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Known lower bounds on extended formulation

Kaibel, Razborov’s Inform. SA
Weltge | symmetry arg. theory + Fourier
COR/ yes yes yes ?
TSP [KW’13] | [FMPTdW’11] | [BM12+BP13]
approx. ? yes yes ?
COR [BFPS’12] [BM12+BP13]
matching ? yes yes ?
[R'13] [BP’14]
approx ? ? ? yes
CSPs [CLRS’13]
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Extended formulation

» Given polytope P = {x € R" | Az < b}
— many inequalities
» Write P={z € R" | Jy: Bx + Cy < d}

— few inequalities

linear
projection

» The extension complexity of P is
Q@ polyhedron
xc(P) := min { #facets of Q| p linear map
p(@) =P
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Slack-matrix
Write: P = conv({z1,...,2,}) = {z € R" | Az < b}

# vertices

>0

# facets S;; = b; — Aiij

=] AVASS |\

slack-matrix

Non-negative rank:

rki(S) = min{r | U e RIS, V e R : S = UV}
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Yannakakis’ Theorem

Theorem (Yannakakis '88)

If S is the slack-matrix for P = {z € R" | Az < b}, then
xc(P) = rk4(9).

Factorization S = UV = extended formulation:
» Let P={zeR"|Jy>0: Az + Uy = b}
» For vertex aJ: A;zd + U; VI = b;.
» Aix > b = Ajx+ Uy > b;.
>
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Theorem (Yannakakis '88)

If S is the slack-matrix for P = {x € R" | Az < b}, then
xc(P) = rk4 (5).

Extended form. = factorization:
» Given an extension
Q@ ={(z,y) | Bz + Cy < d}
» For facet i:
u(i) := conic comb of i

' [

T

(u(i),v(j)) = Sij



Yannakakis’ Theorem

Theorem (Yannakakis '88)

If S is the slack-matrix for P = {z € R" | Az < b}, then
xc(P) = rk4 (5).

Extended form. = factorization:

» Given an extension

Q@ ={(z,y) | Bz + Cy < d}
» For facet i: |

u(i) := conic comb of i | (Y

[ Lj1Yj
» For vertex z;: Ajz + 0y < '
v(j) := d — Bx; — Cy; = slack of (z},y;)

Tj

(u(i),v(j)) = Sij



Yannakakis’ Theorem

Theorem (Yannakakis '88)

If S is the slack-matrix for P = {x € R" | Az < b}, then
xc(P) = rk4 (5).

Extended form. = factorization:

» Given an extension

Q@ ={(z,y) | Bz + Cy < d}
» For facet i: |

u(i) := conic comb of i | (Y

[ Lj1Yj
» For vertex z;: Ajz + 0y < '
v(j) := d — Bx; — Cy; = slack of (z},y;)

Tj

(u(@),v(5)) = w(i)"d - u(i)Ba; — u(i)Cy; = Sy
=b; =A; =0



Rectangle covering lower bound

Observation
rk (S) > rectangle-covering-number(S).




Rectangle covering lower bound
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Rectangle covering lower bound
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Observation
rk (S) > rectangle-covering-number(S).
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Correlation polytope (1)

The correlation polytope is
COR = conv{bb! : b€ {0,1}"}

Example: For n = 2,
00 10 00 11
cor=eonr{ (g 0)- (5 0)- (6 1) (1))

Theorem (Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12)
xc(COR) > 29, J




Correlation polytope (2)

Lemma

For all a € {0,1}", (2diag(a) — aa’) ¢ Y < 1 is a feasible
inequality for Y € COR.

(2diag(a) —aaT) e Y <
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Correlation polytope (2)

Lemma

For all a € {0,1}", (2diag(a) — aa®) e Y < 1 is a feasible
inequality for Y € COR.

» Suffices to check slack for Y = b7 .

