The matching polytope has exponential extension complexity

Thomas Rothvoss
Department of Mathematics, UW Seattle
Extended formulation
Extended formulation

- Given polytope $P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$
Extended formulation

- Given polytope $P = \{ x \in \mathbb{R}^n \mid Ax \leq b \}$

- Write $P = \{ x \in \mathbb{R}^n \mid \exists y : Bx + Cy \leq d \}$

![Diagram showing linear projection from Q to P]
Extended formulation

- Given polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
 \rightarrow many inequalities
- Write $P = \{x \in \mathbb{R}^n \mid \exists y: Bx + Cy \leq d\}$
 \rightarrow few inequalities
Extended formulation

- Given polytope $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ → many inequalities
- Write $P = \{x \in \mathbb{R}^n \mid \exists y : Bx + Cy \leq d\}$ → few inequalities

Extension complexity:

$$xc(P) := \min \left\{ \# \text{facets of } Q \mid \begin{array}{l} Q \text{ polyhedron} \\ p \text{ linear map} \\ p(Q) = P \end{array} \right\}$$
What’s known?

Compact formulations:

- **Spanning Tree Polytope** [Kipp Martin ’91]
- **Perfect Matching** in planar graphs [Barahona ’93]
- **Perfect Matching** in bounded genus graphs [Gerards ’91]
- $O(n \log n)$-size for **Permutahedron** [Goemans ’10] (\rightarrow **tight**)
- $n^{O(1/\varepsilon)}$-size ε-apx for **Knapsack Polytope** [Bienstock ’08]
- ...
What’s known?

Compact formulations:

- **Spanning Tree Polytope** [Kipp Martin ’91]
- **Perfect Matching** in planar graphs [Barahona ’93]
- **Perfect Matching** in bounded genus graphs [Gerards ’91]
- $O(n \log n)$-size for **Permutahedron** [Goemans ’10] (∨ tight)
- $n^{O(1/\varepsilon)}$-size ε-apx for **Knapsack Polytope** [Bienstock ’08]
- …

Here: When is the extension complexity **super polynomial**?
Lower bounds
Lower bounds

- No symmetric compact form. for TSP [Yannakakis ’91]
 Compact formulation for $\log n$ size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]
Lower bounds

- No **symmetric** compact form. for TSP [Yannakakis ’91]
 Compact formulation for \(\log n \) size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]
- \(xc(\text{random } 0/1 \text{ polytope}) \geq 2^{\Omega(n)} \) [R. ’11]
Lower bounds

- **No symmetric compact form**. for TSP [Yannakakis ’91]
 Compact formulation for $\log n$ size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]

- $\text{xc}(\text{random 0/1 polytope}) \geq 2^{\Omega(n)}$ [R. ’11]

- **Breakthrough**: $\text{xc}(\text{TSP}) \geq 2^{\Omega(\sqrt{n})}$
 [Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]
Lower bounds

- No **symmetric** compact form. for TSP [Yannakakis ’91] Compact formulation for log \(n \) size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]

- \(\text{xc}(\text{random 0/1 polytope}) \geq 2^{\Omega(n)} \) [R. ’11]

- **Breakthrough:** \(\text{xc}(\text{TSP}) \geq 2^\Omega(\sqrt{n}) \) [Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

- \(n^{1/2-\varepsilon} \)-apx for clique polytope needs super-poly size [Braun, Fiorini, Pokutta, Steuer ’12] Improved to \(n^{1-\varepsilon} \) [Braverman, Moitra ’13], [Braun, P. ’13]
Lower bounds

- **No symmetric** compact form. for TSP [Yannakakis ’91]
 Compact formulation for log n size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]

- χ_c (random 0/1 polytope) $\geq 2^{\Omega(n)}$ [R. ’11]

- **Breakthrough:** χ_c (TSP) $\geq 2^{\Omega(\sqrt{n})}$
 [Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

- $n^{1/2-\epsilon}$-apx for clique polytope needs super-poly size
 [Braun, Fiorini, Pokutta, Steuer ’12]
 Improved to $n^{1-\epsilon}$ [Braverman, Moitra ’13], [Braun, P. ’13]

- $(2 - \epsilon)$-apx LPs for MaxCut have size $n^{\Omega(\log n / \log \log n)}$
 [Chan, Lee, Raghavendra, Steurer ’13]
Lower bounds

