
Talk 1: my review of nonlinear nonconvex optimization

Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

pools,

(mixing units)

outputs

inputs

pools,

(mixing units)

outputs

inputs

1. We have K commodities (’specs’) present at the inputs in different
amounts.

2. Flows have to be routed to the outputs subject to flow conservation and
capacity constraints.

3. Flows that reach a pool become mixed, and the proportion of each
spec is upper- and lower-bounded.

4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec

Formulation

• I = set of inputs, M = set of pools,

• λik = fraction of spec k at input i (data)

min
∑
ij∈A

cijyij ← yij = total flow on ij

s.t. flow conservation, capacity constraints on yij

and for all spec k, pool j,

pjk =

∑
i∈I λikyij +

∑
m∈M pmkymj∑

i∈I∪M yij
← pjk = fraction of spec k in pool j

pmin
jk ≤ pjk ≤ pmax

jk

Problem 2: AC-PF and -OPF problems on power grids

generators

demands (loads)

• Graph is undirected

• Each power line has a (complex) admittance

• Send power from generators to loads, subject to laws of physics and equip-
ment constraints

Physics

• Each bus (node) k has a complex voltage Vk.
Voltage = potential energy

• Line (directed version of edge) km → complex current Ikm

Ikm = ykm(Vk − Vm)

(y = admittance)

• Line (directed version of edge) km → complex power Skm

Skm = VkI
∗
km = y∗kmVk(Vk − Vm)∗

this is the complex power injected into km at k

• Generators produce current at a certain voltage

• Demands (loads) expressed in units of complex power

• This is a time-averaged (steady-state) representation

Formulation

•Must choose voltage Vk at every bus k

• Network constraints: total net power injected by each bus is constrained

Smin
k ≤

∑
km∈δ(k)

y∗kmVk(Vk − Vm)∗ ≤ Smax
k

(two ranged inequalities)

1. At a generator, this says that total generated complex power is upper
and lower bounded

2. At a load, Smin
k = Smax

k = − (complex) demand

• Line constraints: e.g. |y∗kmVk(Vk − Vm)∗| ≤ Lkm

• Voltage constraints: Umin
k ≤ |Vk| ≤ Umax

k

• Vk= voltage bus k

• Network constraints: total net power injected by each bus is constrained

Smin
k ≤ Sk

.
=

∑
km∈δ(k)

y∗kmVk(Vk − Vm)∗ ≤ Smax
k

• Line constraints: |y∗kmVk(Vk − Vm)∗| ≤ Lkm

• Voltage constraints: Umin
k ≤ |Vk| ≤ Umax

k

1. Feasibility version: PF or power flow problem

2. Optimization version, or OPF:

min
∑
g∈G

cg (Re(Sg))

(G = set of generator nodes)

Each function cg is convex quadratic. Want to minimize total cost of
generation.

A generalization - network polynomial problems

Both the pooling problem and ACOPF are special cases of a general problem

•We are given an undirected graph G

• For each node u ∈ G there is an associated set of variables, Xu. Assume
pairwise-disjoint.

• Likewise each constraint is associated with some node. A constraint as-
sociated with u takes the form:∑

{u,v}∈δ(u)

pu,v(Xu ∪Xv) ≥ 0

where each pu,v is a polynomial function.

u
v

polynomial depends on

X u and X v

How to solve QCQPs?

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

min f (x)

s.t. g(x) = 0

x ≥ 0

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

min f (x)

s.t. g(x) = 0

x ≥ 0

→ min f (x) − µ
∑
i

log(xi) (3a)

s.t. g(x) = 0 (3b)

Here µ > 0 is the barrier parameter, and we want µ→ 0.

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

min f (x)

s.t. g(x) = 0

x ≥ 0

→ min f (x) − µ
∑
i

log(xi) (4a)

s.t. g(x) = 0 (4b)

Here µ > 0 is the barrier parameter, and we want µ→ 0.

Algorithm

1. For given µ approximately solve problem (4a), (4b).
2. Effectively, attempt to find a solution to the first-order optimality condi-
tions for (4a), (4b): (damped) Newton method
3. Then decrease µ and go to 1.
4. But a lot of cleverness employed in Step 3 (filter method).

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

optimum

sequence
produced by
algorithm

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

optimum

sequence
produced by
algorithm

Claim: IPOPT globally solves all ACOPF instances

How to solve QCQPs?

→ IPOPT? (Wächter, Biegler, Laird)

optimum

sequence
produced by
algorithm

Claim: IPOPT globally solves all ACOPF instances

What does this mean?

