Graphs, Linear Algebra, and Continuous Optimization

Part III: Solving Exact Max Flow

Aleksander Mądry

Breaking the $\Omega(n^{3/2})$ barrier

From electrical flows to exact directed max flow

From now on: All capacities are 1, m=O(n)
and the value F* of max flow is known

Why the progress on **approx. undirected** max flow does not apply to the **exact directed** case?

Tempting answer: Directed graphs are just different (for one, electrical flow is an undirected notion)

Key obstacle: Gradient descent methods (like MWU) are inherently unable to deliver good enough accuracy

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

$$LP(\mu): \min c^{\mathsf{T}}x - \mu \Sigma_i \log x_i$$

s.t. Ax = b

Idea: Take care of "hard" constraints by adding a "barrier" to the objective

Observe: The barrier term enforces $x \ge 0$ implicitly

Furthermore: for large μ , LP(μ) is easy to solve and

LP(\mu) \rightarrow original **LP**, as $\mu \rightarrow 0^+$

Path-following routine:

- \rightarrow Start with (near-)optimal solution to LP(μ) for large μ >0
- → Gradually reduce μ while maintaining the (near-)optimal solution to current LP(μ)

(Path-following) Interior-point method (IPM)

[Dikin '67, Karmarkar '84, Renegar '88,...]

A powerful framework for solving general LPs (and more)

Key point: Choosing step size δ sufficiently small ensures **x** is close to optimum for LP(μ ') \rightarrow Newton's method convergence **very** rapid

Path-following routine:

- \rightarrow Start with (near-)optimal solution to LP(μ) for large μ >0
- → Gradually reduce µ (via Newton's method) while maintaining the (near-)optimal solution to current LP(µ)

Can we use IPM to get a faster max flow alg.?

Conventional wisdom: This will be too slow!

- → Each Newton's step = solving a linear system O(n^ω)=O(n^{2.373}) time (prohibitive!)
- But: When solving flow problems only Õ(m) time [DS '08]
- Fundamental question: What is the number of iterations?

[Renegar '88]: $O(m^{1/2} \log \epsilon^{-1})$

Unfortunately: This gives only an Õ(m^{3/2})-time algorithm

Improve the O(m^{1/2}) bound? Although believed to be very suboptimal, its improvement is a major challenge

The Max Flow algorithm

(Self-contained, but can be seen as a variation on IPM)

From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

From Max Flow to Min-cost Flow

Reduce max flow to uncapacitated min-cost σ-flow problem

From Max Flow to Min-cost Flow

Result: Feasibility → Optimization + special structure

Solving Min-Cost Max Flow Instance

Our approach is primal-dual

→ Primal solution: σ-flow f (feasibility: all f_e are ≥0)

→ Dual solution: embedding y into real line (feasibility: all slacks s_e are ≥0)

"No arc is too stretched"

Solving Min-Cost Max Flow Instance

Our approach is primal-dual

→ Primal solution: σ-flow f (feasibility: all f_e are ≥0)

Solving Min-Cost Max Flow Instance

Our Goal: Get (f,y) with small duality gap Σ_e f_es_e

Our Approach: Iteratively improve maintained solution while enforcing an **additional** constraint

Centrality: f_es_e ≈ μ, for all e (with μ being progressively smaller)

"Make all arcs have similar contribution to the duality gap"

(Maintaining centrality = following the central path)

Taking an Improvement Step

So far, our approach is fairly standard

Crucial Question:

How to improve the quality of maintained solution?

Key Ingredient: Use electrical flows

Taking an Improvement Step

Let (f,y) be a (centered) primal-dual solution

Key step: Compute **electrical σ-flow f**⁺ with **r**_e:=**s**_e/**f**_e

Primal improvement: Set **f':= (1-δ)f + δf**⁺

Dual improvement: Use voltages φ inducing f⁺ (via Ohm's Law) Set y':= y + $δ(1-δ)^{-1} φ$

Can show: When terms **quadratic** in $\boldsymbol{\delta}$ are ignored

(i.e., duality gap decreases by $(1-\delta)$ and centrality is preserved)

How big $\boldsymbol{\delta}$ can we take to have this approx. hold?

