Talk 1: my review of nonlinear nonconvex optimization

Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

1. We have \boldsymbol{K} commodities ('specs') present at the inputs in different amounts.
2. Flows have to be routed to the outputs subject to flow conservation and capacity constraints.
3. Flows that reach a pool become mixed, and the proportion of each spec is upper- and lower-bounded.
4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec

Formulation

- $\mathcal{J}=$ set of inputs, $\mathcal{M}=$ set of pools,
- $\boldsymbol{\lambda}_{\boldsymbol{i}}=$ fraction of spec \boldsymbol{k} at input \boldsymbol{i} (data)
$\min \sum_{i j \in \mathcal{A}} c_{i j} y_{i j} \quad \leftarrow y_{i j}=$ total flow on $i j$
s.t. flow conservation, capacity constraints on $y_{i j}$
and for all spec \boldsymbol{k}, pool \boldsymbol{j},
$p_{j k}=\frac{\sum_{i \in \mathcal{J}} \lambda_{i k} y_{i j}+\sum_{m \in \mathcal{M}} p_{m k} y_{m j}}{\sum_{i \in \mathcal{J} \cup \mathcal{M}} y_{i j}} \leftarrow p_{j k}=$ fraction of spec k in pool j
$p_{j k}^{\min } \leq p_{j k} \leq p_{j k}^{\max }$

Problem 2: AC-PF and -OPF problems on power grids

- Graph is undirected
- Each power line has a (complex) admittance
- Send power from generators to loads, subject to laws of physics and equipment constraints

Physics

- Each bus (node) \boldsymbol{k} has a complex voltage $\boldsymbol{V}_{\boldsymbol{k}}$. Voltage $=$ potential energy
- Line (directed version of edge) $\boldsymbol{k m} \rightarrow$ complex current $\boldsymbol{I}_{\boldsymbol{k m}}$

$$
I_{k m}=y_{k m}\left(V_{k}-V_{m}\right)
$$

($\mathrm{y}=$ admittance)

- Line (directed version of edge) $\boldsymbol{k m} \rightarrow$ complex power $\boldsymbol{S}_{\boldsymbol{k m}}$

$$
S_{k m}=V_{k} I_{k m}^{*}=y_{k m}^{*} V_{k}\left(V_{k}-V_{m}\right)^{*}
$$

this is the complex power injected into $\boldsymbol{k m}$ at \boldsymbol{k}

- Generators produce current at a certain voltage
- Demands (loads) expressed in units of complex power
- This is a time-averaged (steady-state) representation

Formulation

- Must choose voltage $\boldsymbol{V}_{\boldsymbol{k}}$ at every bus \boldsymbol{k}
- Network constraints: total net power injected by each bus is constrained

$$
S_{k}^{\min } \leq \sum_{k m \in \delta(k)} y_{k m}^{*} V_{k}\left(V_{k}-V_{m}\right)^{*} \leq S_{k}^{\max }
$$

(two ranged inequalities)

1. At a generator, this says that total generated complex power is upper and lower bounded
2. At a load, $S_{k}^{\min }=S_{k}^{\max }=-$ (complex) demand

- Line constraints: e.g. $\left|y_{k m}^{*} V_{k}\left(V_{k}-V_{m}\right)^{*}\right| \leq L_{k m}$
- Voltage constraints: $U_{k}^{\min } \leq\left|V_{k}\right| \leq U_{k}^{\max }$
- $\boldsymbol{V}_{\boldsymbol{k}}=$ voltage bus \boldsymbol{k}
- Network constraints: total net power injected by each bus is constrained

$$
S_{k}^{\min } \leq S_{k} \doteq \sum_{k m \in \delta(k)} y_{k m}^{*} V_{k}\left(V_{k}-V_{m}\right)^{*} \leq S_{k}^{\max }
$$

- Line constraints: $\left|y_{k m}^{*} V_{k}\left(V_{k}-V_{m}\right)^{*}\right| \leq L_{k m}$
- Voltage constraints: $U_{k}^{\min } \leq\left|V_{k}\right| \leq U_{k}^{\max }$

1. Feasibility version: PF or power flow problem
2. Optimization version, or OPF:

$$
\min \sum_{g \in \mathcal{G}} c_{g}\left(\mathcal{R e}\left(S_{g}\right)\right)
$$

($\mathcal{G}=$ set of generator nodes)

Each function $\boldsymbol{c}_{\boldsymbol{g}}$ is convex quadratic. Want to minimize total cost of generation.

