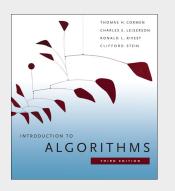
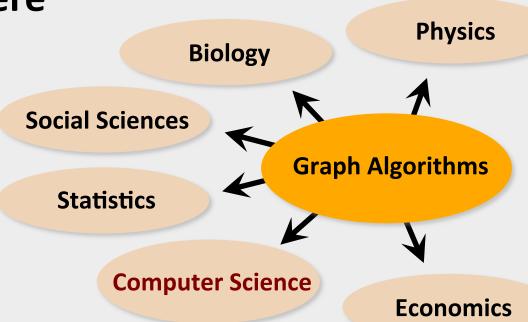
Graphs, Linear Algebra, and Continuous Optimization

Part I: Overview

Aleksander Mądry

Graphs are everywhere



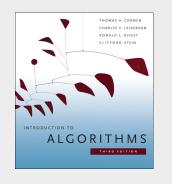


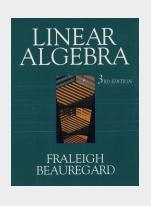
Algorithmic Graph Theory:

Shaping our understanding of algorithms since 1950s

But: Our graph toolkit is still far from being complete

Our goal: Forging the next generation of tools for graph algorithms





Linear-algebraic tools

(eigenvalues, electrical flows, linear systems,...)

Combinatorial methods

(trees, paths, partitions, matchings, routings,...)

Cont. opt. primitives

(gradient-descent, interiorpoint methods,...)

Underlying theme: Merging combinatorial and continuous methods

Our plan for this week:

Illustrate this theme on an example of a single problem

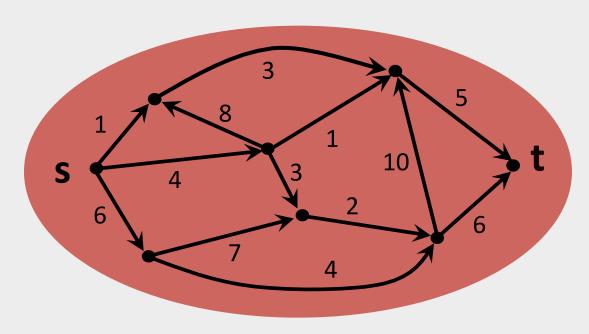
Problem: Maximum flow

Underlying approach:

Relate combinatorial structure of a graph to linear-algebraic properties of associated matrices

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

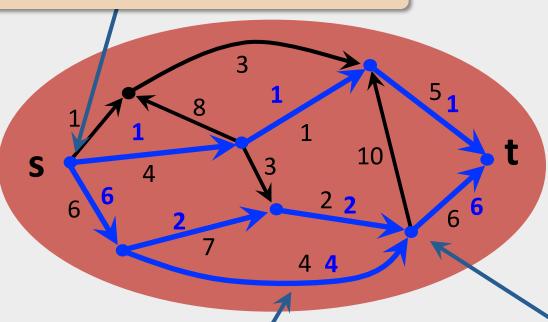
Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