- No \textbf{symmetric} compact form. for TSP [Yannakakis ’91]
 Compact formulation for \(\log n \) size matchings, but no symmetric one [Kaibel, Pashkovich & Theis ’10]
- \(\chi_c(\text{random } 0/1 \text{ polytope}) \geq 2^{\Omega(n)} \) [R. ’11]
- **Breakthrough:** \(\chi_c(\text{TSP}) \geq 2^{\Omega(\sqrt{n})} \)
 [Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]
- \(n^{1/2-\varepsilon} \)-apx for clique polytope needs super-poly size
 [Braun, Fiorini, Pokutta, Steuer ’12]
 Improved to \(n^{1-\varepsilon} \) [Braverman, Moitra ’13], [Braun, P. ’13]
- \((2-\varepsilon) \)-apx LPs for MaxCut have size \(n^{\Omega(\log n / \log \log n)} \)
 [Chan, Lee, Raghavendra, Steurer ’13]

Only \textbf{NP}-hard polytopes!!

What about poly-time problems?
Perfect matching polytope
Perfect matching polytope

\[G = (V, E) \]
(complete)
Perfect matching polytope

\[G = (V, E) \]

(complete)
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]

\[x_e \geq 0 \quad \forall e \in E \]

\[G = (V, E) \]

(complete)
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]

\[x_e \geq 0 \quad \forall e \in E \]

\[G = (V, E) \]

(complete)
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]

\[x_e \geq 0 \quad \forall e \in E \]

\[G = (V, E) \]

(complete)

\[U \]
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]

\[x(\delta(U)) \geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \]

\[x_e \geq 0 \quad \forall e \in E \]

Quick facts:

- Description by [Edmonds ’65]
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]
\[x(\delta(U)) \geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \]
\[x_e \geq 0 \quad \forall e \in E \]

Quick facts:
- Description by [Edmonds ’65]
- Can optimize \(c^T x \) in strongly poly-time [Edmonds ’65]
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]
\[x(\delta(U)) \geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \]
\[x_e \geq 0 \quad \forall e \in E \]

Quick facts:

- Description by [Edmonds ’65]
- Can optimize \(c^T x \) in strongly poly-time [Edmonds ’65]
- Separation problem polytime [Padberg, Rao ’82]
Perfect matching polytope

\[x(\delta(v)) = 1 \quad \forall v \in V \]
\[x(\delta(U)) \geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \]
\[x_e \geq 0 \quad \forall e \in E \]

Quick facts:

▷ Description by [Edmonds ’65]
▷ Can optimize \(c^T x \) in strongly poly-time [Edmonds ’65]
▷ Separation problem polytime [Padberg, Rao ’82]
▷ \(2^{\Theta(n)} \) facets
Perfect matching polytope

\begin{align*}
 x(\delta(v)) &= 1 \quad \forall v \in V \\
 x(\delta(U)) &\geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \\
 x_e &\geq 0 \quad \forall e \in E
\end{align*}

Quick facts:
- Description by [Edmonds '65]
- Can optimize \(c^T x \) in strongly poly-time [Edmonds '65]
- Separation problem polytime [Padberg, Rao '82]
- \(2^{\Theta(n)} \) facets

Theorem (R.13)

\[xc(\text{perfect matching polytope}) \geq 2^{\Omega(n)}. \]

- Previously known: \(xc(P) \geq \Omega(n^2) \)
Slack-matrix

Write: \(P = \text{conv}(\{x_1, \ldots, x_v\}) = \{x \in \mathbb{R}^n \mid Ax \leq b\} \)
Slack-matrix

Write: \(P = \text{conv}(\{x_1, \ldots, x_v\}) = \{x \in \mathbb{R}^n \mid Ax \leq b\} \)

- **# facets**
- **# vertices**
- **facet** \(i \)
- **vertex** \(j \)
- **slack-matrix**
 \(S_{ij} = b_i - A_i^T x_j \)
Slack-matrix

Write: $P = \text{conv}(\{x_1, \ldots, x_v\}) = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

Non-negative rank:

$$\text{rk}_+(S) = \min\{r \mid \exists U \in \mathbb{R}^{f \times r}_{\geq 0}, V \in \mathbb{R}^{r \times v}_{\geq 0} : S = UV\}$$
Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $xc(P) = rk_+(S)$.
Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the **slack-matrix** for $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, then $xc(P) = \text{rk}_+(S)$.