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$

|ρ|₄ measures how different **f**⁺ and **f** are

How to bound $|\rho|_4$?

Idea: Bound $|\rho|_2 \ge |\rho|_4$ instead

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$

|ρ|₄ measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

Centrality: Tying $|\rho|_2$ to E(f⁺) $f_e s_e \approx \mu \rightarrow r_e = s_e/f_e \approx \mu/(f_e)^2$ Ψ E(f⁺) $\approx \mu (|\rho|_2)^2$

Can show: δ^{-1} is bounded by $O(|\rho|_4)$ where $\rho_e := |f_e^+|/f_e$

|ρ|₄ measures how different f⁺ and f are

How to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$

Centrality: Tying $|\rho|_2$ to $E(f^+)$ $f_e s_e \approx \mu \Rightarrow r_e = s_e/f_e \approx \mu/(f_e)^2$ Ψ $E(f^+) = \Sigma_e r_e (f_e^+)^2 \approx \Sigma_e \mu (f_e^+/f_e)^2 = \mu \Sigma_e (\rho_e)^2 = \mu (|\rho|_2)^2$

So, we can focus on bounding E(f⁺)

Can show:
 δ^{-1} is bounded by $O(|\rho|_4)$
where $\rho_e := |f_e^+|/f_e$ $|\rho|_4$ measures
how different f⁺ and f areHow to bound $|\rho|_2$? $(|\rho|_2 \ge |\rho|_4)$
How to bound $E(f^+)$? $(E(f^+) \approx \mu (|\rho|_2)^2)$ Idea: Use energy-bounding argument
we used in the undirected case $Claim: E(f^+) \le \mu m$

Proof: Note that $E(f) = \Sigma_e r_e (f_e)^2 \approx \Sigma_e \mu (f_e/f_e)^2$

Can show: **|ρ|**₄ measures δ^{-1} is bounded by $O(|\rho|_{4})$ how different f⁺ and f are where $\rho_e := |f_e^+|/f_e$ How to bound **|p**|₂? $(|\rho|_2 \ge |\rho|_4)$ How to bound $E(f^+)$? $(E(f^+) \approx \mu (|\rho|_2)^2)$ Idea: Use energy-bounding argument Claim: $E(f^+) \leq \mu m$ we used in the undirected case **Proof:** Note that $E(f) = \sum_{n=1}^{\infty} r_n (f_n)^2 \approx \sum_{n=1}^{\infty} \mu (f_n/f_n)^2 = \mu \sum_{n=1}^{\infty} 1 = \mu m$ **Result:** Bounding $\delta^{-1} \le |\rho|_4 \le |\rho|_2 \le (E(f^+)/\mu)^{1/2} \le m^{1/2}$ E(t⁺) ≤ E(t) ≈ μm This recovers the canonical **O(m^{1/2})**-iterations bound

for general IPMs and gives the Õ(m^{3/2} log U) algorithm

Going beyond $\Omega(m^{1/2})$ barrier Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$ Essentially tight in our framework

Going beyond $\Omega(m^{1/2})$ barrier Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$ When does $|\rho|_4 \approx |\rho|_2$? This part we need to improve

Going beyond $\Omega(m^{1/2})$ barrierOur reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$ Mnem does $|\rho|_4 \approx |\rho|_2$?Answer: If most of the norm of ρ is
focused on only a few coordinates

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f⁺ is contributed by only a few arcs

Going beyond Ω(m^{1/2}) barrier

Our reasoning before: $\delta^{-1} \leq |\rho|_4 \leq |\rho|_2 \leq m^{1/2}$ When does $|\rho|_4 \approx |\rho|_2$?Answer: If most of the norm of ρ is
focused on only a few coordinates

Translated to our setting: $|\rho|_4 \approx |\rho|_2$ if most of the energy of f⁺ is contributed by only a few arcs

Problematic case: When most of the energy of **f**⁺ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Problematic case: When most of the energy of **f**⁺ is contributed by only a few arcs

How can we ensure that this is not the case?

