# The matching polytope has exponential extension complexity

Thomas Rothvoss

Department of Mathematics, UW Seattle



• Given polytope  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ 



- Given polytope  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
- Write  $P = \{x \in \mathbb{R}^n \mid \exists y : Bx + Cy \leq d\}$







► Extension complexity:  $xc(P) := min \begin{cases} Q \text{ polyhedron} \\ \# \text{facets of } Q \mid p \text{ linear map} \\ p(Q) = P \end{cases}$ 

# What's known?

▶ ...

#### **Compact formulations:**

- ► Spanning Tree Polytope [Kipp Martin '91]
- ▶ PERFECT MATCHING in planar graphs [Barahona '93]
- ► PERFECT MATCHING in bounded genus graphs [Gerards '91]
- *O*(*n* log *n*)-size for PERMUTAHEDRON [Goemans '10]
   (→ tight)
- ▶  $n^{O(1/\varepsilon)}$ -size  $\varepsilon$ -apx for KNAPSACK POLYTOPE [Bienstock '08]

# What's known?

#### **Compact formulations:**

- ► Spanning Tree Polytope [Kipp Martin '91]
- ▶ PERFECT MATCHING in planar graphs [Barahona '93]
- ► PERFECT MATCHING in bounded genus graphs [Gerards '91]
- O(n log n)-size for PERMUTAHEDRON [Goemans '10] (→ tight)
- ▶  $n^{O(1/\varepsilon)}$ -size  $\varepsilon$ -apx for KNAPSACK POLYTOPE [Bienstock '08]

▶ ...

Here: When is the extension complexity super polynomial?

▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]

▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]

► xc(random 0/1 polytope)  $\geq 2^{\Omega(n)}$  [R. '11]

- ▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]
- ► xc(random 0/1 polytope)  $\geq 2^{\Omega(n)}$  [R. '11]
- ► Breakthrough: xc(TSP) ≥ 2<sup>Ω(√n)</sup> [Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]

- ▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]
- ► xc(random 0/1 polytope)  $\geq 2^{\Omega(n)}$  [R. '11]
- ► Breakthrough: xc(TSP) ≥ 2<sup>Ω(√n)</sup> [Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]
- n<sup>1/2-ε</sup>-apx for clique polytope needs super-poly size [Braun, Fiorini, Pokutta, Steuer '12] Improved to n<sup>1-ε</sup> [Braverman, Moitra '13], [Braun, P. '13]

- ▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]
- ► xc(random 0/1 polytope)  $\geq 2^{\Omega(n)}$  [R. '11]
- ▶ Breakthrough: xc(TSP) ≥ 2<sup>Ω(√n)</sup> [Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]
- n<sup>1/2-ε</sup>-apx for clique polytope needs super-poly size [Braun, Fiorini, Pokutta, Steuer '12] Improved to n<sup>1-ε</sup> [Braverman, Moitra '13], [Braun, P. '13]
- (2 − ε)-apx LPs for MaxCut have size n<sup>Ω(log n/log log n)</sup>
   [Chan, Lee, Raghavendra, Steurer '13]

- ▶ No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for log *n* size matchings, but no symmetric one [Kaibel, Pashkovich & Theis '10]
- ► xc(random 0/1 polytope)  $\geq 2^{\Omega(n)}$  [R. '11]
- ► Breakthrough:  $xc(TSP) \ge 2^{\Omega(\sqrt{n})}$ [Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]
- n<sup>1/2-ε</sup>-apx for clique polytope needs super-poly size [Braun, Fiorini, Pokutta, Steuer '12] Improved to n<sup>1-ε</sup> [Braverman, Moitra '13], [Braun, P. '13]
- (2 − ε)-apx LPs for MaxCut have size n<sup>Ω(log n/log log n)</sup>
   [Chan, Lee, Raghavendra, Steurer '13]

Only **NP**-hard polytopes!! What about poly-time problems?