value = net flow out of s

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

no overflow on arcs: $0 \le f(e) \le u(e)$

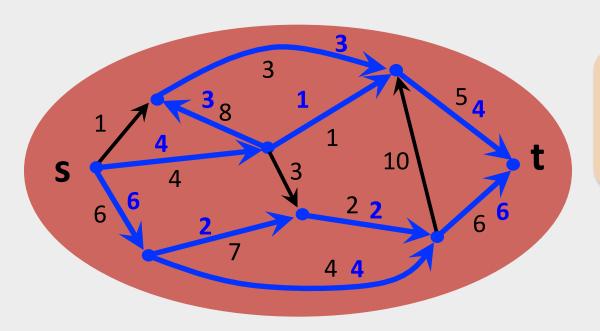
no leaks at all v≠s,t

Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

Maximum flow problem

Input: Directed graph G, integer capacities u_e, source s and sink t



Think: arcs = roads capacities = # of lanes s/t = origin/destination

Max flow value F*=10

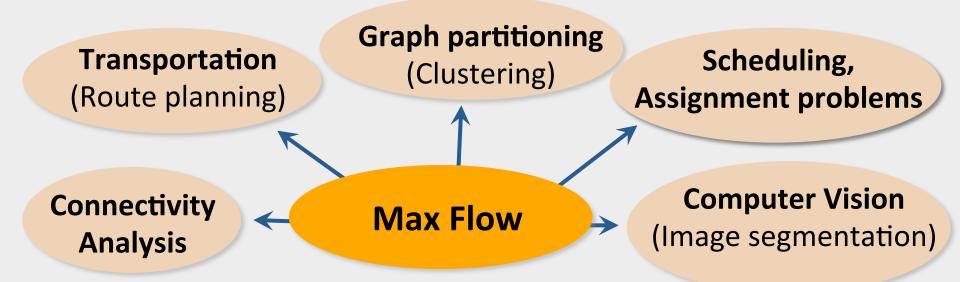
Task: Find a feasible s-t flow of max value

(**Think:** Estimate the **max** possible rate of traffic from **s** to **t**)

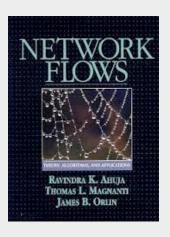
Why is this a good problem to study?

Max flow is a fundamental optimization problem

- Extensively studied since 1930s (classic 'textbook problem')
- Surprisingly diverse set of applications
- Very influential in development of (graph) algorithms



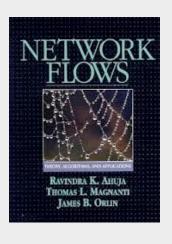
A **LOT** of previous work



A (very) rough history outline

[Dantzig '51]
[Ford Fulkerson '56]
[Dinitz '70]
[Dinitz '70] [Edmonds Karp '72]
[Dinitz '73] [Edmonds Karp '72]
[Dinitz '73] [Gabow '85]
[Goldberg Rao '98]
[Lee Sidford '14]

O(mn² U)
O(mn U)
O(mn²)
O(m²n)
O(m² log U)
O(mn log U)
Õ(m min(m^{1/2},n^{2/3}) log U)
Õ(mn^{1/2} log U)



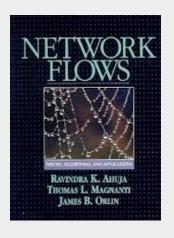
Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

A (very) rough history outline

[Dantzig '51]	O(n ³)
[Ford Fulkerson '56]	O(n ²)
[Dinitz '70]	$O(n^3)$
[Dinitz '70] [Edmonds Karp '72]	O(n³)
[Dinitz '73] [Edmonds Karp '72]	Õ(n²)
[Dinitz '73] [Gabow '85]	Õ(n²)
[Goldberg Rao '98]	$\tilde{O}(n^{3/2})$
[Lee Sidford '14]	Õ(n ^{3/2})



Our focus: Sparse graph (m=O(n)) and unit-capacity (U=1) regime

- → It is a good benchmark for combinatorial graph algorithms
- → Already captures interesting problems, e.g., bipartite matching

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Emerging barrier: $O(n^{3/2})$

[Even Tarjan '75, Karzanov '73]: Achieved this bound for U=1 long time ago

Last 40 years: Matching this bound in increasingly more general settings, but **no improvement**

This indicates a fundamental limitation of our techniques

Our goal: Show a new approach finally breaking this barrier

 $(n = # of vertices, m = # of arcs, U = max capacity, <math>\tilde{O}()$ hides polylogs)

Breaking the $\Omega(n^{3/2})$ barrier

Undirected graphs and approx. answers ($\Omega(n^{3/2})$) barrier still holds here)

[M '10]: Crude approx. of max flow value in close to linear time

[CKMST '11]: (1- ϵ)-approx. to max flow in $\tilde{O}(n^{4/3}\epsilon^{-3})$ time

[LSR '13, S '13, KLOS '14, P '14]: (1- ε)-approx. in $\tilde{O}(n\varepsilon^{-2})$ time

But: What about the **directed** and **exact** setting?