Three basic techniques

1. McCormick relaxation

2. Spatial branch-and-bound

3. RLT: lifting to higher-dimensional representation

McCormick relaxation: a very widely used technique

McCormick (1976), Al-Khayal and Falk (1983)
given:

x ∈ [`x, ux], y ∈ [`y, uy], z = xy

The convex hull of (x, y, z) in this set is given by

z ≥ max{uyx + uxy − uyux , `yx + `xy − `y`x }
z ≤ min{uyx + `xy − uy`x , `yx + uxy − `yux }.

• Can be used directly to reformulate any polynomial optimization problem

• But some codes avoid this so as to not introduce the variables w

• And the quality of the relaxation is in general poor

• Unless the bounds `x, ux or `y, uy are tight

Spatial Branch-and-Bound: a very widely used technique

Tuy, 1998

• Used in many codes, e.g. BARON

• Directly applicable to McCormick relaxations

Example: approximate sin(x) for 0 ≤ x ≤ π/2

Branch at x = π/4:

0 ≤ x ≤ π/4 π/4 ≤ x ≤ π/2

RLT: another very widely used technique

Sherali and Adams (1992)

Example:

Suppose 5x2
1 + 2x2 − 4 ≥ 0 and 0 ≤ x3 ≤ 10 are valid inequalities

Then:
(5x2

1 + 2x2 − 4)x3 ≥ 0 and (5x2
1 + 2x2 − 4)(10− x3) ≥ 0 also valid

• Any nonlinear terms, e.g. x2
1x3 are linearized via McCormick

• It may be the case that the nonlinear terms are already found elsewhere

• General idea: multiplication of valid inequalities

•Which inequalities: using all is too expensive

• (Misener): scan possible products, keep if estimate of relaxation improves

Back to McCormick:
x ∈ [`x, ux], y ∈ [`y, uy], z = xy

e.g. can do (x− `x)(uy − y) ≥ 0 or uyx+ `xy − `xuy ≥ xy

Hierarchies

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X00 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution. Why?

• → Lavaei and Low (2010): on ACOPF, the semidefinite relaxation is often strong

• And it may even have a rank-1 solution.

• There remains the issue of solving the d***n SDP

Moment relaxations and polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector).

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π,

Thus f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1.

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more?

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials).

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

so

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y. (redundant)

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

so

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

An infinite-dimensional semidefinite program!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

Example: d = 8. So we will consider the monomial x2
1 x

4
2 x3 because 2 + 4 + 1 ≤ 8.

But we will not consider x3x
7
5x8, because 1 + 7 + 1 > 8.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y,

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

• Can be strengthened to account for the constraints fi(x) ≥ 0.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ,

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

• Can be strengthened to account for the constraints fi(x) ≥ 0. How? e.g. use RLT

• This is the level- d Lasserre relaxation (abridged).

Solving SDP relaxations of QCQPs

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m (6)

x ∈ Rn.

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m (7)

X � 0, X00 = 1.

Solving SDP relaxations of QCQPs

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m (8)

x ∈ Rn.

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m (9)

X � 0, X00 = 1.

Matrix completion theorem.

• Form a graph, G with vertex set 0, 1, . . . , n

• Include an edge {i, j} if the (i, j) entry of some constraint (9) (or objective) is nonzero

• Suppose there is a chordal supergraph H of G such that:

H is the union of k maximal cliques Q1, . . . , Qk

• Then X � 0 is equivalent to:

X|Q1 � 0, . . . , X|Qk � 0

(X|Qj : submatrix of X indexed by vertices of Qj).

• → If the submatrices are small this approach can be effective

• Current SDP-based methods for ACOPF rely on this paradigm

Can we do anything else involving SDP?

Chen, Atamtürk and Oren (2016):
For n > 1 a nonzero n × n Hermitian psd matrix has rank one iff all of its
2× 2 principal minors are zero.

→ use this criterion to drive branching :

•Minimum eigenvalue of any 2× 2 principal submatrix should be zero

• Choose submatrix with largest deviation from this constraint

• Can then (spatially) branch on any of the three values

Can we do anything else involving SDP?

Chen, Atamtürk and Oren (2016):
For n > 1 a nonzero n × n Hermitian psd matrix has rank one iff all of its
2× 2 principal minors are zero.

→ use this criterion to drive branching :

•Minimum eigenvalue of any 2× 2 principal submatrix should be zero

• Choose submatrix with largest deviation from this constraint

• Can then (spatially) branch on any of the three values

Kocuk, Dey, Sun (2017):
For n > 1 a nonzero n×n Hermitian matrix is psd of rank one iff its diagonal
is nonnegative and all the 2× 2 minors are zero.