T TTTT
1 1111
Lo e RN
1—2 0 o 1111 |T ol 1111
0 1111 1111
0
0
supp(a) supp(b) supp(a) supp(b)

=1-2anbl+|and?=(1—lanb})?>>0
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Correlation polytope (3)

(1= lanb])® (2diag(a) —aa’) e Y <
b

- === ==
11
11
11

slack matrix S

Observations:
» S is a submatrix of the “real” slack-matrix

» We have
1 Nbl =0
Sy — la N b|
0 lanbdl=1



Incomplete slack matrices

Lemma
For a polytope P = {z | Az <b} and X = {z1,...,2,} C P
define a matrix S with S; ; := b; — A;xz;. Then

rk>0(S) = min{xc(Q) : X C Q C P}




Incomplete slack matrices

Lemma
For a polytope P = {z | Az <b} and X = {z1,...,2,} C P
define a matrix S with S; ; := b; — A;z;. Then

rk>0(S) = min{xc(Q) : X C Q C P}
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» disjoint pairs )y := {(a,b) : [aNb| =0}
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» disjoint pairs Qo := {(a,b) : [aNb| = 0}
» forbidden pairs Q); := {(a,b) : |[aNb| =1}
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Correlation polytope (3)
b

¥
s 0
0 \Jiwz\\t 1 Janbl =0
-
ol Lo @ {o land| =1
0 0 1
1

» disjoint pairs Qo := {(a,b) : [aNb| = 0}
» forbidden pairs Q); := {(a,b) : |[aNb| =1}

Theorem (Razborov '91)
Any rectangle R has po(R) < (1 + &)u1(R) 4+ 290,

» Define po(R) := |R‘80Q|°‘ uniform measure
» Applying Razborov

po(R) < (14 ¢) py(R) +2790 < 270
——r

=0
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The setting

» We consider tuples a,b C [4n — 1] with |a| = |b] =n

< - B>

n symbols

~
4n — 1 symbols
» Define

Qo = {(ab):lal = bl = n and |a N8| = 0}
Q1 = {(a,b):]a] =1]b] =nand |[anb| =1}

» A rectangle is of the form R=A x B
» Measure of rectangle: o(R) = Pr,)eq,l(a,b) € R]
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Example 1:

» Partition [4n — 1] = TaUTp with |T4| =~ |T5]

I O

T

» Take A:={a C Ty} and B:={bCTp} > R:=AxB

T

» Then p;(R) =0 and po(R) = 2-9™)

Example 2:

» Fix a symbol 1.

& >

» Let A:={a:i€a}and B:={b:i€b} - R:=AxB




Example rectangles

Example 1:

» Partition [4n — 1] = TaUTp with |T4| =~ |T5]

I O

T

» Take A:={a C Ty} and B:={bCTp} > R:=AxB

T

» Then p;(R) =0 and po(R) = 2-9™)

Example 2:

» Fix a symbol 1.

& >

» Let A:={a:i€a}and B:={b:i€b} - R:=AxB

» The measures are

pa(R)=6() and juo(R) =0
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Partitions

A partition is a tuple T' = (T4, T, 1)

Ty . Ip
> [ >
. J/ . J/
2n — ?rsymbols 2n — ?rsymbols

Observation: We can generate a uniform random (a,b) € Qg
as follows:

1. Take a random partition T’
2. Takea CTy and b C Ty
Hence

po(R)= Pr lacAbeB=E [agA[a 4l PribeB
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Partitions (2)

Observation: We can generate a uniform random (a, b) € Q1
as follows:
1. Take a random partition

2. Take a CTyU{i}:icaand bC TpU{i}:i€b

Hence

m(R)= Pr lacAbeB|=E| Pr lacAl- Pr [bcB
(a,b)€Q1 T LaCTaU{i} bgTBILj{i}
1€a 1€
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Easy case I - Small partitions
Goal: jo(R) < (14 ¢)u1(R) 42790
Assumption: Suppose that all partitions T" have
» either Procp,ugyla € A] < 2-0(n)
> or Prycrugiylb € Bl < 2-0(n)

Measure:

- . < 9—9(n)
po(R) = E [GE%A[CL €4l Prlbe B]} <2

either <2-©(n)  or <2-0O(n)
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Easy case Il - Good partitions
Assumption: Suppose that all partitions T" have
> PraQTA [a € A] = (1 + 5) : PragTAU{i}:iea[a’ € A]
» and Prycr,[b € B] = (1 +¢) - Prycpyugiyieslb € Bl