A generalization - network polynomial problems

Both the pooling problem and ACOPF are special cases of a general problem

- We are given an undirected graph \mathcal{G}
- For each node $u \in \mathcal{G}$ there is an associated set of variables, $\boldsymbol{X}_{\boldsymbol{u}}$. Assume pairwise-disjoint.
- Likewise each constraint is associated with some node. A constraint associated with u takes the form:

$$
\sum_{\{u, v\} \in \delta(u)} p_{u, v}\left(X_{u} \cup X_{v}\right) \geq 0
$$

where each $\boldsymbol{p}_{\boldsymbol{u}, \boldsymbol{v}}$ is a polynomial function.

How to solve QCQPs?

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

$$
\begin{array}{cl}
\min & f(x) \\
\mathrm{s.t.} & g(x)=0 \\
& x \geq 0
\end{array}
$$

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & g(x)=0 \\
& x \geq 0 \\
\rightarrow \quad \min & f(x)-\mu \sum_{i} \log \left(x_{i}\right) \tag{3a}\\
& \text { s.t. } \tag{3b}\\
& g(x)=0
\end{align*}
$$

Here $\boldsymbol{\mu}>0$ is the barrier parameter, and we want $\boldsymbol{\mu} \rightarrow 0$.

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & g(x)=0 \\
& x \geq 0 \\
\rightarrow \quad \min & f(x)-\mu \sum_{i} \log \left(x_{i}\right) \tag{4a}\\
& \text { s.t. } \tag{4b}\\
\hline & g(x)=0
\end{align*}
$$

Here $\boldsymbol{\mu}>0$ is the barrier parameter, and we want $\boldsymbol{\mu} \rightarrow 0$.

Algorithm

1. For given $\boldsymbol{\mu}$ approximately solve problem (4a), (4b).
2. Effectively, attempt to find a solution to the first-order optimality conditions for (4a), (4b): (damped) Newton method
3. Then decrease $\boldsymbol{\mu}$ and go to 1 .
4. But a lot of cleverness employed in Step 3 (filter method).

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

Claim: IPOPT globally solves all ACOPF instances

How to solve QCQPs?

\rightarrow IPOPT? (Wächter, Biegler, Laird)

Claim: IPOPT globally solves all ACOPF instances
What does this mean?

Three basic techniques

1. McCormick relaxation
2. Spatial branch-and-bound
3. RLT: lifting to higher-dimensional representation

McCormick relaxation: a very widely used technique

McCormick (1976), Al-Khayal and Falk (1983) given:

$$
x \in\left[\ell^{x}, u^{x}\right], \quad y \in\left[\ell^{y}, u^{y}\right], \quad \boldsymbol{z}=\boldsymbol{x} \boldsymbol{y}
$$

The convex hull of $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ in this set is given by

$$
\begin{aligned}
& z \geq \max \left\{u^{y} x+u^{x} y-u^{y} u^{x}, \ell^{y} x+\ell^{x} y-\ell^{y} \ell^{x}\right\} \\
& z \leq \min \left\{u^{y} x+\ell^{x} y-u^{y} \ell^{x}, \ell^{y} x+u^{x} y-\ell^{y} u^{x}\right\}
\end{aligned}
$$

- Can be used directly to reformulate any polynomial optimization problem
- But some codes avoid this so as to not introduce the variables \boldsymbol{w}
- And the quality of the relaxation is in general poor
- Unless the bounds $\ell^{\boldsymbol{x}}, \boldsymbol{u}^{\boldsymbol{x}}$ or $\boldsymbol{\ell}^{\boldsymbol{y}}, \boldsymbol{u}^{\boldsymbol{y}}$ are tight

Spatial Branch-and-Bound: a very widely used technique

Tuy, 1998

- Used in many codes, e.g. BARON
- Directly applicable to McCormick relaxations

Example: approximate $\sin (x)$ for $0 \leq x \leq \pi / 2$

Branch at $\boldsymbol{x}=\boldsymbol{\pi} / \mathbf{4}$:

RLT: another very widely used technique

Sherali and Adams (1992)

Example:

Suppose $5 x_{1}^{2}+2 x_{2}-4 \geq 0$ and $0 \leq x_{3} \leq 10$ are valid inequalities
Then:
$\left(5 x_{1}^{2}+2 x_{2}-4\right) x_{3} \geq 0$ and $\left(5 x_{1}^{2}+2 x_{2}-4\right)\left(10-x_{3}\right) \geq 0$ also valid

