$

Easy case I - Small partitions Goal: $\mu_0(R) \le (1 + \varepsilon)\mu_1(R) + 2^{-\Theta(n)}$

Measure:

$$\mu_0(R) = \mathop{\mathbb{E}}_{T} \left[\underbrace{\Pr_{a \subseteq T_A}[a \in A]}_{\text{either } \leq 2^{-\Theta(n)}} \cdot \underbrace{\Pr_{b \subseteq T_B}[b \in B]}_{\text{or } \leq 2^{-\Theta(n)}} \right] \leq 2^{-\Theta(n)}$$

Easy case I - Small partitions

Goal:
$$\mu_0(R) \le (1 + \varepsilon)\mu_1(R) + 2^{-\Theta(n)}$$

Assumption: Suppose that all partitions T have

- either $\Pr_{a \subseteq T_A \cup \{i\}}[a \in A] \le 2^{-\Theta(n)}$
- \blacktriangleright or $\mathrm{Pr}_{b\subseteq T_B\cup\{i\}}[b\in B]\leq 2^{-\Theta(n)}$

Measure:

$$\mu_0(R) = \mathop{\mathbb{E}}_T \Big[\underbrace{\Pr_{a \subseteq T_A}[a \in A]}_{\text{either} \leq 2^{-\Theta(n)}} \cdot \underbrace{\Pr_{b \subseteq T_B}[b \in B]}_{\text{or} \leq 2^{-\Theta(n)}} \Big] \leq 2^{-\Theta(n)}$$

Assumption: Suppose that all partitions T have

$$\blacktriangleright \operatorname{Pr}_{a \subseteq T_A}[a \in A] = (1 \pm \varepsilon) \cdot \operatorname{Pr}_{a \subseteq T_A \cup \{i\}: i \in a}[a \in A]$$

▶ and
$$\Pr_{b \subseteq T_B}[b \in B] = (1 \pm \varepsilon) \cdot \Pr_{b \subseteq T_B \cup \{i\}:i \in b}[b \in B]$$

 T_A
 T_B
 T_B
 $2n-1$ symbols
 $2n-1$ symbols

$$\mu_0(R) \quad = \quad \mathop{\mathbb{E}}_T \Big[\Pr_{a \subseteq T_A}[a \in A] \cdot \Pr_{b \subseteq T_B}[b \in B] \Big]$$

Assumption: Suppose that all partitions T have

$$\blacktriangleright \operatorname{Pr}_{a \subseteq T_A}[a \in A] = (1 \pm \varepsilon) \cdot \operatorname{Pr}_{a \subseteq T_A \cup \{i\}: i \in a}[a \in A]$$

▶ and
$$\Pr_{b \subseteq T_B}[b \in B] = (1 \pm \varepsilon) \cdot \Pr_{b \subseteq T_B \cup \{i\}:i \in b}[b \in B]$$

 T_A
 T_B
 $2n - 1$ symbols
 $2n - 1$ symbols

$$\begin{array}{lll} \mu_0(R) & = & \mathop{\mathbb{E}}_T \Big[\Pr_{a \subseteq T_A}[a \in A] \cdot \Pr_{b \subseteq T_B}[b \in B] \Big] \\ & = & (1 \pm O(\varepsilon)) \cdot \mathop{\mathbb{E}}_T \Big[\Pr_{\substack{a \subseteq T_A \cup \{i\}\\i \in a}}[a \in A] \cdot \Pr_{\substack{b \subseteq T_B \cup \{i\}\\i \in b}}[b \in B] \Big] \end{array}$$

Assumption: Suppose that all partitions T have

$$\blacktriangleright \operatorname{Pr}_{a \subseteq T_A}[a \in A] = (1 \pm \varepsilon) \cdot \operatorname{Pr}_{a \subseteq T_A \cup \{i\}: i \in a}[a \in A]$$

▶ and
$$\Pr_{b \subseteq T_B}[b \in B] = (1 \pm \varepsilon) \cdot \Pr_{b \subseteq T_B \cup \{i\}:i \in b}[b \in B]$$