Idea: Factor $S = UV$ with

- $U = (\text{conic comb. to derive constraint } i)_i$
- $V = (\text{slack vector of } (x_j, v_j))_j$

![Diagram of a polyhedron with constraints and slack matrices](image-url)
Hyperplane separation lower bound [Fiorini]

\[\text{rk}_+ (S) = \min \left\{ r : S = \sum_{i=1}^{r} R_i \text{ and } R_i \geq 0 \text{ rank-1 matrix} \right\} \]
Hyperplane separation lower bound [Fiorini]

\[
\text{rk}_+(S) = \min \left\{ r : S = \sum_{i=1}^{r} \lambda_i \begin{pmatrix} R_i \end{pmatrix} \text{ and } 0 \leq R_i \leq 1 \text{ rank-1 matrix} \right\}
\]

\[
S = \lambda_1 \begin{pmatrix} \frac{1}{2} & 1 & 1 \\ \frac{1}{2} & 2 & 1 \\ \frac{1}{2} & 1 & 2 \end{pmatrix} + \ldots + \lambda_r \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}
\]
Hyperplane separation lower bound [Fiorini]

\[
\operatorname{rk}_+(S) \geq \min \left\{ \|\lambda\|_1 : S = \sum_{i=1}^{r} \lambda_i R_i \text{ and } 0 \leq R_i \leq 1 \text{ rank-1 matrix} \right\}
\]

\[
S = \lambda_1 \begin{bmatrix}
\frac{1}{2} & 1 & 1 \\
\end{bmatrix} + \ldots + \lambda_r \begin{bmatrix}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{bmatrix}
\]
Hyperplane separation lower bound [Fiorini]

$$\text{rk}_+(S) \gtrsim \min \left\{ \| \lambda \|_1 : S = \sum_{i=1}^{r} \lambda_i R_i \text{ and } R_i \in \{0, 1\}^{f \times v} \text{ rank-1} \right\}$$

[0, 1]-rank-1 matrices

rectangles

$$S = \lambda_1 R_1 + \ldots + \lambda_r R_r$$
Hyperplane separation lower bound [Fiorini]

\[\text{rk}_+(S) \gtrsim \min \left\{ \| \lambda \|_1 : \langle W, S \rangle = \sum_{i=1}^{r} \lambda_i \langle W, R_i \rangle \text{ and } R_i \text{ rect.} \right\} \]
Hyperplane separation lower bound [Fiorini]

\[\text{rk}_+(S) \gtrsim \min \left\{ \frac{\langle W, S \rangle}{\langle W, R \rangle} : R \text{ rectangle} \right\} \]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
\end{bmatrix}
= \lambda_1 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \ldots + \lambda_r \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
\]
Applying the Hyperplane bound

Goal: Find \(W \) with \(\frac{\langle W, S \rangle}{\langle W, R \rangle} \) large for each rectangle.

- Slack matrix \(S_{UM} = |\delta(U) \cap M| - 1 \)
Applying the Hyperplane bound

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Slack matrix $S_{UM} = |\delta(U) \cap M| - 1$
Applying the Hyperplane bound

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Slack matrix $S_{UM} = |\delta(U) \cap M| - 1$
- Abbreviate $Q_\ell := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- Uniform measure: $\mu_\ell(R) := \frac{|R \cap Q_\ell|}{|Q_\ell|}$
Applying the Hyperplane bound

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Slack matrix $S_{UM} = |\delta(U) \cap M| - 1$
- Abbreviate $Q_\ell := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- Uniform measure: $\mu_\ell(R) := \frac{|R \cap Q_\ell|}{|Q_\ell|}$
- Choose $W_{U,M} = \begin{cases} 0 & \text{otherwise.} \end{cases}$
Applying the Hyperplane bound

Goal: Find W with $\langle W, S \rangle / \langle W, R \rangle$ large for each rectangle.

- Slack matrix $S_{U,M} = |\delta(U) \cap M| - 1$
- Abbreviate $Q_\ell := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- **Uniform measure:** $\mu_\ell(R) := \frac{|R \cap Q_\ell|}{|Q_\ell|}$
- Choose $W_{U,M} = \begin{cases} -\infty & |\delta(U) \cap M| = 1 \\ 0 & \text{otherwise.} \end{cases}$
Applying the Hyperplane bound

Goal: Find \(W \) with \(\frac{\langle W, S \rangle}{\langle W, R \rangle} \) large for each rectangle.

