
Sixth Cargese Workshop on Combinatorial Optimization September 17, 2015

Lecture 3: Sparsifiers

Nick Harvey University of British Columbia

Abstract

In this last lecture we will discuss graph sparsification: approximating a graph by weighted sub-
graphs of itself. Sparsifications techniques have been used to design fast algorithms for combinatorial
or linear algebraic problems, as a rounding technique in approximation algorithms, and have moti-
vated startling results in pure mathematics.

1 Spectral Sparsifiers

Let G = (V,E) be a graph with V = {1, . . . , n}. Let ei be the ith standard basis vector. For an edge
e = {u, v} ∈ E, let χe = eu − ev, where u and v are ordered arbitrarily. The Laplacian of G is

LG =
∑
e∈E

χeχ
T
e .

We say that a graph H on vertex set V spectrally approximates G if

(1− ε)LH � LG � (1 + ε)LH . (1)

If H obtained from G by assigning non-negative weights to the edges, we call H a spectral sparsifier of
G. The number of edges in H is defined to be the number of non-zero weights.

We will prove and discuss the following theorem.

Theorem 1. Every graph G has a spectral sparsifier with O(n log n/ε2) edges.

References: Spielman-Srivastava 2008.

1.1 Sparsifiers preserve cuts

For U ⊆ V , the set of edges in G with exactly one endpoint in U is denoted δ(U). A simple calculation
shows that |δ(U)| = 1TULG1U , where 1U is the characteristic vector of the set U .

If H is a spectral sparsifier of G then (1) implies that

(1− ε)1TULH1U ≤ 1ULG1U ≤ (1 + ε)1ULH1U ∀U ⊆ V.

That is, the total weight in H of all edges in δ(U) lies in [1− ε, 1 + ε] · |δ(U)|.

Application for fast algorithms. Consider any problem whose solution is determined by the cuts of
G, e.g., the minimum s-t cut problem. Let A be an algorithm for this problem. Instead of running A
on G, let us run it on the sparsifier H obtained from Theorem 1. The cut output by A is within 1 + ε of
a minimum s-t cut in G. Running A on H instead of G is typically faster because H has fewer edges.
Similar ideas can be used to give faster algorithms for the sparsest cut problem, the max cut problem,
etc.

References: Benczur-Karger 2002, Fung et al. 2011.

1

2 Review

Recall that in the last lecture, we discussed Tropp’s matrix Chernoff bound. Today we make a trivial
extension by introducing the parameter R.

Theorem 2. Let X1, . . . , Xk be independent random n× n symmetric matrices with 0 � Xi � R · I.
Let µmin · I �

∑
i E [Xi] � µmax · I. Then, for all ε ∈ [0, 1],

Pr
[
λmax(

∑k
i=1Xi) ≥ (1 + ε)µmax

]
≤ n · e−ε2µmax/3R

Pr
[
λmin(

∑k
i=1Xi) ≤ (1− ε)µmin

]
≤ n · e−ε2µmin/2R.

3 Construction of Spectral Sparsifiers

We will prove Theorem 1 by an algorithm that randomly samples edges to create the weighted subgraph
H. We will analyze the random matrix LH using Theorem 2.

3.1 A Trick: Rescaling to Isotropic Position

One problem is that Theorem 2 only allows us to control the maximum and minimum eigenvalues of a
random matrix, it does not directly allow us to establish matrix inequalities like (1). We will solve that
problem by a simple rescaling trick.

The idea is to rescale χe by multiplying1 it by L
−1/2
G . The resulting vectors are denoted

xe = L
−1/2
G χe.

They are said to be in “isotropic position” because∑
e∈E

xex
T
e =

∑
e∈E

L
−1/2
G χeχ

T
e L
−1/2
G = L

−1/2
G

(∑
e∈E

χeχ
T
e

)
L
−1/2
G = L

−1/2
G LGL

−1/2
G = I.

Fact 3. Let w : E → R≥0 and let H be the subgraph of G with edge weights w. Then (1) holds iff all
eigenvalues of

∑
e∈E wexex

T
e lie in [1− ε, 1 + ε]. Equivalently,

(1− ε) �
∑
e∈E

wexex
T
e � (1 + ε)I ⇐⇒ (1− ε)LG �

∑
e∈E

weχeχ
T
e � (1 + ε)LG.

Fact 3 follows from Fact 4, modulo the kernel caveat.

