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Known lower bounds on extended formulation

Kaibel, Razborov’s Inform. SA
Weltge symmetry arg. theory + Fourier

COR/ yes yes yes ?
TSP [KW’13] [FMPTdW’11] [BM12+BP13]

approx. ? yes yes ?
COR [BFPS’12] [BM12+BP13]

matching ? yes yes ?
[R’13] [BP’14]

approx ? ? ? yes
CSPs [CLRS’13]
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Extended formulation

◮ Given polytope P = {x ∈ R
n | Ax ≤ b}

→ many inequalities
◮ Write P = {x ∈ R

n | ∃y : Bx+ Cy ≤ d}
→ few inequalities

P

Q

linear
projection

◮ The extension complexity of P is

xc(P ) := min






#facets of Q |

Q polyhedron
p linear map
p(Q) = P
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n | Ax ≤ b}
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Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

facet i

vertex
j

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij



Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ R

r×v
≥0 : S = UV }
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Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation:

◮ Let P = {x ∈ R
n | ∃y ≥ 0 : Ax+ Uy = b}

◮ For vertex xj : Aix
j + UiV

j = bi.
◮ Aix > bi =⇒ Aix+ Uiy

︸︷︷︸

≥0

> bi.
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Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P ) = rk+(S).

Extended form. ⇒ factorization:

◮ Given an extension
Q = {(x, y) | Bx+ Cy ≤ d}

◮ For facet i:
u(i) := conic comb of i

◮ For vertex xj :
v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q
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Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P ) = rk+(S).

Extended form. ⇒ factorization:

◮ Given an extension
Q = {(x, y) | Bx+ Cy ≤ d}

◮ For facet i:
u(i) := conic comb of i

◮ For vertex xj :
v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

b
b

b

b

b

b

b

b

b

b

b

xj
b

(xj , yj)
b

P

〈u(i), v(j)〉 = u(i)Td
︸ ︷︷ ︸

=bi

−u(i)B
︸ ︷︷ ︸

=Ai

xj − u(i)C
︸ ︷︷ ︸

=0

yj = Sij



Rectangle covering lower bound

Observation

rk+(S) ≥ rectangle-covering-number(S).
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Correlation polytope (1)

The correlation polytope is

COR = conv{bbT : b ∈ {0, 1}n}

Example: For n = 2,

COR = conv

{(
0 0
0 0

)

,

(
1 0
0 0

)

,

(
0 0
0 1

)

,

(
1 1
1 1

)}

Theorem (Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12)

xc(COR) ≥ 2Ω(n).



Correlation polytope (2)

Lemma

For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.

(2diag(a)− aaT ) • Y ≤ 1
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Lemma

For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.

◮ Suffices to check slack for Y = bbT .
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Correlation polytope (2)

Lemma

For all a ∈ {0, 1}n, (2diag(a)− aaT ) • Y ≤ 1 is a feasible
inequality for Y ∈ COR.

◮ Suffices to check slack for Y = bbT .
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= 1− 2|a ∩ b|+ |a ∩ b|2 = (1− |a ∩ b|)2 ≥ 0
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Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT

Observations:
◮ S is a submatrix of the “real” slack-matrix

◮ We have

Sab =

{

1 |a ∩ b| = 0

0 |a ∩ b| = 1
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Lemma

For a polytope P = {x | Ax ≤ b} and X = {x1, . . . , xv} ⊆ P
define a matrix S with Si,j := bi −Aixj . Then

rk≥0(S) = min{xc(Q) : X ⊆ Q ⊆ P}
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Correlation polytope (3)

S

1

1
1

1
1

0

0

0

0
0

R
a

b

Sab =

{

1 |a ∩ b| = 0

0 |a ∩ b| = 1

◮ disjoint pairs Q0 := {(a, b) : |a ∩ b| = 0}
◮ forbidden pairs Q1 := {(a, b) : |a ∩ b| = 1}

Theorem (Razborov ’91)

Any rectangle R has µ0(R) ≤ (1 + ε)µ1(R) + 2−Θ(n).

◮ Define µ0(R) := |R∩Q0|
|Q0|

uniform measure
◮ Applying Razborov

µ0(R) ≤ (1 + ε)µ1(R)
︸ ︷︷ ︸

=0

+2−Θ(n) ≤ 2−Θ(n)
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The setting

◮ We consider tuples a, b ⊆ [4n− 1] with |a| = |b| = n

a b

n symbols

4n− 1 symbols
◮ Define

Q0 = {(a, b) : |a| = |b| = n and |a ∩ b| = 0}

Q1 = {(a, b) : |a| = |b| = n and |a ∩ b| = 1}

◮ A rectangle is of the form R = A×B

◮ Measure of rectangle: µ0(R) = Pr(a,b)∈Q0
[(a, b) ∈ R]
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Example rectangles

Example 1:

◮ Partition [4n− 1] = TA∪̇TB with |TA| ≈ |TB|

TA TB

a b

◮ Take A := {a ⊆ TA} and B := {b ⊆ TB} → R := A×B

◮ Then µ1(R) = 0 and µ0(R) = 2−Θ(n)

Example 2:

◮ Fix a symbol i.

a b
i

◮ Let A := {a : i ∈ a} and B := {b : i ∈ b} → R := A×B

◮ The measures are

µ1(R) = Θ
( 1

n

)

and µ0(R) = 0
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Partitions

A partition is a tuple T = (TA, TB, i)

TA TB

a b

2n− 1 symbols 2n− 1 symbols

i

Observation: We can generate a uniform random (a, b) ∈ Q0

as follows:

1. Take a random partition T

2. Take a ⊆ TA and b ⊆ TB

Hence

µ0(R) = Pr
(a,b)∈Q0

[a ∈ A, b ∈ B] = E
T

[

Pr
a⊆TA

[a ∈ A] · Pr
b⊆TB

[b ∈ B]
]
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Partitions (2)
TA TB

a b
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Observation: We can generate a uniform random (a, b) ∈ Q1

as follows:
1. Take a random partition

2. Take a ⊆ TA ∪ {i} : i ∈ a and b ⊆ TB ∪ {i} : i ∈ b



Partitions (2)
TA TB

a b
i

Observation: We can generate a uniform random (a, b) ∈ Q1

as follows:
1. Take a random partition

2. Take a ⊆ TA ∪ {i} : i ∈ a and b ⊆ TB ∪ {i} : i ∈ b

Hence

µ1(R) = Pr
(a,b)∈Q1

[a ∈ A, b ∈ B] = E
T

[

Pr
a⊆TA∪{i}

i∈a

[a ∈ A] · Pr
b⊆TB∪{i}

i∈b

[b ∈ B]
]
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Easy case I - Small partitions

Goal: µ0(R) ≤ (1 + ε)µ1(R) + 2−Θ(n)

Assumption: Suppose that all partitions T have

◮ either Pra⊆TA∪{i}[a ∈ A] ≤ 2−Θ(n)

◮ or Prb⊆TB∪{i}[b ∈ B] ≤ 2−Θ(n)

Measure:

µ0(R) = E
T

[

Pr
a⊆TA

[a ∈ A]

︸ ︷︷ ︸

either ≤2−Θ(n)

· Pr
b⊆TB

[b ∈ B]

︸ ︷︷ ︸

or ≤2−Θ(n)

]

≤ 2−Θ(n)
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Easy case II - Good partitions

Assumption: Suppose that all partitions T have

◮ Pra⊆TA
[a ∈ A] = (1± ε) · Pra⊆TA∪{i}:i∈a[a ∈ A]

◮ and Prb⊆TB
[b ∈ B] = (1± ε) · Prb⊆TB∪{i}:i∈b[b ∈ B]

TA TB

a b

2n− 1 symbols 2n− 1 symbols

i

Then

µ0(R) = E
T

[

Pr
a⊆TA

[a ∈ A] · Pr
b⊆TB

[b ∈ B]
]

= (1±O(ε)) · E
T

[

Pr
a⊆TA∪{i}

i∈a

[a ∈ A] · Pr
b⊆TB∪{i}

i∈b

[b ∈ B]
]

= (1±O(ε)) · µ1(R)
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An example for a bad partition

Example: Consider a partition T and rectangle

R = A×B with A := {a ⊆ TA} and B := {b ⊆ TB}

TA TB

a b

2n− 1 symbols 2n− 1 symbols

i

Then

Pr
a⊆TA∪{i}

[a ∈ A : i /∈ a] = 1

︸ ︷︷ ︸

contribution to µ0(R)

Pr
a∈TA∪{i}

[a ∈ A | i ∈ a] = 0

︸ ︷︷ ︸

contribution to µ1(R)
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Fraction of bad partitions

(a, b)root

(a, b)T (a, b)T ′ (a, b)T ′′ (a, b)

(a, b)(a, b)

|a ∩ b| = 0

(a, b)(a′, b′)≤ ε fraction
bad

good or
small

Phase I: Pick T

TA TB

i

Phase II: Pick (a, b)

TA TB

a b
i

◮ Suffices to show:

Lemma

For any disjoint pair (a, b), take a random partition T with
a ⊆ TA, b ⊆ TB. Then

Pr[T is bad] ≤ ε.
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Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)
subadd
≤

n∑

i=1

H(xi) ≤ n− Ω(n)
0

1

0 0.5 1.0

entropy

p
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Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Lemma

If |S| ≥ 2(1−Θ(ε3))n, then a (1− ε)-fraction of elements i lies in a
(12 ± ε)-fraction of sets.

For such an i:

Pr
S⊆[n]

[S ∈ S | i ∈ S] = Pr
S⊆[n]

[i ∈ S | S ∈ S]

︸ ︷︷ ︸

∈ 1
2
±ε

·
PrS⊆[n][S ∈ S]

Pr
S⊆[n]

[i ∈ S]

︸ ︷︷ ︸

=1/2

= (1±O(ε)) · Pr
S⊆[n]

[S ∈ S]
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Fraction of bad partitions (2)
TA ∪ {i} TB

a

2n symbols

i

Claim: Fix TB ⊇ b∗. Take i ∈ TB\a
∗ at random.

⇒ Pr[T bad for a’s] ≤ ε.
◮ Observe:

(
2n
n

)
= 2(2−o(1))n.

◮ Let AT := {a ∈ A : a ⊆ TA ∪ {i}}

◮ Assume |AT | ≥ 2(2−o(1))n (otherwise T is small)

◮ From previous slide: A (1− ε)-fraction i is in ≈ 1
2 fraction

of a ∈ AT

◮ Equivalent to

Pr
a⊆TA∪{i}

[a ∈ A | i ∈ a] = (1±O(ε)) · Pr
a⊆TA∪{i}

[a ∈ A | i /∈ a]
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Wrapping up

We calculate

µ0(R) ≤







(1 + ε)µ1(R) from good partitions

2−Θ(n) from small partitions

ε · (good+small) from bad partitions

60-sec summary:

◮ Consider a pair (a, b) with |a ∩ b| = 0

◮ Take a random partition T containing the pair

◮ In (1− ε) fraction of cases, partition contributes about
same to µ0(R) and µ1(R)

◮ Hence µ0(R) . µ1(R)

TA TB

a b
i