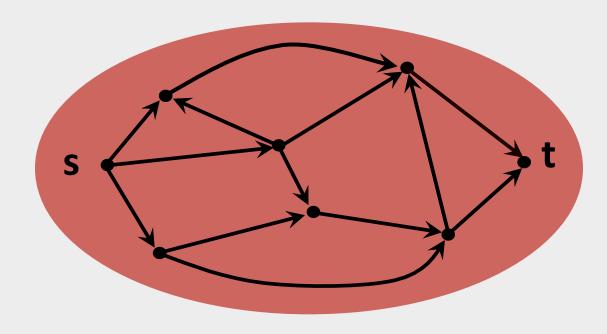
[M '13]: Exact $\tilde{O}(n^{10/7})=\tilde{O}(n^{1.43})$ -time alg.

This week

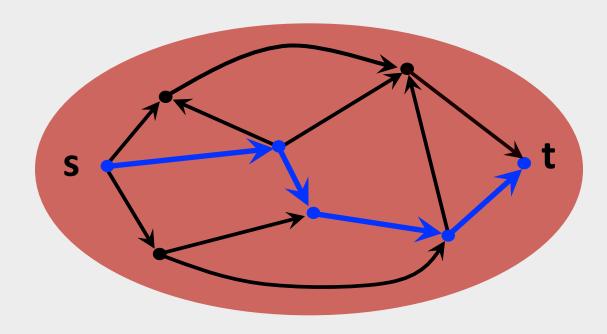
 $(n = # of vertices, \tilde{O}())$ hides polylog factors)

Previous approach

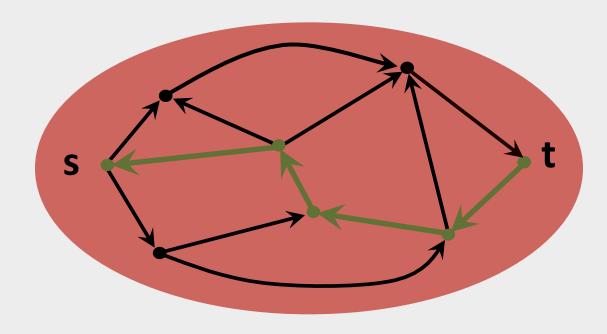
[Ford Fulkerson '56]



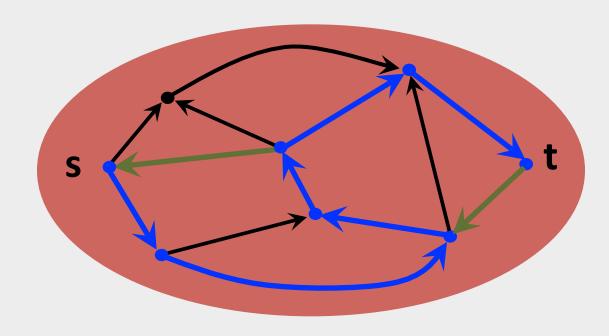
[Ford Fulkerson '56]



[Ford Fulkerson '56]



[Ford Fulkerson '56]



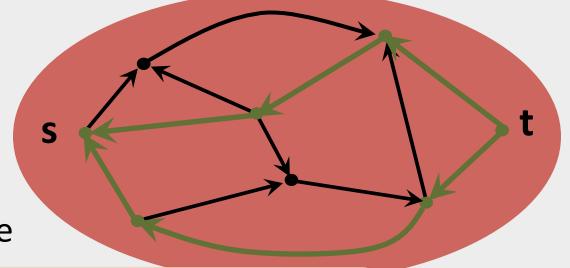
[Ford Fulkerson '56]

Basic idea: Repeatedly find s-t paths in the residual graph

Advantage: Simple, purely combinatorial and greedy (flow is built path-by-path)

Problem:

Very difficult to analyze



Naïve impl

(≤ **n** augme

Unclear how to get a further speed-up via this route path)

Sophisticated implementation and arguments:

 $O(n^{3/2})$ time [Karzanov '73] [Even Tarjan '75]

Beyond augmenting paths

New approach:

Bring linear-algebraic techniques into play

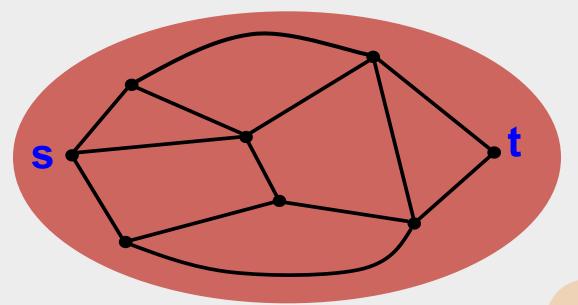
Idea: Probe the **global flow structure** of the graph by **solving linear systems**

How to relate **flow structure** to **linear algebra**? (And why should it even help?)