Fact 4. Let A and B be symmetric, d× d matrices and let C be any non-singular d× d matrix. Then
A � B iff CACT � CBCT.

References: My notes on symmetric matrices.

3.2 The Proof

Due to Fact 3, our goal is to find weights w : E → R≥0 such that all eigenvalues of
∑

e∈E wexex
T
e lie in

[1−ε, 1+ε]. As mentioned above, we will do this by the random sampling process shown in Algorithm 1.

1 Caveat: in this lecture we are going to ignore the fact that LG is singular. This can be resolved by using the
pseudoinverse rather than the inverse, and taking more care.

2

http://www.cs.ubc.ca/~nickhar/W12/NotesMatrices.pdf

Algorithm 1: Sparsify a graph by sampling each edge ρ times with probability equal to its effective
resistance. The sampled edges are weighted according to the reciprocal of their sampling probability.

1 Function Sparsify(G):
2 input: A graph G = (V,E)
3 output: Edge weights w : E → R≥0.
4 Let ρ = 6 lnn/ε2.

5 Let pe be the effective resistance across e, which is χT
e L
−1
G χe = xTe xe.

6 Initially w ← 0.
7 Let (Zi,e)i∈[ρ], e∈E be mutually independent random variables in {0, 1} with E [Zi,e] = pe.

8 for i← 1 to ρ do
9 foreach e ∈ E do

10 Increase we by Zi,e/ρpe.

11 Return w

Remark. Sampling edges with probability proportional to their effective resistances is a well-studied
approach in the statistics literature, where it is known as leverage score sampling.

References: Mahoney 2011.

Claim 5. The expected number of non-zero edge weights is 6n log n/ε2.

Proof: The expected number of non-zero edge weights is at most

ρ∑
i=1

∑
e∈E

pe = ρ ·
∑
e∈E

xTe xe
(∗)
= ρ · tr

∑
e∈E

xex
T
e = ρ · tr I = (6 lnn/ε2) · n

In (∗) we have used the cyclic property of trace. 2

Claim 6. Let X =
∑

e∈E wexex
T
e . With high probability, all eigenvalues of X lie in [1 − ε, 1 + ε].

Consequently, the graph H with weights w is a sparsifier of G with high probability.

Proof: The matrix X that we wish to analyze is constructed by summing a contribution from each
iteration of the algorithm. The random matrix contributed in iteration (i, e) is

Xi,e = Zi,e · xexTe /ρpe = Zi,e ·
(xexTe
xTe xe

)
· 1

ρ
. (2)

Thus X =
∑

i,eXi,e.

Our first observation is that

E [X] =
∑
i,e

E [Xi,e] = ρ
∑
e

E [Zi,e]︸ ︷︷ ︸
=pe

·(xexTe /ρpe) =
∑
e

xex
T
e = I.

So all eigenvalues of E [X] are 1.

Next we claim that all eigenvalues of Xi,e are in {0, 1/ρ}. To see this, consider (2) and note that

the matrix xexTe
xTexe

has all eigenvalues in {0, 1}. So Xi,e has eigenvalues in {0, 1/ρ} when Zi,e = 1; otherwise

all eigenvalues are 0.

We wish to show that, with high probability, all eigenvalues of X are in [1− ε, 1 + ε]. To do so, we

3

apply Theorem 2 with R = 1/ρ and µmax = µmin = 1, obtaining

Pr
[
λmax(

∑
i,eXi,e) ≥ (1 + ε)

]
≤ n · e−ε2/3R = n · e−2 lnn = 1/n

Pr
[
λmin(

∑
i,eXi,e) ≤ (1− ε)

]
≤ n · e−ε2/2R = n · e−3 lnn ≤ 1/n.

By a union bound, the probability that the eigenvalues of X don’t lie in [1− ε, 1 + ε] is at most 2/n. 2

Combining Claim 5 and Claim 6 proves Theorem 1.

4 The Koutis-Miller-Peng Algorithm

The fast Laplacian solver of Spielman-Teng [8] relied on many components, including a spectral sparsifi-
cation steps (followed by an “ultra-sparsification” step). We have just seen an algorithm for computing
very good sparsifiers, but unfortutately it requires computing effective resistances, for which we need a
fast Laplacian solver. This is a chicken-and-egg problem!