G = (V, E)<br/>(complete)



G = (V, E)<br/>(complete)







# Perfect matching polytope $x(\delta(v)) = 1 \quad \forall v \in V$ $x_e \geq 0 \quad \forall e \in E$



G = (V, E)

$$\begin{aligned} x(\delta(v)) &= 1 \quad \forall v \in V \\ x(\delta(U)) &\geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \\ x_e &\geq 0 \quad \forall e \in E \end{aligned}$$



#### Quick facts:

▶ Description by [Edmonds '65]

$$\begin{aligned} x(\delta(v)) &= 1 \quad \forall v \in V \\ x(\delta(U)) &\geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \\ x_e &\geq 0 \quad \forall e \in E \end{aligned}$$



#### Quick facts:

- ▶ Description by [Edmonds '65]
- ▶ Can optimize  $c^T x$  in strongly poly-time [Edmonds '65]

$$\begin{array}{rcl} x(\delta(v)) &=& 1 & \forall v \in V \\ x(\delta(U)) &\geq& 1 & \forall U \subseteq V : |U| \text{ odd} \\ x_e &\geq& 0 & \forall e \in E \end{array}$$



#### Quick facts:

- ▶ Description by [Edmonds '65]
- ▶ Can optimize  $c^T x$  in strongly poly-time [Edmonds '65]
- ▶ Separation problem polytime [Padberg, Rao '82]

$$\begin{array}{rcl} x(\delta(v)) &=& 1 & \forall v \in V \\ x(\delta(U)) &\geq& 1 & \forall U \subseteq V : |U| \text{ odd} \\ x_e &\geq& 0 & \forall e \in E \end{array}$$



#### Quick facts:

- ▶ Description by [Edmonds '65]
- ▶ Can optimize  $c^T x$  in strongly poly-time [Edmonds '65]
- ▶ Separation problem polytime [Padberg, Rao '82]
- ►  $2^{\Theta(n)}$  facets

$$\begin{aligned} x(\delta(v)) &= 1 \quad \forall v \in V \\ x(\delta(U)) &\geq 1 \quad \forall U \subseteq V : |U| \text{ odd} \\ x_e &\geq 0 \quad \forall e \in E \end{aligned}$$



#### Quick facts:

- ▶ Description by [Edmonds '65]
- ▶ Can optimize  $c^T x$  in strongly poly-time [Edmonds '65]
- ▶ Separation problem polytime [Padberg, Rao '82]
- ►  $2^{\Theta(n)}$  facets

Theorem (R.13)

 $xc(perfect matching polytope) \ge 2^{\Omega(n)}.$ 

• Previously known:  $\operatorname{xc}(P) \ge \Omega(n^2)$ 

Slack-matrix

Write: 
$$P = \operatorname{conv}(\{x_1, \ldots, x_v\}) = \{x \in \mathbb{R}^n \mid Ax \le b\}$$



Slack-matrix



Slack-matrix



Non-negative rank:

$$\operatorname{rk}_{+}(S) = \min\{r \mid \exists U \in \mathbb{R}_{\geq 0}^{f \times r}, V \in \mathbb{R}_{\geq 0}^{r \times v} : S = UV\}$$

# Yannakakis' Theorem

#### Theorem (Yannakakis '91)

If S is the **slack-matrix** for  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ , then  $\operatorname{xc}(P) = \operatorname{rk}_+(S)$ .



# Yannakakis' Theorem

#### Theorem (Yannakakis '91)

If S is the **slack-matrix** for  $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ , then  $\operatorname{xc}(P) = \operatorname{rk}_+(S)$ .

**Idea:** Factor S = UV with

 $U = (\text{conic comb. to derive constraint } i)_i$ 

 $V = (\text{slack vector of } (x_j, v_j))_j$ 



$$\operatorname{rk}_{+}(S) = \min\left\{r: S = \sum_{i=1}^{r} R_i \text{ and } R_i \ge \mathbf{0} \text{ rank-1 matrix}\right\}$$



$$\operatorname{rk}_{+}(S) = \min\left\{r: S = \sum_{i=1}^{r} \underbrace{\lambda_{i}}_{\leq \|S\|_{\infty}} R_{i} \text{ and } \mathbf{0} \leq R_{i} \leq \mathbf{1} \text{ rank-1 matrix}\right\}$$



$$\operatorname{rk}_{+}(S) \gtrsim \min\left\{ \|\lambda\|_{1} : S = \sum_{i=1}^{r} \lambda_{i} R_{i} \text{ and } \mathbf{0} \le R_{i} \le \mathbf{1} \text{ rank-1 matrix} \right\}$$



$$\operatorname{rk}_{+}(S) \gtrsim \min\left\{ \|\lambda\|_{1} : S = \sum_{i=1}^{r} \lambda_{i} R_{i} \text{ and } R_{i} \in \{0,1\}^{f \times v} \text{ rank-1} \right\}$$



$$S = \lambda_1 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ R_1 \end{bmatrix} + \ldots + \lambda_r \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ R_r \end{bmatrix}$$