- Slack matrix \(S_{UM} = |\delta(U) \cap M| - 1 \)
- Abbreviate \(Q_\ell := \{(U, M) : |\delta(U) \cap M| = \ell\} \)
- **Uniform measure:** \(\mu_\ell(R) := \frac{|R \cap Q_\ell|}{|Q_\ell|} \)
- Choose

\[
W_{U,M} = \begin{cases}
-\infty & |\delta(U) \cap M| = 1 \\
\frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
0 & \text{otherwise}
\end{cases}
\]
Applying the Hyperplane bound

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Slack matrix $S_{UM} = |\delta(U) \cap M| - 1$
- Abbreviate $Q_\ell := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- **Uniform measure:** $\mu_\ell(R) := \frac{|R \cap Q_\ell|}{|Q_\ell|}$
- Choose

\[
W_{U,M} = \begin{cases}
-\infty & |\delta(U) \cap M| = 1 \\
\frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
0 & \text{otherwise.}
\end{cases}
\]
Rectangle covering for matching

Claim: There is a rectangle with $\langle W, R \rangle = \Theta \left(\frac{1}{n^4} \right)$.
Rectangle covering for matching

Claim: There is a rectangle with $\langle W, R \rangle = \Theta\left(\frac{1}{n^4}\right)$.

For $e_1, e_2 \in E$:
Rectangle covering for matching

Claim: There is a rectangle with $\langle W, R \rangle = \Theta\left(\frac{1}{n^4}\right)$.

For $e_1, e_2 \in E$: take $\{U \mid e_1, e_2 \in \delta(U)\}$
Claim: There is a rectangle with $\langle W, R \rangle = \Theta(\frac{1}{n^4})$.

For $e_1, e_2 \in E$: take $\{U \mid e_1, e_2 \in \delta(U)\} \times \{M \mid e_1, e_2 \in M\}$
Claim: There is a rectangle with $\langle W, R \rangle = \Theta(\frac{1}{n^4})$.

- For $e_1, e_2 \in E$: take $\{U \mid e_1, e_2 \in \delta(U)\} \times \{M \mid e_1, e_2 \in M\}$
- But $\mu_k(R) = \Theta(\frac{k^2}{n^4})$
Applying the Hyperplane bound (II)

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Choose

$$W_{U,M} = \begin{cases}
-\infty & |\delta(U) \cap M| = 1 \\
\frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
0 & \text{otherwise}
\end{cases}$$
Applying the Hyperplane bound (II)

Goal: Find W with $\frac{\langle W, S \rangle}{\langle W, R \rangle}$ large for each rectangle.

- Choose

$$W_{U,M} = \begin{cases}
 -\infty & |\delta(U) \cap M| = 1 \\
 \frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
 0 & \text{otherwise}
\end{cases}$$
Applying the Hyperplane bound (II)

Goal: Find W with $\frac{\langle W,S \rangle}{\langle W,R \rangle}$ large for each rectangle.

- Choose

$$W_{U,M} = \begin{cases}
-\infty & |\delta(U) \cap M| = 1 \\
\frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
-\frac{1}{k-1} \cdot \frac{1}{|Q_k|} & |\delta(U) \cap M| = k \\
0 & \text{otherwise.}
\end{cases}$$
Applying the Hyperplane bound (II)

Goal: Find W with $\langle W, S \rangle$ large for each rectangle.

- Choose

$$W_{U,M} = \begin{cases}
-\infty & |\delta(U) \cap M| = 1 \\
\frac{1}{|Q_3|} & |\delta(U) \cap M| = 3 \\
-\frac{1}{k-1} \cdot \frac{1}{|Q_k|} & |\delta(U) \cap M| = k \\
0 & \text{otherwise.}
\end{cases}$$

- Then

$$\langle W, S \rangle = 0 + 2 - 1 = 1$$

Lemma

For k large, any rectangle R has $\langle W, R \rangle \leq 2^{-\Omega(n)}$.
Applying the Hyperplane bound (III)
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]

➤ **Technique:** Partition scheme [Razborov ’91]
Applying the Hyperplane bound (III)

Main lemma

\[\mu_1(R) = 0 \implies \mu_3(R) \leq O\left(\frac{1}{k^2}\right) \cdot \mu_k(R) + 2^{-\Omega(n)} \]

- **Technique:** Partition scheme [Razborov ’91]
Partitions

- Partition $T = (A, C, D, B)$
Partitions

- Partition $T = (A, C, D, B)$
Partitions

- Partition $T = (A, C, D, B)$
Partitions

- Partition $T = (A, C, D, B)$
Partitions

- Partition $T = (A, C, D, B)$
Partitions

- Partition $T = (A, C, D, B)$

The diagram illustrates a partition $T = (A, C, D, B)$ with $k - 3$ nodes, k nodes, and k nodes in each of the sets A, C, and D, respectively. The set B is a large rectangular area.
PARTITIONS