 T_A
 T_B
 $2n - 1$ symbols
 $2n - 1$ symbols

$$\begin{split} \mu_0(R) &= & \mathop{\mathbb{E}}_T \left[\Pr_{a \subseteq T_A} [a \in A] \cdot \Pr_{b \subseteq T_B} [b \in B] \right] \\ &= & (1 \pm O(\varepsilon)) \cdot \mathop{\mathbb{E}}_T \left[\Pr_{\substack{a \subseteq T_A \cup \{i\} \\ i \in a}} [a \in A] \cdot \Pr_{\substack{b \subseteq T_B \cup \{i\} \\ i \in b}} [b \in B] \right] \\ &= & (1 \pm O(\varepsilon)) \cdot \mu_1(R) \end{split}$$

An example for a bad partition

Example: Consider a partition T and rectangle

 $R = A \times B$ with $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\}$

An example for a bad partition

Example: Consider a partition T and rectangle

 $R = A \times B$ with $A := \{a \subseteq T_A\}$ and $B := \{b \subseteq T_B\}$

Fraction of bad partitions

Suffices to show:

Lemma

For any disjoint pair (a, b), take a random partition T with $a \subseteq T_A, b \subseteq T_B$. Then

 $\Pr[T \text{ is bad}] \leq \varepsilon.$

Imagine the following setting:

Imagine the following setting:

 \blacktriangleright *n* elements

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

• Is it possible that $\geq 1\%$ of elements are in **no** set at all?

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

▶ Is it possible that ≥ 1% of elements are in no set at all?
 NO! The 0.99n active elements form at most 2^{0.99n} sets

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets?

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets?
 NO!
- **Proof:**
 - Take a random set from \mathcal{S}

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:**
 - \blacktriangleright Take a random set from ${\cal S}$
 - Denote char. vector as $x \in \{0, 1\}^n$

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:**
 - \blacktriangleright Take a random set from ${\cal S}$
 - Denote char. vector as $x \in \{0, 1\}^n$

 $\log |\mathcal{S}| = H(x)$

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:**
 - Take a random set from \mathcal{S}
 - Denote char. vector as $x \in \{0, 1\}^n$

$$\log |\mathcal{S}| = H(x) \overset{\text{subadd}}{\leq} \sum_{i=1}^{n} H(x_i)$$

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2^{0.99n} sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:**
 - Take a random set from \mathcal{S}
 - Denote char. vector as $x \in \{0, 1\}^n$

$$\log |\mathcal{S}| = H(x) \stackrel{\text{subadd}}{\leq} \sum_{i=1}^{n} H(x_i) \leq n - \Omega(n)$$

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Lemma

If $|\mathcal{S}| \geq 2^{(1-\Theta(\varepsilon^3))n}$, then a $(1-\varepsilon)$ -fraction of elements *i* lies in a $(\frac{1}{2} \pm \varepsilon)$ -fraction of sets.

Imagine the following setting:

- \blacktriangleright *n* elements
- set system S with $2^{(1-o(1))n}$ sets

Lemma

If $|\mathcal{S}| \geq 2^{(1-\Theta(\varepsilon^3))n}$, then a $(1-\varepsilon)$ -fraction of elements *i* lies in a $(\frac{1}{2} \pm \varepsilon)$ -fraction of sets.

For such an i:

$$\Pr_{S \subseteq [n]}[S \in \mathcal{S} \mid i \in S] = \underbrace{\Pr_{S \subseteq [n]}[i \in S \mid S \in \mathcal{S}]}_{\in \frac{1}{2} \pm \varepsilon} \cdot \underbrace{\Pr_{S \subseteq [n]}[S \in \mathcal{S}]}_{\substack{Pr_{S \subseteq [n]}[i \in S]\\ = (1 \pm O(\varepsilon)) \cdot \Pr_{S \subseteq [n]}[S \in \mathcal{S}]}}_{= 1/2}$$

Claim: Fix $T_B \supseteq b^*$. Take $i \in T_B \setminus a^*$ at random.

Claim: Fix $T_B \supseteq b^*$. Take $i \in T_B \setminus a^*$ at random. $\Rightarrow \Pr[T \text{ bad for } a's] \leq \varepsilon$.

Claim: Fix $T_B \supseteq b^*$. Take $i \in T_B \setminus a^*$ at random. $\Rightarrow \Pr[T \text{ bad for } a^*s] \le \varepsilon.$ \blacktriangleright Observe: $\binom{2n}{n} = 2^{(2-o(1))n}$.

