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◮ Extension complexity:

xc(P ) := min






#facets of Q |

Q polyhedron
p linear map
p(Q) = P
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Compact formulations:
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Here: When is the extension complexity super polynomial?



Lower bounds



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

◮ (2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]



Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

◮ (2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]

Only NP-hard polytopes!!

What about poly-time problems?
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Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]
◮ Separation problem polytime [Padberg, Rao ’82]
◮ 2Θ(n) facets

Theorem (R.13)

xc(perfect matching polytope) ≥ 2Ω(n).

◮ Previously known: xc(P ) ≥ Ω(n2)
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Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ R

r×v
≥0 : S = UV }
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Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P ) = rk+(S).

Idea: Factor S = UV with

U = (conic comb. to derive constraint i)i

V = (slack vector of (xj , vj))j

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xj
b

(xj , yj)
b
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Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ( 1
n4 ).

U M

e1

e2

◮ For e1, e2 ∈ E: take {U | e1, e2 ∈ δ(U)} ×{M | e1, e2 ∈ M}

◮ But µk(R) = Θ( k
2

n4 )



Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|



Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

Qk k − 1 k − 1

k − 1

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|



Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

− 1
k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

0

0

0

2

2

2

Q1 Q3

Qk k − 1 k − 1

k − 1

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

− 1

k−1

1

|Qk|
− 1

k−1

1

|Qk|

− 1

k−1

1

|Qk|



Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

− 1
k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

◮ Then
〈W,S〉 = 0 + 2− 1 = 1

Lemma

For k large, any rectangle R
has 〈W,R〉 ≤ 2−Ω(n).

matchings

cu
ts

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

− 1

k−1

1

|Qk|
− 1

k−1

1

|Qk|

− 1

k−1

1

|Qk|

R



Applying the Hyperplane bound (III)



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

matchings

cu
ts

S



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

◮ Technique: Partition scheme [Razborov ’91]



Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O( 1
k2
) · µk(R) + 2−Ω(n)

RT

matchings

cu
ts

S

◮ Technique: Partition scheme [Razborov ’91]



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A B



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C B

k



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

k k



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

A1

. . .

Am
k − 3
nodes

k k



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T )

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T )

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes



Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T )

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes

U



Pseudo-random behaviour of large set systems

Imagine the following setting:



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

b

b

b

b

b

b



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)



Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)
subadd
≤

n∑

i=1

H(xi)



Pseudo-random behaviour of large set systems

Imagine the following setting:
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◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets
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Proof:

◮ Take a random set from S
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Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b
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Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Lemma

If S large, for most elements i,

Pr
S⊆[n]

[S ∈ S] ≈ Pr
S⊆[n]

[S ∈ S | i ∈ S]
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Randomly generate (U,M) ∼ Qk:
1. Choose T
2. Choose k edges F ⊆ C ×D
3. Choose M ⊇ F
4. Choose U ⊇ C (not cutting any Ai)

µk(R) = E
T

[

E
|F |=k

[

Pr[M ∈ R | T,H] · Pr[U ∈ R | T,H]
]]
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◮ Suppose for a fixed (T, F ):
µk(R) ≈ Pr[(U,M) ∈ R | T, F ] =: p

◮ Then

µ3(R) ≈ E
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3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1

◮ (T,H) good
⇒ ∃M : {u, v} ∈ M

◮ (T,H∗) good
⇒ ∃U : u, v ∈ U

◮ |δ(U) ∩M | = 1
Contradiction!
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Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.
◮ Pick randomly i ∈ {1, . . . ,m} and let C := Ci, D := Di
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