Key object: Electrical flows

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t



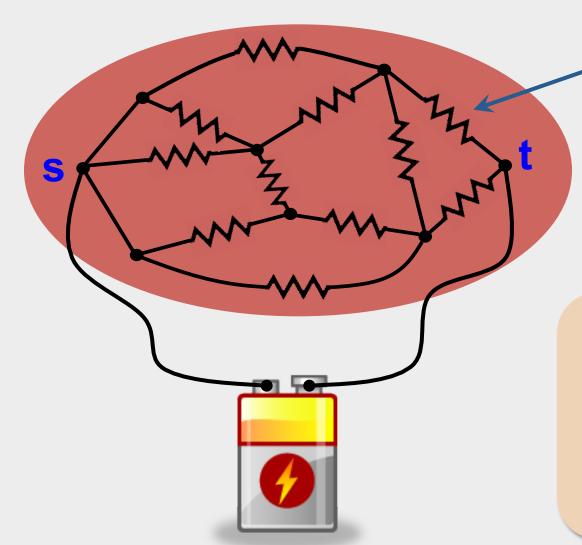
Recipe for elec. flow:

1) Treat edges as resistors

Electrical flows (Take I)

Input: Undirected graph G,
resistances r_e,
source s and sink t

resistance r_e



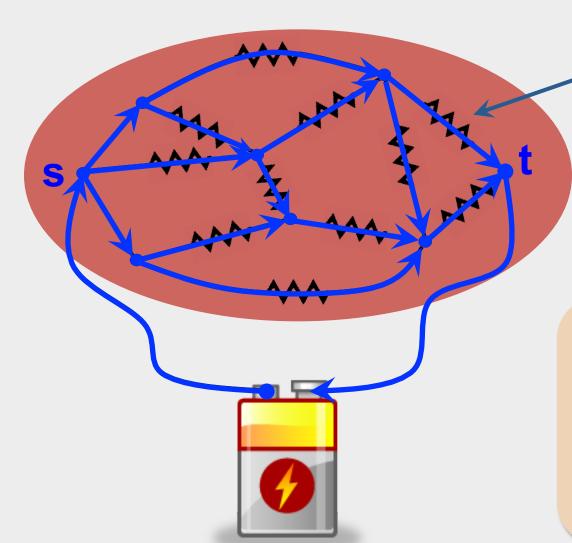
Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

Electrical flows (Take I)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e



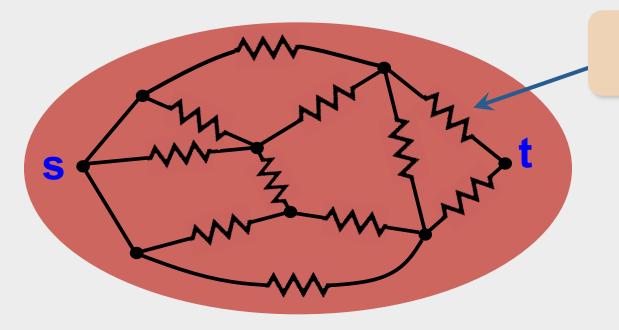
Recipe for elec. flow:

- 1) Treat edges as resistors
- 2) Connect a battery to s and t

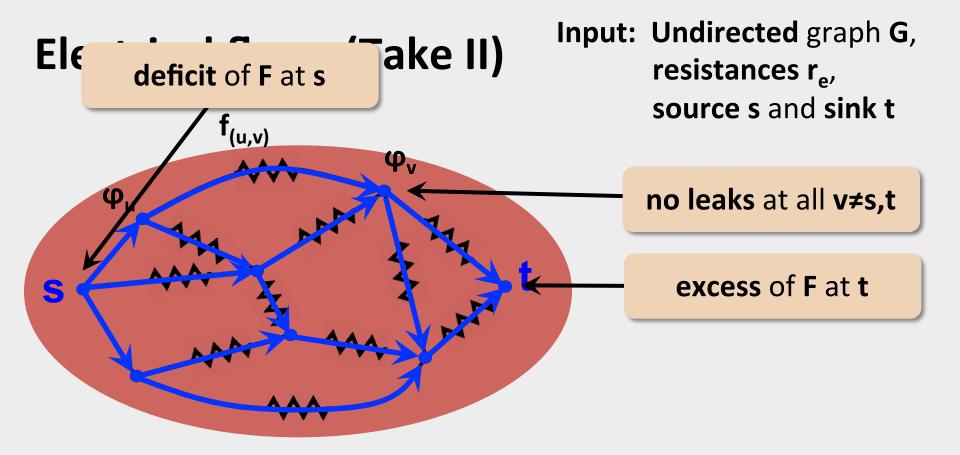
Electrical flows (Take II)

Input: Undirected graph G, resistances r_e, source s and sink t

resistance r_e



(Another) recipe for electrical flow (of value F):



(Another) recipe for electrical flow (of value F):

Find vertex potentials φ_v such that setting, for all (u,v)

$$f_{(u,v)} \leftarrow (\phi_v - \phi_u)/r_{(u,v)}$$
 (Ohm's law)

gives a valid s-t flow of value F

Electrical flows (Take III)

Input: Undirected graph G, resistances r_e, source s and sink t

Principle of least energy

Electrical flow of value F:

The unique minimizer of the energy

$$E(f) = \Sigma_e r_e f(e)^2$$

among all s-t flows f of value F

Electrical flows = ℓ_2 -minimization

How to compute an electrical flow? Input: Graph G=(V,E),

Solve a linear system!

Input: Graph G=(V,E),
resistances r_e,
source s and sink t,
value F=1

Wlog as elect. flow are invariant under scaling

How to compute an electrical flow? Input: Graph G=(V,E),

Solve a linear system!

Input: Graph G=(V,E)
resistances r_e,
source s and sink t,
value F=1

Observe: It suffices to compute **vertex potentials** ϕ_v

Ohm's law: If ϕ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^T \phi$$

is the corresponding flow

Here:

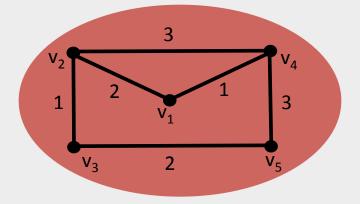
- \rightarrow f is an |E|-dim vector with |f_e| giving the amount of flow on e and sign(f_e) encoding its direction (wrt edge orientation)
- \rightarrow R is an |E|×|E| diagonal matrix with $R_{ee} = r_{e}$
- \rightarrow B is an $|V| \times |E|$ matrix with e-th column, for e=(v,u), having
- -1 (resp. +1) at its v-th (resp. u-th) coordinate and 0 everywhere else

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:



|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

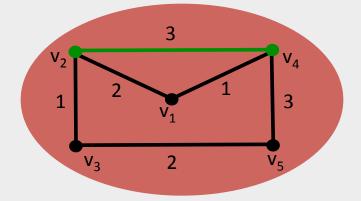
$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:



|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

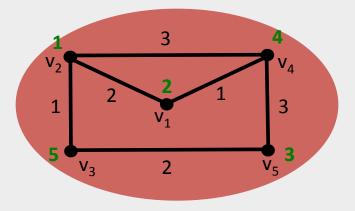
$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:



$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

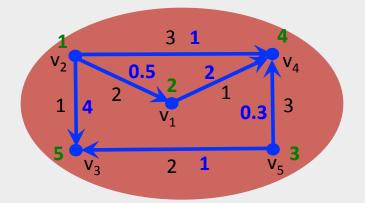
$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Example:



|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix}$$

$$R^{-1}B^{T}$$

$$f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -1 \\ -0.3 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Recall: φ induces an electrical flow f iff

f is a valid **s-t** flow

(i.e., satisfies flow conservation constraints)

Equivalently: φ induces an electrical flow f iff

$$B f = \chi_{s,t}$$

where $\chi_{s,t}$ has a 1 at t, -1 at s and 0s everywhere else

Note: (Bf), is the excess/deficit of f at v

Ohm's law: If φ is an (|V|-dim) vector of vertex potentials then

$$f = R^{-1}B^{T} \varphi$$

is the corresponding flow

Recall: φ induces an electrical flow iff

f is a valid **s-t** flow

(i.e., satisfies flow conservation constraints)