N :{ N :{ p
2n — 1 symbols 2n — 1 symbols

Then
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Easy case Il - Good partitions
Assumption: Suppose that all partitions T" have
> PraQTA [a € A] = (1 + 5) : PragTAU{z‘}:iea[a’ € A]
» and Prycr,[b € B] = (1 +¢) - Prycpyugiyieslb € Bl

N :{ N :{ p
2n — 1 symbols 2n — 1 symbols
Then
po(R) = E| Prlac4l- PribeB|

= ax0E) B[ Py fecdl Py be B
i€a i€b

—  (1£0() - m(R)



An example for a bad partition

Example: Consider a partition 7" and rectangle

R=AxB with A:={aCTy} and B:={bCTp}
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An example for a bad partition

Example: Consider a partition 7" and rectangle

R=AxB with A:={aCTy} and B:={bCTp}

T . I
— — ? — —
— ) _
2n —?fsymbols 2n —?(symbols
Then
Pr ja€A:id¢al=1 Pr [acAlic€a]=0
aCTaU{i} a€T U{i}

/

~~

contribution to po(R) contribution to p1(R)
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Fraction of bad partitions

Phase I: Pick T’

| [o] |
Ts T

Phase II: Pick (a, b)

|® [ [

Tg




Phase I: Pick T’

;
I L] |

Fraction of bad partitions
Ta Tg

e€’¢ @
Phase II: Pick (a, b)

Elres @Dy
T small

landl =0




Phase I: Pick T’

;
I L] |

Fraction of bad partitions
Ta Tg

((root )
Gé’ﬁ @
Phase II: Pick (a, b)

< ¢ fracti .
> |o| < = & frac };ZH s%ggl? or
Ta Tp ¢

landl =0

» Suffices to show:

Lemma

For any disjoint pair (a,b), take a random partition 7" with
a C Ty, b Tg. Then

Pr[T is bad] < e.
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Pseudo-random behaviour of large set systems

Imagine the following setting: '
V&

» n elements

» set system S with 200727 getg @

Questions:

» Is it possible that > 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 2099 sets

» Is it possible that > 1% elements are in < 49% of sets?

NO!
Proof:

» Take a random set from S 1

entropy

» Denote char. vector as x € {0,1}"

log |S] = ZHmZ ) <n—Q(n)
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Pseudo-random behaviour of large set systems

Imagine the following setting: ’
V&

» n elements

» set system S with 200727 getg @

Lemma

If |S| > 2= then a (1 — e)-fraction of elements i lies in a
(4 £ &)-fraction of sets.

For such an ¢:

Prgcip[S €S

PriSeS|ics] — Priies|Ses) scmlses]
SCin] SCin) ngf ][z €S
elte ;:\172—’

= (1£0())- Pr [Sed]

SC[n]
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Fraction of bad partitions (2)
TaU{i} Ip

. J/

2n symbols

Claim: Fix Tp D b*. Take i € Tg\a* at random.
= Pr[T bad for a’s] < e.
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2n symbols

Claim: Fix Tp D b*. Take i € Tg\a* at random.
= Pr[T bad for a’s] < e.
» Observe: (2;) = 2(2—o()n,
» Let Ap:={a€ A:a CTyU{i}}
» Assume |Ap| > 2@=°()" (otherwise T is small)
» From previous slide: A (1 — ¢)-fraction i is in ~ § fraction
of a € Ap
» Equivalent to

aggru{i}[a cAlical=(1£0()) - agiib{i}[a cAlid¢al
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Wrapping up

We calculate

(I1+e)u1(R) from good partitions
po(R) < { 2790 from small partitions
¢ - (good+small) from bad partitions

60-sec summary:
» Consider a pair (a,b) with [anbd| =0
» Take a random partition 7' containing the pair

» In (1 —¢) fraction of cases, partition contributes about
same to po(R) and pi(R)

» Hence po(R) < pa(R)
Ty . Ip