- Partition $T = (A, C, D, B)$

$k - 3$ nodes

k nodes

$2(k - 3)$ nodes
Partitions

- Partition $T = (A, C, D, B)$
- Edges $E(T)$

$k - 3$ nodes

k nodes

$2(k - 3)$ nodes
Partitions

- Partition $T = (A, C, D, B)$
- Edges $E(T)$

$k - 3$ nodes

k nodes

$2(k - 3)$ nodes
Partitions

- Partition $T = (A, C, D, B)$
- Edges $E(T)$

\mathcal{P}
Pseudo-random behaviour of large set systems

Imagine the following setting:
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{\left(1-o(1)\right)n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all?
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all? NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all? NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets?
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all? NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets? NO!
Pseudo-random behaviour of large set systems

Imagine the following setting:

- \(n \) elements
- set system \(S \) with \(2^{(1-o(1))n} \) sets

Questions:

- Is it possible that \(\geq 1\% \) of elements are in \textbf{no} set at all? **NO!** The 0.99\(n \) active elements form at most \(2^{0.99n} \) sets
- Is it possible that \(\geq 1\% \) elements are in \(\leq 49\% \) of sets? **NO!**

Proof:

- Take a random set from \(S \)
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all? NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets? NO!

Proof:

- Take a random set from S
- Denote char. vector as $x \in \{0, 1\}^n$
Pseudo-random behaviour of large set systems

Imagine the following setting:

- \(n \) elements
- set system \(S \) with \(2^{(1-o(1))n} \) sets

Questions:

- Is it possible that \(\geq 1\% \) of elements are in no set at all? NO! The 0.99\(n \) active elements form at most \(2^{0.99n} \) sets
- Is it possible that \(\geq 1\% \) elements are in \(\leq 49\% \) of sets? NO!

Proof:

- Take a random set from \(S \)
- Denote char. vector as \(x \in \{0, 1\}^n \)

\[\log |S| = H(x) \]
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all?
 NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets

- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets?
 NO!

Proof:

- Take a random set from S
- Denote char. vector as $x \in \{0, 1\}^n$

$$\log |S| = H(x) \overset{\text{subadd}}{\leq} \sum_{i=1}^{n} H(x_i)$$
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system \mathcal{S} with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all? NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets? NO!

Proof:

- Take a random set from \mathcal{S}
- Denote char. vector as $x \in \{0, 1\}^n$

\[
\log |\mathcal{S}| = H(x) \leq \sum_{i=1}^{n} H(x_i) \leq n - \Omega(n)
\]
Pseudo-random behaviour of large set systems

Imagine the following setting:

- n elements
- set system S with $2^{(1-o(1))n}$ sets

Questions:

- Is it possible that $\geq 1\%$ of elements are in no set at all?
 NO! The $0.99n$ active elements form at most $2^{0.99n}$ sets
- Is it possible that $\geq 1\%$ elements are in $\leq 49\%$ of sets?
 NO!

Lemma

If S large, for most elements i,

$$\Pr_{S \subseteq [n]} [S \in S] \approx \Pr_{S \subseteq [n]} [S \in S \mid i \in S]$$
Rewriting $\mu_k(R)$

Randomly generate $(U, M) \sim Q_k$:

$$\mu_k(R) =$$
Rewriting $\mu_k(R)$

Randomly generate $(U, M) \sim Q_k$:
1. Choose T

$$\mu_k(R) = \mathbb{E}_T \left[\right]$$
Rewriting $\mu_k(R)$

Randomly generate $(U, M) \sim Q_k$:
1. Choose T
2. Choose k edges $F \subseteq C \times D$

\[
\mu_k(R) = \mathbb{E}_T \left[\mathbb{E}_{|F|=k} \left[\ldots \right] \right]
\]
Rewriting $\mu_k(R)$

Randomly generate $(U, M) \sim Q_k$:

1. Choose T
2. Choose k edges $F \subseteq C \times D$
3. Choose $M \supseteq F$

$$\mu_k(R) = \mathbb{E}_T \left[\mathbb{E}_{|F|=k} \left[\Pr[M \in R \mid T, H] \right] \right]$$
Rewriting $\mu_k(R)$