Equivalently: φ induces an electrical flow **f** iff

$$B f = \chi_{s,t}$$

 $B f = \chi_{s,t}$ where $\chi_{s,t}$ has a 1 at t, -1 at s and 0 s everywhere else

Note: (Bf), is the excess/deficit of fat v

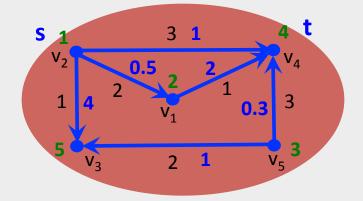
Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Putting it together: φ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:



$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_i) with $i< j$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix} \xrightarrow{R^{-1}B^{\mathsf{T}}} f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -1 \\ -0.3 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

$$|V| = 5, |E| = 6, \text{ all edges oriented } (v_i, v_j) \text{ with } i < j \qquad \chi_{s,t}$$

$$|I|$$

$$\varphi = \begin{bmatrix} 2 \\ 1 \\ 5 \\ 4 \\ 3 \end{bmatrix} \xrightarrow{R^{-1}B^{T}} f = \begin{bmatrix} -0.5 \\ 2 \\ 4 \\ 1 \\ -0.3 \end{bmatrix} \xrightarrow{B} \begin{bmatrix} -1.5 \\ -5.5 \\ 5 \\ 3.3 \\ -1.3 \end{bmatrix} \neq \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

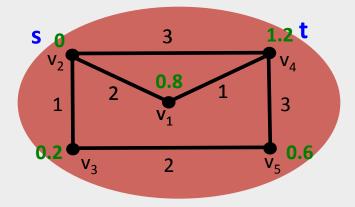
 $\mathbf{X}_{s,t}$

$$R = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:



$$B = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

|V|=5, |E|=6, all edges oriented (v_i,v_i) with i< j

$$\phi = \begin{bmatrix}
0.8 \\
0 \\
0.2 \\
1.2 \\
0.6
\end{bmatrix}$$

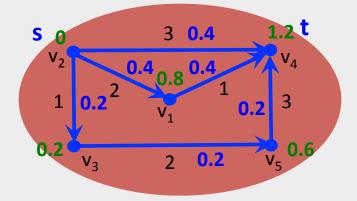
 $\chi_{s,t}$

 $\begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$

Putting it together: ϕ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:



$$\mathsf{B} = \left[\begin{array}{cccccccccc} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{array} \right]$$

|V|=5, |E|=6, all edges oriented (v_i,v_j) with i< j

$$\varphi = \begin{bmatrix} 0.8 \\ 0 \\ 0.2 \\ 1.2 \\ 0.6 \end{bmatrix} \xrightarrow{R^{-1}B^{T}} f = \begin{bmatrix} -0.4 \\ 0.4 \\ 0.4 \\ 0.2 \\ 0.2 \\ -0.2 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}_{s,t} \\ \mathbf{II} \\ \begin{bmatrix} \mathbf{0} \\ -\mathbf{1} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

Putting it together: φ induces an electrical flow iff

$$B R^{-1}B^{T} \varphi = \chi_{s,t}$$

Example:

B =
$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$|V|=5$$
, $|E|=6$, all edges oriented (v_i,v_j) with $i< j$

 $\chi_{s,t}$

$$\begin{vmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{vmatrix}$$

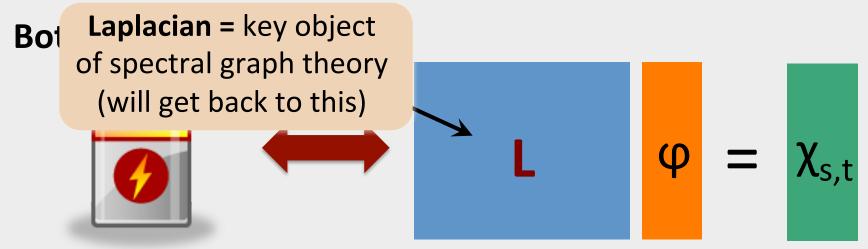
Bottom line:



Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$ (Prohibitive!)