# Hyperplane separation lower bound [Fiorini]

**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

• Slack matrix  $S_{UM} = |\delta(U) \cap M| - 1$ 



matchings

**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

• Slack matrix  $S_{UM} = |\delta(U) \cap M| - 1$ 



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

- Slack matrix  $S_{UM} = |\delta(U) \cap M| 1$
- Abbreviate Q<sub>ℓ</sub> := {(U, M) : |δ(U) ∩ M| = ℓ}
   Uniform measure: μ<sub>ℓ</sub>(R) := |R∩Q<sub>ℓ</sub>|/|Q<sub>ℓ</sub>|



matchings

**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

- Slack matrix  $S_{UM} = |\delta(U) \cap M| 1$
- Abbreviate Q<sub>ℓ</sub> := {(U, M) : |δ(U) ∩ M| = ℓ}
   Uniform measure: μ<sub>ℓ</sub>(R) := |R∩Q<sub>ℓ</sub>|/|Q<sub>ℓ</sub>|

Choose



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

- Slack matrix  $S_{UM} = |\delta(U) \cap M| 1$
- Abbreviate  $Q_{\ell} := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- Uniform measure:  $\mu_{\ell}(R) := \frac{|R \cap Q_{\ell}|}{|Q_{\ell}|}$

► Choose



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

- Slack matrix  $S_{UM} = |\delta(U) \cap M| 1$
- Abbreviate  $Q_{\ell} := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- Uniform measure:  $\mu_{\ell}(R) := \frac{|R \cap Q_{\ell}|}{|Q_{\ell}|}$

► Choose



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle.

- Slack matrix  $S_{UM} = |\delta(U) \cap M| 1$
- Abbreviate  $Q_{\ell} := \{(U, M) : |\delta(U) \cap M| = \ell\}$
- Uniform measure:  $\mu_{\ell}(R) := \frac{|R \cap Q_{\ell}|}{|Q_{\ell}|}$

► Choose











For  $e_1, e_2 \in E$ : take  $\{U \mid e_1, e_2 \in \delta(U)\}$ 

**Claim:** There is a rectangle with  $\langle W, R \rangle = \Theta(\frac{1}{n^4})$ .



► For  $e_1, e_2 \in E$ : take  $\{U \mid e_1, e_2 \in \delta(U)\} \times \{M \mid e_1, e_2 \in M\}$ 



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle. ► Choose



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle. • Choose



**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle. • Choose





**Goal:** Find W with  $\frac{\langle W, S \rangle}{\langle W, R \rangle}$  large for each rectangle. • Choose

$$W_{U,M} = \begin{cases} -\infty & |\delta(U) \cap M| = 1\\ \frac{1}{|Q_3|} & |\delta(U) \cap M| = 3\\ -\frac{1}{k-1} \cdot \frac{1}{|Q_k|} & |\delta(U) \cap M| = k\\ 0 & \text{otherwise.} \end{cases}$$

cuts

▶ Then  

$$\langle W, S \rangle = 0 + 2 - 1 = 1$$

Lemma

For k large, any rectangle R has  $\langle W, R \rangle \leq 2^{-\Omega(n)}$ .



matchings

$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



#### Main lemma

$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



▶ Technique: Partition scheme [Razborov '91]

#### Main lemma

$$\mu_1(R) = 0 \implies \mu_3(R) \le O(\frac{1}{k^2}) \cdot \mu_k(R) + 2^{-\Omega(n)}$$



▶ Technique: Partition scheme [Razborov '91]

• Partition T = (A, C, D, B)





• Partition T = (A, C, D, B)

A





• Partition T = (A, C, D, B)



1

• Partition T = (A, C, D, B)



r.