- $\Rightarrow \Pr[T \text{ bad for } a's] \leq \varepsilon.$
 - Observe: $\binom{2n}{n} = 2^{(2-o(1))n}$.
 - Let $A_T := \{a \in A : a \subseteq T_A \cup \{i\}\}$

- ⇒ $\Pr[T \text{ bad for } a's] \leq \varepsilon.$ ► Observe: $\binom{2n}{n} = 2^{(2-o(1))n}.$
 - Let $A_T := \{a \in A : a \subseteq T_A \cup \{i\}\}$
 - Assume $|A_T| \ge 2^{(2-o(1))n}$ (otherwise T is small)

- $\Rightarrow \Pr[T \text{ bad for } a's] \leq \varepsilon.$
 - Observe: $\binom{2n}{n} = 2^{(2-o(1))n}$.
 - Let $A_T := \{a \in A : a \subseteq T_A \cup \{i\}\}$
 - Assume $|A_T| \ge 2^{(2-o(1))n}$ (otherwise T is small)
 - ► From previous slide: A (1ε) -fraction *i* is in $\approx \frac{1}{2}$ fraction of $a \in A_T$

- $\Rightarrow \Pr[T \text{ bad for } a's] \leq \varepsilon.$
 - Observe: $\binom{2n}{n} = 2^{(2-o(1))n}$.
 - Let $A_T := \{a \in A : a \subseteq T_A \cup \{i\}\}$
 - Assume $|A_T| \ge 2^{(2-o(1))n}$ (otherwise T is small)
 - ► From previous slide: A (1ε) -fraction *i* is in $\approx \frac{1}{2}$ fraction of $a \in A_T$
 - ▶ Equivalent to

$$\Pr_{a \subseteq T_A \cup \{i\}} [a \in A \mid i \in a] = (1 \pm O(\varepsilon)) \cdot \Pr_{a \subseteq T_A \cup \{i\}} [a \in A \mid i \notin a]$$

We calculate

$$\mu_0(R) \le \left\{ \right.$$

We calculate

$$\mu_0(R) \le \begin{cases} (1+\varepsilon)\mu_1(R) \\ \end{cases}$$

from good partitions

We calculate

$$\mu_0(R) \le \begin{cases} (1+\varepsilon)\mu_1(R) \\ 2^{-\Theta(n)} \end{cases}$$

from good partitions from small partitions

We calculate

$$\mu_0(R) \leq \begin{cases} (1+\varepsilon)\mu_1(R) & \text{from good partitions} \\ 2^{-\Theta(n)} & \text{from small partitions} \\ \varepsilon \cdot (\text{good+small}) & \text{from bad partitions} \end{cases}$$

We calculate

$$\mu_0(R) \leq \begin{cases} (1+\varepsilon)\mu_1(R) & \text{from good partitions} \\ 2^{-\Theta(n)} & \text{from small partitions} \\ \varepsilon \cdot (\text{good+small}) & \text{from bad partitions} \end{cases}$$

60-sec summary:

• Consider a pair (a, b) with $|a \cap b| = 0$

We calculate

$$\mu_0(R) \leq \begin{cases} (1+\varepsilon)\mu_1(R) & \text{from good partitions} \\ 2^{-\Theta(n)} & \text{from small partitions} \\ \varepsilon \cdot (\text{good+small}) & \text{from bad partitions} \end{cases}$$

60-sec summary:

- Consider a pair (a, b) with $|a \cap b| = 0$
- Take a random partition T containing the pair

We calculate

$$\mu_0(R) \leq \begin{cases} (1+\varepsilon)\mu_1(R) & \text{from good partitions} \\ 2^{-\Theta(n)} & \text{from small partitions} \\ \varepsilon \cdot (\text{good+small}) & \text{from bad partitions} \end{cases}$$

60-sec summary:

- Consider a pair (a, b) with $|a \cap b| = 0$
- Take a random partition T containing the pair
- ▶ In (1ε) fraction of cases, partition contributes about same to $\mu_0(R)$ and $\mu_1(R)$

We calculate

$$\mu_0(R) \leq \begin{cases} (1+\varepsilon)\mu_1(R) & \text{from good partitions} \\ 2^{-\Theta(n)} & \text{from small partitions} \\ \varepsilon \cdot (\text{good+small}) & \text{from bad partitions} \end{cases}$$

60-sec summary:

- Consider a pair (a, b) with $|a \cap b| = 0$
- Take a random partition T containing the pair
- ▶ In (1ε) fraction of cases, partition contributes about same to $\mu_0(R)$ and $\mu_1(R)$
- Hence $\mu_0(R) \lesssim \mu_1(R)$