• Also, any k × k principal submatrix should be psd (k ≥ 2)

• Use k = 3 or k = 4 and cycles

• Use SDP duality (whiteboard) to generate cuts

• Let’s think about it. Why cycles? → use chordal extensions

Digitization and Discretization

Glover, (1975)

Given an integer variable 0 ≤ x ≤ u (integral), we can reformulate

x =

k∑
i=1

2iyi, where each yi is binary, and k = log2 u, or

x =

u∑
i=1

zi, where each zi is binary, or

x =

u∑
i=1

i wi,
∑
i

wi ≤ 1, where each wi is binary

Digitization and Discretization

Glover, (1975)

Given an integer variable 0 ≤ x ≤ u (integral), we can reformulate

x =

k∑
i=1

2iyi, where each yi is binary, and k = log2 u, or

x =

u∑
i=1

zi, where each zi is binary, or

x =

u∑
i=1

i wi,
∑
i

wi ≤ 1, where each wi is binary

And if we have a bilinear expression xf (0 ≤ f ≥ F) then we get an exact
linear representation for e.g. each wif through RLT

0 ≤ Pi ≤ Fwi
f − F (1− wi) ≤ Pi ≤ f

Digitization and Discretization

B., (2006), Dash, Günlük, Lodi (2007):
Discretization to approximate a bilinear form on continuous variables:

Consider a bilinear expression xy where 0 ≤ x ≤ ux, 0 ≤ y ≤ uy.

Then we write:

x = ux

 L∑
j=1

2−j zj + δ

 ,

each zj binary, 0 ≤ δ ≤ 2−L

And so we can represent

xy = ux

 L∑
j=1

2−j wj + γ

0 ≤ γ ≤ min{2−L y , δuy} (RLT)

each wj: RLT of zjy

→ A valid relaxation. We will come back to this later.

Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

pools,

(mixing units)

outputs

inputs

pools,

(mixing units)

outputs

inputs

1. We have K commodities (’specs’) present at the inputs in different
amounts.

2. Flows have to be routed to the outputs subject to flow conservation and
capacity constraints.

3. Flows that reach a pool become mixed, and the proportion of each
spec is upper- and lower-bounded.

4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec

Formulation

• I = set of inputs, M = set of pools,

• λik = fraction of spec k at input i (data)

min
∑
ij∈A

cij yij ← yij = total flow on ij

s.t. flow conservation, capacity constraints on yij

and for all spec k, pool j,

pjk =

∑
i∈I λik yij +

∑
m∈M pmkymj∑

i∈I∪M yij
← pjk = fraction of spec k in pool j

pmin
jk ≤ pjk ≤ pmax

jk

Digitization and Discretization in the Pooling Problem

Ahmed, Dey, Gupte, Jeon (2015, 2017)
Consider a bilinear expression xy where 0 ≤ x ≤ ux, 0 ≤ y ≤ uy.

Then we approximate

x = ux
L∑
j=1

2−j zj,

each zj binary, 0 ≤ δ ≤ 2−L

And so one can approximate

xy = ux
L∑
j=1

2−j wj

each wj: RLT of zjy

• An approximation, not a relaxation

• In some cases, the best upper bounds for larger pooling problems are
obtained this way

“Take-away” and next talk

•We want strong relaxations, but the relaxations can be hard to solve

• A challenge: come up with strong branching, cutting and reformulation
mechanisms that are robust across problem classes

• And how about accuracy and numerical stability?

• Local search for nonconvex nonlinear optimization?

Crimes against computers

max x2 − 20s5 − 20s6 + 2s7 + s2
5

s.t. (x1 − 1)2 + x2
2 ≥ 3 +

φ

10
(11a)

(x1 + 1)2 + x2
2 ≥ 3 (11b)

1

10
x2

1 + x2
2 ≤ 2 (11c)

10 δ + 10φ2 ≥ 1 (11d)

−10 a + δ + 10φ2 ≤ 0

−10 b + a + 10φ2 ≤ 0

−10 c + b + 10φ2 ≤ 0

−10 d + c + 10φ2 ≤ 0

−10 e + d + 10φ2 + 10 s2
5 = 0 (11e)

−10 f + e + 10φ2 + 10 s2
6 = 0

−10 g + f + 10φ2 + 10 s2
7 = 0

−10φ + g + 10φ2 ≤ 0 (11f)

What’s going on?

max x2

s.t. (x1 − 1)2 + x2
2 ≥ 3

(x1 + 1)2 + x2
2 ≥ 3

x2
1

10
+ x2

2 ≤ 2

2)(0 ,

2)(0 , −

What’s going on?

max x2

s.t. (x1 − 1)2 + x2
2 ≥ 3 + φ (φ > 0)

(x1 + 1)2 + x2
2 ≥ 3

x2
1

10
+ x2

2 ≤ 2

2)(0 ,

2)(0 , −

S-free Sets for Polynomial Optimization and Oracle-Based
Cuts

B., Chen Chen and Gonzalo Muñoz, 2017

Consider:

min cTx

s.t. x ∈ S ∩ P.