Key observation:

BR⁻¹**B**^T is the **Laplacian** matrix **L** of the underlying graph



Electrical flow computation

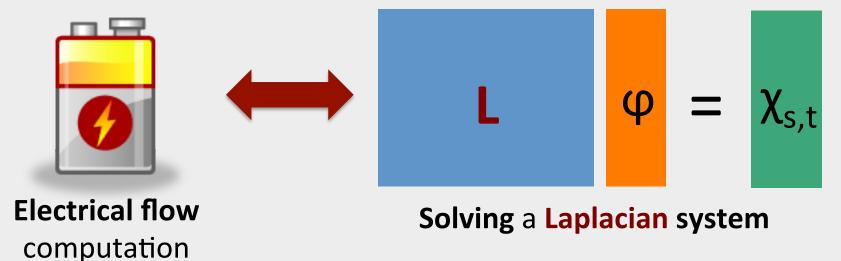
Solving a Laplacian system

Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$ (Prohibitive!)

Key observation:

BR-1**B**^T is the **Laplacian** matrix **L** of the underlying graph

Bottom line:



Bad news: Solving a linear system can take $O(n^{\omega})=O(n^{2.373})$

Key observation:

BR⁻¹**B**^T is the **Laplacian** matrix **L** of the underlying graph

(Prohibitive!)

(will get back to this)

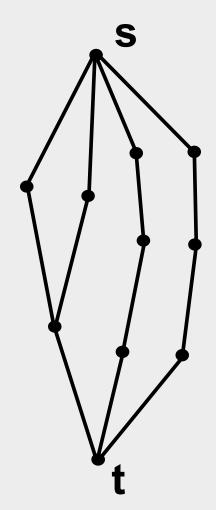
Result: Electrical flow is a nearly-linear time primitive

From electrical flows to undirected max flow

[CKMST '11]

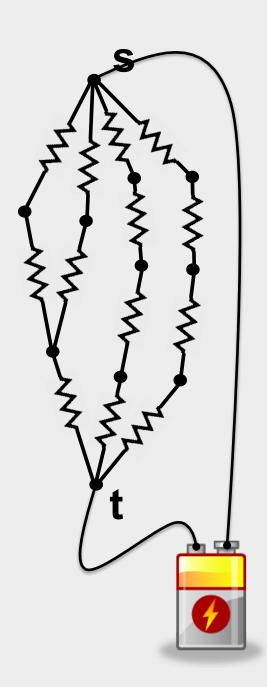
Assume: F* known (via binary search)

→ Treat edges as resistors of resistance 1



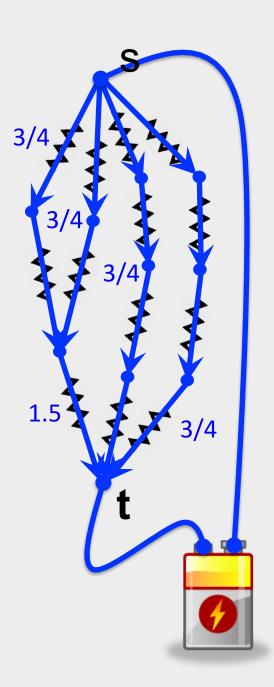
Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value **F***



Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)



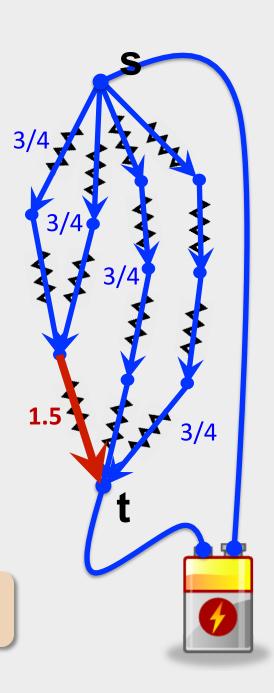
Assume: F* known (via binary search)

- → Treat edges as resistors of resistance 1
- → Compute electrical flow of value F* (This flow has no leaks, but can overflow some edges)
- → To fix that: Increase resistances on the overflowing edges

 Repeat (hope: it doesn't happen too often)

Surprisingly: This approach can be made work!

Tomorrow: Will discuss how to fill in the blanks



Thank you