We already faced such problems in the undirected setting!

Our approach then: Keep removing high-energy edges To show this works: Use the energy of the electrical flow as a potential function

- Energy can only increase and obeys global upper bound
- Each time removal happens → energy increases by a lot

Problems: In our framework, arc removal is **too drastic** and the energy of **f**⁺ is **highly non-monotone**

How to deal with these problems?

→ Enforce a stronger condition than just that |ρ|₄ is small ("smoothness": restrict energy contributions of arc subsets)

Key fact: f⁺ smooth → energy does not change too much (so, it is a good potential function again)

→ To enforce this, keep stretching the offending arcs (stretch = increase length by s_e - this doubles the resistance r_e=s_e/f_e)

As long as $\mathbf{s}_{\mathbf{e}}$ is small for stretched arcs, the resulting perturbation of lengths can be corrected at the end

Remaining question: How to handle arcs with **large s**_e?

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow$ small flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow small$ flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

Auxiliary star graph

Observation: As $f_e s_e \approx \mu$, large $s_e \rightarrow small$ flow f_e and thus $r_e = s_e/f_e \approx \mu/f_e^2$ is pretty large

→ For such arcs: contributing a lot of energy implies high <u>effective</u> resistance

Idea: Precondition (f,y) so as no arc has too high effect. resist.

F

Auxiliary star graph

Trivial circulations on each pair of arcs

Can show: After doing that, no arc with large s_e

Putting these two techniques together + some work: Õ(m^{3/7})-iterations convergence follows

Conclusions and the Bigger Picture

Maximum Flows and Electrical Flows

Elect. flows + IPMs → A powerful new approach to max flow

Can this lead to a **nearly-linear time** algorithm for the **exact directed** max flow?

We seem to have the "critical mass" of ideas

Elect. flows = next generation of "spectral" tools?

- Better "spectral" graph partitioning,
- Algorithmic grasp of random walks,

Grand challenge: Can we make algorithmic graph theory run in nearly-linear time?

New "recipe": Fast alg. for **combinatorial** problems via **linear-algebraic** tools **+ continuous opt.** methods

How about applying this framework to other graph problems that "got stuck" at **O(n^{3/2})**? (min-cost flow, general matchings, negative-lengths shortest path...)

Second-order/IPM-like methods: the next frontier for fast (graph) algorithms?

Max Flow and Interior-Point Methods

Contributing back: Max flow and electrical flows as a lens for analyzing general IPMs?

Our techniques can be lifted to the general LP setting

We can solve **any** LP within **Õ(m^{3/7}L)** iterations **But:** this involves **perturbing** of this LP

Some (seemingly) new elements of our approach:

- Better grasp of ℓ_2 vs. ℓ_4 interplay wrt the step size $\boldsymbol{\delta}$
- Perturbing the central path when needed
- Usage of non-local convergence arguments

Can this lead to breaking the $\Omega(m^{1/2})$ barrier for all LPs?

[Lee Sidford '14]: Õ(rank(A)^{1/2}) iteration bound

Bridging the Combinatorial and the Continuous

paths, trees, partitions, routings, matchings, data structures...

matrices, eigenvalues, linear systems, gradients, convex sets...

Powerful approach: Exploiting the interplay of the two worlds

Some other early "success stories" of this approach:

- Spectral graph theory aka the "eigenvalue connection"
- Fast SDD/Laplacian system solvers
- Graph sparsification, random spanning tree generation

...and this is just the beginning!

Thank you

Questions?