Koutis-Miller-Peng [5] presented a fast Laplacian solver that is substantially more comprehensible
than the Spielman-Teng algorithm. The main idea of KMP is a clever resolution of the chicken-and-egg
problem. Basically, they use low-stretch trees to give a very rough estimate for the effective resistances,
then use those estimates to do random sampling like in Algorithm 1. This gives a sparsifier that doesn’t
near-linear number of edges, but the number of edges does decrease by a polylogarithmic factor. The
KMP algorithm then recursively solving the Laplacian system on the sparsifier, and uses that to solve
the original Laplacian system.

So now you have seen the two key ingredients of the KMP solver: low-stretch trees and spectral
sparsifiers. You are now fully equipped to read the KMP paper — all that remains are some technical
details on how the recursion works!

References: Koutis-Miller-Peng 2010, Vishnoi 2013

5 Beyond Independent Sampling

The previous theorem is as good (fewest edges) as one could hope when independently sampling edges
of a graph. For example, a random sparsifier of complete graph is the same as a G(n, p) graph with
p = 2ρ/n, which is likely disconnected if ρ = o(log n), and therefore does not meet the spectral guarantee.

Can dependent sampling or deterministic algorithms give better results than independent sam-
pling? For example, sampling Θ(1/ε2) perfect matchings in the complete graph will give a near-
Ramanujan graph, which is a spectral sparsifier.

5.1 Linear-size sparsifiers

Batson, Spielman and Srivastava [1] showed that any undirected graph has a spectral sparsifier with
O(n/ε2) edges. Rather than use dependent sampling, they give a deterministic, polynomial-time algo-
rithm.

To motivate their approach, let us consider the derandomization of Chernoff bounds. There is a
technique called the method of pessimistic estimators (based on the method of conditional expectations)
that allows one to deterministically choose values for the “random variables” one-by-one so that the
desired bounds will be satisfied. The main idea is to use some “potential function” based on the

4

algorithm’s previous choices that will indicate whether the algorithm’s next choice is good or not. The
potential function is used is basically the function e−θt

∏
i E
[
eθXi

]
that appeared in the proof of the

Chernoff bound. The resulting algorithm ends up being essentially the multiplicative-weight update
method. This approach can be extended to work for the Matrix Chernoff Bound.

References: my 2015 lecture notes, de Carli Silva-Harvey-Sato 2011, Arora-Hazan-Kale 2012.

Using these exponential functions, one cannot hope to do better than the Chernoff bound. The
BSS algorithm is based the function 1/x instead of ex; because 1/x has a pole it acts as a “barrier
function”. They use these barriers to keep the eigenvalues in a tight interval as they choose edges to
add to the graph.

Allen-Zhu et al. put these ideas in a more general context and gave a faster algorithm based on
connections to regret-minimization algorithms. In particular, they show that the 1/x function naturally
arises from regularization ideas. Lee and Sun (2015) gave a nearly-linear time algorithm by a careful
batching strategy. Both of these use fast Laplacian solvers as a subroutine.

References: Allen-Zhu, Liao and Orecchia 2015, Lee-Sun 2015.

References

[1] J. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. In STOC, 2009.

[2] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows in capacitated
graphs, 2002. http://arxiv.org/abs/cs/0207078.

[3] M. de Carli Silva, N. J. A. Harvey, and C. Sato. Sparse sums of positive semi-definite matrices.
arXiv:1107.0088.

[4] W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi. A general framework for graph sparsification.
In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), 2011.

[5] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving sdd linear systems. In FOCS, 2010.

[6] M. W. Mahoney. Randomized Algorithms for Matrices and Data, volume 3 of Foundations and Trends in
Machine Learning. now publishers, 2011.

[7] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In STOC, 2008.

[8] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In STOC, pages 81–90, 2004.

[9] N. K. Vishnoi. Lx=b, volume 8 of Foundations and Trends in Theoretical Computer Science. now publishers,
2013.

5

http://www.cs.ubc.ca/~nickhar/W15/Lecture12Notes.pdf
http://arxiv.org/abs/1107.0088
http://www.satyenkale.com/papers/mw-survey.pdf
http://arxiv.org/abs/1506.04838
http://arxiv.org/abs/1508.03261

	Spectral Sparsifiers
	Sparsifiers preserve cuts

	Review
	Construction of Spectral Sparsifiers
	A Trick: Rescaling to Isotropic Position
	The Proof

	The Koutis-Miller-Peng Algorithm
	Beyond Independent Sampling
	Linear-size sparsifiers