Randomly generate $(U, M) \sim Q_k$:
1. Choose T
2. Choose k edges $F \subseteq C \times D$
3. Choose $M \supseteq F$
4. Choose $U \supseteq C$ (not cutting any A_i)

$$\mu_k(R) = \mathbb{E}_T \left[\mathbb{E}_{|F|=k} \left[\Pr[M \in R \mid T, H] \cdot \Pr[U \in R \mid T, H] \right] \right]$$
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[
 \mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p
 \]
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[
 \mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p
 \]
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\Pr[(U, M) \in R \mid T, H] \right] \]
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[
 \mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p
 \]
- Then
 \[
 \mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right]
 \]
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \(\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p\)
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \]
- \text{GOOD} means it doesn’t matter what condition on here
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim (F)} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \]
- \text{GOOD} means it doesn’t matter what condition on here
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[
 \mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p
 \]
- Then
 \[
 \mu_3(R) \approx \mathbb{E}_{H \sim (F^3)} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \leq O(1/k^2)
 \]
- \text{GOOD} means it doesn’t matter what condition on here
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]

- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \leq O(1/k^2) \]

- \text{GOOD} means it doesn’t matter what condition on here

- Suffices to show: \(H, H^* \subseteq F \text{ good } \Rightarrow |H \cap H^*| \geq 2 \)
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \]
 \[\leq O(1/k^2) \]
- \text{GOOD} means it doesn’t matter what condition on \(H \) here
- Suffices to show: \(H, H^* \subseteq F \) good \(\Rightarrow |H \cap H^*| \geq 2 \)
- Suppose \(|H \cap H^*| \leq 1 \)
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim (F)} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \]
 \(\leq O(1/k^2) \)
- \text{GOOD} means it doesn’t matter what condition on here
- Suffices to show: \(H, H^* \subseteq F \) good \(\Rightarrow |H \cap H^*| \geq 2 \)

- Suppose \(|H \cap H^*| \leq 1 \)
- \((T, H)\) good
 \(\Rightarrow \exists M : \{u, v\} \in M \)
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \leq O(1/k^2) \]
- \text{GOOD} means it doesn’t matter what condition on here
- Suffices to show: \(H, H^* \subseteq F \) good \(\Rightarrow |H \cap H^*| \geq 2\)

- Suppose \(|H \cap H^*| \leq 1\)
 - \((T, H)\) good
 \(\Rightarrow \exists M : \{u, v\} \in M\)
 - \((T, H^*)\) good
 \(\Rightarrow \exists U : u, v \in U\)
How does an average partition look like

- Suppose for a fixed \((T, F)\):
 \[\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p \]
- Then
 \[\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} \left[\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H] \right] \approx p \]
 \[\leq O\left(\frac{1}{k^2}\right) \]
- \text{GOOD means it doesn’t matter what condition on here}
- Suffices to show: \(H, H^* \subseteq F\) good \(\Rightarrow |H \cap H^*| \geq 2\)

- Suppose \(|H \cap H^*| \leq 1\)
 - \((T, H)\) good
 \(\Rightarrow \exists M : \{u, v\} \in M\)
 - \((T, H^*)\) good
 \(\Rightarrow \exists U : u, v \in U\)
 - \(|\delta(U) \cap M| = 1\)
 Contradiction!
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]

- Pick \(H \)
Most partitions are good

Lemma
$\Pr[\{T, H\} \text{ is } M\text{-bad}] \leq \varepsilon$

- Pick H, A
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]

- Pick \(H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1} \).
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]

- Pick \(H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1} \). Split \(\tilde{B}_i = C_i \cup D_i \).
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]

- Pick \(H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1} \). Split \(\tilde{B}_i = C_i \cup D_i \).
- Pick randomly \(i \in \{1, \ldots, m\} \)
Most partitions are good

Lemma

\[\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon \]

- Pick \(H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1} \). Split \(\tilde{B}_i = C_i \cup D_i \).
- Pick randomly \(i \in \{1, \ldots, m\} \) and let \(C := C_i, D := D_i \)
Open problems

<table>
<thead>
<tr>
<th>Open problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show that there is no small SDP representing the Correlation/TSP/matching polytope!</td>
</tr>
</tbody>
</table>
Open problems

<table>
<thead>
<tr>
<th>Open problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show that there is no small SDP representing the Correlation/TSP/matching polytope!</td>
</tr>
</tbody>
</table>

Thanks for your attention