- Any nonlinear terms, e.g. $x_{1}^{2} x_{3}$ are linearized via McCormick
- It may be the case that the nonlinear terms are already found elsewhere
- General idea: multiplication of valid inequalities
- Which inequalities: using all is too expensive
- (Misener): scan possible products, keep if estimate of relaxation improves Back to McCormick:

$$
x \in\left[\ell^{x}, u^{x}\right], \quad y \in\left[\ell^{y}, u^{y}\right], \quad z=x y
$$

e.g. can do $\left(\boldsymbol{x}-\ell^{x}\right)\left(\boldsymbol{u}^{y}-\boldsymbol{y}\right) \geq \mathbf{0}$ or $\boldsymbol{u}^{y} \boldsymbol{x}+\ell^{x} \boldsymbol{y}-\ell^{x} \boldsymbol{u}^{y} \geq \boldsymbol{x} \boldsymbol{y}$

Hierarchies

$$
\begin{aligned}
(\mathrm{QCQP}): & \min x^{T} Q x+2 c^{T} x \\
\text { s.t. } & x^{T} A_{i} x+2 b_{i}^{T} x+r_{i} \geq 0 \quad i=1, \ldots, m \\
& x \in \mathbb{R}^{n} .
\end{aligned}
$$

\rightarrow form the semidefinite relaxation

$$
\begin{aligned}
\text { (SR): } & \min \left(\begin{array}{cc}
0 & c^{T} \\
c & Q
\end{array}\right) \bullet X \\
\text { s.t. } & \left(\begin{array}{cc}
r_{i} & b_{i}^{T} \\
b_{i} & A^{i}
\end{array}\right) \bullet X \geq 0 \quad i=1, \ldots, m \\
& X \succeq 0, \quad X_{00}=1
\end{aligned}
$$

Here, for symmetric matrices $\boldsymbol{M}, \boldsymbol{N}$,

$$
M \bullet N=\sum_{h, k} M_{h k} N_{h k}
$$

So if SR has a rank-1 solution, the lower bound is exact.
Unfortunately, SR typically does not have a rank-1 solution. Why?

- \rightarrow Lavaei and Low (2010): on ACOPF, the semidefinite relaxation is often strong
- And it may even have a rank-1 solution.
- There remains the issue of solving the $\mathrm{d}^{* * *}$ n SDP

Moment relaxations and polynomial optimization

Consider the polynomial optimization problem

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where each $f_{i}(x)$ is a polynomial i.e. $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
\bullet Each π is a tuple $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ of nonnegative integers, and $x^{\pi} \doteq x_{1}^{\pi_{1}} x_{2}^{\pi_{2}} \ldots x_{n}^{\pi_{n}}$

- Each $\boldsymbol{S}(\boldsymbol{i})$ is a finite set of tuples, and the $a_{i, \pi}$ are reals.

We know $f_{0}^{*}=\inf _{\mu} \mathbb{E}_{\mu} f_{0}(x)$, over all measures $\boldsymbol{\mu}$ over $K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}$.

$$
\text { i.e. } \quad f_{0}^{*}=\inf \left\{\sum_{\pi \in S(0)} a_{0, \pi} \boldsymbol{y}_{\pi}: \boldsymbol{y} \text { is a } \boldsymbol{K} \text {-moment }\right\}
$$

Here, \boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$

Polynomial optimization

Consider the polynomial optimization problem

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where each $f_{i}(x)$ is a polynomial i.e. $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

- Each π is a tuple $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ of nonnegative integers, and $x^{\pi} \doteq x_{1}^{\pi_{1}} x_{2}^{\pi_{2}} \ldots x_{n}^{\pi_{n}}$
- Each $\boldsymbol{S}(\boldsymbol{i})$ is a finite set of tuples, and the $a_{i, \pi}$ are reals.

We know $f_{0}^{*}=\inf _{\mu} \mathbb{E}_{\mu} f_{0}(x)$, over all measures $\boldsymbol{\mu}$ over $K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}$.

$$
\text { i.e. } \quad f_{0}^{*}=\inf \left\{\sum_{\pi \in S(0)} a_{0, \pi} \boldsymbol{y}_{\pi}: y \text { is a } \boldsymbol{K} \text {-moment }\right\}
$$

Here, \boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$
(Cough! Here, \boldsymbol{y} is an infinite-dimensional vector).