P := {x ∈ Rn|Ax ≤ b} is a polyhedral set, and S ⊂ Rn is a closed set.

Can we strengthen the description of P with cuts?

S-free Sets for Polynomial Optimization and Oracle-Based
Cuts

B., Chen Chen and Gonzalo Muñoz, 2017

Consider:

min cTx

s.t. x ∈ S ∩ P.

P := {x ∈ Rn|Ax ≤ b} is a polyhedral set, and S ⊂ Rn is a closed set.

Can we strengthen the description of P with cuts?

We will focus on the geometric approach: cuts via S-free sets.

(Many other ways to generate cuts, e.g. disjunctions, algebraic arguments,
combinatorics, convex cuts, etc.)

(McCormick, RLT)

Tightening P with an S-free set C

S

P

C = closed convex, C ∩X = ∅

Tightening P with an S-free set C

S

P

C = closed convex, C ∩X = ∅

S

P

C

Tightening P with an S-free set C

S

P

C = closed convex, C ∩X = ∅. conv(P \ C) :

S

P

C

Could be more complex:

•Might need an infinite number of cuts to get conv(P ∩ S).

• The problem: given a polytope P and a ball B, is P ⊆ B? is strongly
NP-complete (Freund and Orlin, 1985).

• Given a polyhedral cone C and a ball B it is strongly NP-hard to
minimize a convex quadratic over C ∩ B̄ (B. 2010)

Recent work on the geometry of convex quadratics in the
complement of a convex quadratic region

• B. 2010, B and Michalka (2014)

• Belotti, Goez, Pólik, Ralphs, Terlaki (2013)

•Modaresi, M. Kilinc, Vilema (2015)

• F. Kilinc (2015)

From a polyhedral perspective

S

P

C

• Balas (1971), Tuy (1964): if Q is a simplicial cone then the intersec-
tion cut guarantees separation over conv(Q \ int(C)).

• (Simplicial cone: n linearly independent linear inequalities)

• Simplicial conic relaxation P ′ ⊇ P is easily obtained from a basic solu-
tion of P

• And so we could attempt to get conv(P ′ \ intC.

• Intersection cut (w.r.t. P ′) is described in closed form → fast separation
of extreme points of P using P ′

Larger C, → deeper cut

S

P

C

S

P

C

Def: S-free maximal set.

(Some) additional literature

•Maximal S-free sets and minimal valid inequalities: [Basu et al. 2010],
[Conforti et al. 2014], [Cornuejols, Wolsey, Yildiz, 2015], [Kilinc-Karzan
2015]

• Intersection cuts and for mixed-integer conic programs programming:
[Atamturk and Narayanan 2010], [Belotti et al., 2013], [Andersen and
Jensen, 2013], [Dadush, Dey, Vielma 2011], [Modaresi, Kilinc, Vielma
2015/2016]

• Intersection cuts for bilevel optimization: [Fischetti, Monaci, Sinnl, 2016].

• Generalized intersection cut procedures: [Balas and Margot, 2013], [Balas,
Kazachkov, Margot 2016].

• Huge literature on split cuts.

This talk

1. A simple, generic way to generate S-free sets that ensures separation.
Also, a corresponding cutting plane method for arbitrary closed sets, guar-
anteed to converge on bounded problems.

2. A study of maximal S-free sets for polynomial optimization

3. Experiments with a resulting cutting-plane procedure that solves LPs
only.

4. Joint work with a couple of characters in the audience.

Distance Oracle

We assume we have an oracle for a closed set S that gives us the distance
d(x, S) from any point x ∈ Rn to the nearest point in S.

Examples:

• Integer programming: if S is the integer lattice, then one can round.

•Cardinality constraint nearest vector of cardinality ≤ k can be ob-
tained by rounding.

• Semidefinite cone: we will see this later

Observation. The ball centered around x with radius d(x, S) is S-free.
Call it B(x, d(x, S)).

We will call the corresponding intersection cut an oracle ball cut.

Convergence

S

P

• Start with polytope P0 = P .

• Let Pk+1
.
= ∩v∈Vk conv(Pk \ int(B(v , d(v, S))))

Vk = set of extreme points of Pk.

• Pk = rank k closure of P0.

Convergence

S

P

• Start with polytope P0 = P .