• Partition T = (A, C, D, B)



2

• Partition T = (A, C, D, B)



2

• Partition T = (A, C, D, B)



- Partition T = (A, C, D, B)
- $\blacktriangleright$  Edges E(T)



- Partition T = (A, C, D, B)
- $\blacktriangleright$  Edges E(T)



- Partition T = (A, C, D, B)
- $\blacktriangleright$  Edges E(T)



Pseudo-random behaviour of large set systems

Imagine the following setting:

Imagine the following setting:

 $\blacktriangleright$  *n* elements



#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets

#### Questions:



• Is it possible that  $\geq 1\%$  of elements are in **no** set at all?

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets

### Questions:



► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- Is it possible that  $\geq 1\%$  elements are in  $\leq 49\%$  of sets?

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets?
  NO!
- **Proof:** 
  - ▶ Take a random set from S

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:** 
  - Take a random set from  $\mathcal{S}$
  - Denote char. vector as  $x \in \{0, 1\}^n$

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets

### Questions:



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:** 
  - Take a random set from  $\mathcal{S}$
  - Denote char. vector as  $x \in \{0, 1\}^n$

 $\log |\mathcal{S}| = H(x)$ 

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:** 
  - Take a random set from  $\mathcal{S}$
  - Denote char. vector as  $x \in \{0, 1\}^n$

$$\log |\mathcal{S}| = H(x) \overset{\text{subadd}}{\leq} \sum_{i=1}^{n} H(x_i)$$

#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!
- **Proof:** 
  - Take a random set from  $\mathcal{S}$
  - Denote char. vector as  $x \in \{0, 1\}^n$

$$\log |\mathcal{S}| = H(x) \stackrel{\text{subadd}}{\leq} \sum_{i=1}^{n} H(x_i) \leq n - \Omega(n)$$



#### Imagine the following setting:

- $\blacktriangleright$  *n* elements
- set system S with  $2^{(1-o(1))n}$  sets

### Questions:



- ► Is it possible that ≥ 1% of elements are in no set at all? NO! The 0.99n active elements form at most 2<sup>0.99n</sup> sets
- ► Is it possible that ≥ 1% elements are in ≤ 49% of sets? NO!

#### Lemma

If S large, for most elements i,

$$\Pr_{S \subseteq [n]} [S \in \mathcal{S}] \approx \Pr_{S \subseteq [n]} [S \in \mathcal{S} \mid i \in S]$$





$$\mu_k(R) =$$





#### **Randomly generate** $(U, M) \sim Q_k$ : 1. Choose T

$$\mu_k(R) = \mathop{\mathbb{E}}_T \left[ \right]$$





- 1. Choose T
- 2. Choose k edges  $F \subseteq C \times D$

$$\mu_k(R) = \mathop{\mathbb{E}}_T \left[ \mathop{\mathbb{E}}_{|F|=k} \left[ \right. \right]$$





- 1. Choose  $\overline{T}$
- 2. Choose k edges  $F \subseteq C \times D$
- 3. Choose  $M \supseteq F$

$$\mu_k(R) = \mathop{\mathbb{E}}_T \left[ \mathop{\mathbb{E}}_{|F|=k} \left[ \Pr[M \in R \mid T, H] \right] \right]$$





- 1. Choose T
- 2. Choose k edges  $F \subseteq C \times D$
- 3. Choose  $M \supseteq F$
- 4. Choose  $U \supseteq C$  (not cutting any  $A_i$ )

$$\mu_k(R) = \mathop{\mathbb{E}}_{T} \left[ \mathop{\mathbb{E}}_{|F|=k} \left[ \Pr[M \in R \mid T, H] \cdot \Pr[U \in R \mid T, H] \right] \right]$$

► Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ 



Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ 



Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ 



Suppose for a fixed 
$$(T, F)$$
:  
 $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ 

$$\mu_3(R) \approx \mathbb{E}_{H \sim \binom{F}{3}} [\Pr[(U, M) \in R \mid T, H]]$$



Suppose for a fixed 
$$(T, F)$$
:  
 $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ 

► Then

$$\mu_3(R) \approx \mathop{\mathbb{E}}_{H \sim \binom{F}{3}} [\texttt{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H]]$$



► Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$ ► Then

$$\mu_3(R) \approx \mathop{\mathbb{E}}_{H \sim \binom{F}{3}} [\text{GOOD}(T, H) \cdot \Pr[(U, M) \in R \mid T, H]]$$