• Let Pk+1
.
= ∩v∈Vk conv(Pk \ int(B(v , d(v, S))))

Vk = set of extreme points of Pk.

• Pk = rank k closure of P0.

Theorem: limk→∞Pk = conv(S ∩ P).

Corollary: iven an inexact but arbitrarily accurate distance oracle, we
can obtain arbitrarily close (in terms of Hausdorff distance) polyhedral ap-
proximation to conv(S ∩ P) in finite time.

Borrows from proof technique used in [Averkov 2011].

Application: Polynomial Optimization

z∗ := inf p0(x)

s.t. x ∈ S
.
= {x ∈ Rn|p1(x) ≥ 0, ..., pm(x) ≥ 0}

• Saxena, Bonami, Lee 2010-2011: Disjunctive cuts from MILP inner-
approximation + convex cuts. Applies to bounded polynomial optimiza-
tion.

• Ghaddar, Vera, Anjos 2011: Projections of moment relaxations. General-
izes Balas, Ceria, Cornuejols lifting. Separation not guaranteed in general.

• Other literature on convex envelopes of functions, e.g. multilinear. Mc-
Cormick, spatial branching, RLT.

• Our intersection cuts guarantee polynomial-time separation without bound-
edness assumptions.

How, 1: lifted polynomial representation

→ this takes us to the moment relaxation we saw before.

[Shor 1987], [Lovasz and Schrijver 1991]

• Define a vector of monomials, m
.
= [1, x1, ..., xn, x1x2, x1x3, ..., x

k
n].

Let X
.
= mmT .

• Polynomial optimization can be formulated as

minP0 •X
s.t. Pi •X ≤ bi, i = 1, ...,m.

(Pi appropriately defined from the coefficients of pi)

• This is a linear programming relaxation with variables X .
Pi •X

.
=
∑
pijmij is the inner product.

• Equivalency when X � 0 and rank(X) = 1 and consistency constraints
(among entries of X). Dropping the rank constraint gives the moment
relaxation [Lasserre, 2001].

How, 2: S-free sets for Polynomial Optimization

→ this takes us to the moment relaxation we saw before.

[Shor 1987], [Lovasz and Schrijver 1991]

• Define a vector of monomials, m
.
= [1, x1, ..., xn, x1x2, x1x3, ..., x

k
n].

Let X
.
= mmT .

• Polynomial optimization can be formulated as

minP0 •X
s.t. Pi •X ≤ bi, i = 1, ...,m.

(Pi appropriately defined from the coefficients of pi)

• This is a linear programming relaxation with variables X .
Pi •X

.
=
∑
pijmij is the inner product.

• Equivalency when X � 0 and rank(X) = 1 and consistency constraints
(among entries of X). Dropping the rank constraint gives the moment
relaxation [Lasserre, 2001].

Three types of S-free condtions or cuts

Notation: always over vectorized matrices, e.g.

M ∈ S2×2 → {M11,M12,M22} ∈ R3

S2×2 = 2× 2 symmetric matrices

• 2× 2 minors. Theorem (Chen et al 2016):
A psd matrix M is of rank one iff every principal 2× 2 minor is zero.
So, given X̄ , if X̄i,j � 0 for some i, j we have a violation.
S-free set: Mi,j � 0, which is maximal S-free.

• Positive-semidefiniteness: of X̄ is not psd, i.e. cTX̄c < 0 for some c,
then get cut cTXc ≥ 0 (also defines a maximal set, but we have a cut
anyway)

• Oracle (rank-1) ball, and shifted oracle ball. EYM theorem gives
distance from a psd matrix to the nearest rank one matrix (Modification
by Dax for non-psd case).

Numerical Experiments

• Python

• All the cuts mentioned above

• Gurobi 7.0.1 to solve LPs

• 20-core server, but only Gurobi uses more than one

• 26 QCQP problems from GLOBALLib (6-63 variables)

• BoxQP instances (21-126 variables)

Results

Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)

OB 1387.92% 1387.85% 1.00% 16.48 17.20 2.59 2.06%

SO 1387.83% 8.77% 18.56 19.52 4.14 2.29%

OA 1001.81% 8.61% 353.40 83.76 33.25 7.51%

2x2 + OA 1003.33% 32.61% 284.98 118.08 30.40 15.03%

SO+2x2+OA 1069.59% 31.91% 174.79 107.16 29.55 12.56%

Table 1: Averages for GLOBALLib instances

Comparison with V2: BoxQP

V2: second-order conic outer-approximation of PSD constraint;
MIP to derive disjunctive cuts (Saxena, Bonami, Lee)

Thu.Aug.24.214258.2017@blacknwhite