▶ GOOD means it doesn't matter what condition on here



► Suppose for a fixed 
$$(T, F)$$
:  
 $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$   
► Then  
 $\mu_3(R) \approx \underset{H \sim \binom{F}{3}}{\mathbb{E}} [\text{GOOD}(T, H) \cdot \underbrace{\Pr[(U, M) \in R \mid T, H]}_{PT}]$ 

▶ GOOD means it doesn't matter what condition on here



 $\approx p$ 







- ► GOOD means it doesn't matter what condition on here
- ▶ Suffices to show:  $H, H^* \subseteq F \text{ good} \Rightarrow |H \cap H^*| \ge 2$



► Suppose for a fixed 
$$(T, F)$$
:  
 $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$   
► Then  
 $\mu_r(R) \approx -\mathbb{E} [COOP(T, H) \cdot \Pr[(U, M) \in R \mid T, F]]$ 

$$\mu_{3}(R) \approx \underbrace{\mathbb{E}}_{\substack{H \sim \binom{F}{3} \\ \leq O(1/k^{2})}} [\operatorname{GOOD}(T, H) \cdot \underbrace{\Pr[(U, M) \in R \mid T, H]}_{\approx p}]$$

- ► GOOD means it doesn't matter what condition on here
- ▶ Suffices to show:  $H, H^* \subseteq F \text{ good} \Rightarrow |H \cap H^*| \ge 2$

• Suppose  $|H \cap H^*| \le 1$ 



- Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$
- ► Then



- ▶ GOOD means it doesn't matter what condition on here
- ▶ Suffices to show:  $H, H^* \subseteq F \text{ good} \Rightarrow |H \cap H^*| \ge 2$
- Suppose  $|H \cap H^*| \le 1$
- (T, H) good  $\Rightarrow \exists M : \{u, v\} \in M$



- Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$
- ► Then



- ► GOOD means it doesn't matter what condition on here
- ▶ Suffices to show:  $H, H^* \subseteq F \text{ good} \Rightarrow |H \cap H^*| \ge 2$
- Suppose  $|H \cap H^*| \le 1$
- (T, H) good  $\Rightarrow \exists M : \{u, v\} \in M$
- $(T, H^*)$  good  $\Rightarrow \exists U : u, v \in U$



- Suppose for a fixed (T, F):  $\mu_k(R) \approx \Pr[(U, M) \in R \mid T, F] =: p$
- ► Then



- ► GOOD means it doesn't matter what condition on here
- ▶ Suffices to show:  $H, H^* \subseteq F \text{ good} \Rightarrow |H \cap H^*| \ge 2$
- Suppose  $|H \cap H^*| \le 1$
- (T, H) good  $\Rightarrow \exists M : \{u, v\} \in M$
- $(T, H^*)$  good  $\Rightarrow \exists U : u, v \in U$
- $|\delta(U) \cap M| = 1$ Contradiction!



#### Lemma

 $\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon$ 



#### Lemma

 $\Pr[(T,H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

 $\blacktriangleright$  Pick H



Lemma

 $\Pr[(T,H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

 $\blacktriangleright \text{ Pick } H, A$ 



Lemma

 $\Pr[(T,H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

• Pick  $H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1}$ .



#### Lemma

 $\Pr[(T,H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

• Pick  $H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1}$ . Split  $\tilde{B}_i = C_i \dot{\cup} D_i$ .



#### Lemma

 $\Pr[(T,H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

- Pick  $H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1}$ . Split  $\tilde{B}_i = C_i \dot{\cup} D_i$ .
- Pick randomly  $i \in \{1, \ldots, m\}$



#### Lemma

 $\Pr[(T, H) \text{ is } M\text{-bad}] \leq \varepsilon$ 

- Pick  $H, A, \tilde{B}_1, \ldots, \tilde{B}_{m+1}$ . Split  $\tilde{B}_i = C_i \dot{\cup} D_i$ .
- Pick randomly  $i \in \{1, \ldots, m\}$  and let  $C := C_i, D := D_i$



## **Open problems**

Open problem

Show that there is no small **SDP** representing the Correlation/TSP/matching polytope!

### **Open problems**

Open problem

Show that there is no small **SDP** representing the Correlation/TSP/matching polytope!

### Thanks for your attention