Polynomial optimization

Consider the polynomial optimization problem

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where each $f_{i}(x)$ is a polynomial i.e. $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
\bullet Each π is a tuple $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ of nonnegative integers, and $x^{\pi} \doteq x_{1}^{\pi_{1}} x_{2}^{\pi_{2}} \ldots x_{n}^{\pi_{n}}$

- Each $\boldsymbol{S}(\boldsymbol{i})$ is a finite set of tuples, and the $a_{i, \pi}$ are reals.

We know $f_{0}^{*}=\inf _{\mu} \mathbb{E}_{\mu} f_{0}(x)$, over all measures $\boldsymbol{\mu}$ over $K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}$.

$$
\text { i.e. } \quad f_{0}^{*}=\inf \left\{\sum_{\pi \in S(0)} a_{0, \pi} \boldsymbol{y}_{\pi}: y \text { is a } \boldsymbol{K} \text {-moment }\right\}
$$

Here, \boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$
(Cough! Here, \boldsymbol{y} is an infinite-dimensional vector). Can we make an easier statement?

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$,
Thus $f_{0}^{*}=\inf _{\mu} \mathbb{E}_{\mu} f_{0}(x)$, over all measures $\boldsymbol{\mu}$ over $K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}$.

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$.

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more?

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\mu} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials).

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq \boldsymbol{E}_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq \boldsymbol{E}_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\pi, \rho, \quad M[y]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq \boldsymbol{E}_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\boldsymbol{\pi}, \boldsymbol{\rho}, \quad M[\boldsymbol{y}]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$
So for any (∞-dimensional) vector \boldsymbol{z}, indexed by tuples, i.e. with entries z_{π} for each tuple $\boldsymbol{\pi}$,

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq \boldsymbol{E}_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\boldsymbol{\pi}, \boldsymbol{\rho}, \quad M[\boldsymbol{y}]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$
So for any (∞-dimensional) vector \boldsymbol{z}, indexed by tuples, i.e. with entries z_{π} for each tuple $\boldsymbol{\pi}$,

$$
z^{T} M[y] z=\sum_{\pi, \rho} \mathbb{E}_{\mu} z_{\pi} x^{\pi} x^{\rho} z_{\rho}=\mathbb{E}_{\mu}\left(\sum_{\pi} z_{\pi} x^{\pi}\right)^{2} \geq 0
$$

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[\boldsymbol{y}] \doteq \boldsymbol{E}_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\boldsymbol{\pi}, \boldsymbol{\rho}, \quad M[\boldsymbol{y}]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$
So for any (∞-dimensional) vector \boldsymbol{z}, indexed by tuples, i.e. with entries z_{π} for each tuple $\boldsymbol{\pi}$,

$$
\begin{gathered}
z^{T} M[y] z=\sum_{\pi, \rho} \mathbb{E}_{\mu} z_{\pi} x^{\pi} x^{\rho} z_{\rho}=\mathbb{E}_{\mu}\left(\sum_{\pi} z_{\pi} x^{\pi}\right)^{2} \geq 0 \\
\text { so } M[y] \succeq 0!!
\end{gathered}
$$

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq E_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\boldsymbol{\pi}, \boldsymbol{\rho}, \quad M[\boldsymbol{y}]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$
So for any (∞-dimensional) vector \boldsymbol{z}, indexed by tuples, i.e. with entries z_{π} for each tuple $\boldsymbol{\pi}$,

$$
\begin{gathered}
z^{T} M[y] z=\sum_{\pi, \rho} \mathbb{E}_{\mu} z_{\pi} x^{\pi} x^{\rho} z_{\rho}=\mathbb{E}_{\mu}\left(\sum_{\pi} z_{\pi} x^{\pi}\right)^{2} \geq 0 \\
\text { so } M[y] \succeq 0!!
\end{gathered}
$$

so

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y . \text { (redundant) }
\end{array}
$$

Polynomial optimization

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.
So $f_{0}^{*}=\inf _{y} \sum_{\pi} a_{0, \pi} y_{\pi}$, over all \boldsymbol{K}-moment vectors \boldsymbol{y};
(\boldsymbol{y} is a \boldsymbol{K}-moment if there is a measure $\boldsymbol{\mu}$ over \boldsymbol{K} with $\boldsymbol{y}_{\boldsymbol{\pi}}=\mathbb{E}_{\boldsymbol{\mu}} \boldsymbol{x}^{\boldsymbol{\pi}}$ for each tuple $\boldsymbol{\pi}$)

$$
\left(K \doteq\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0,1 \leq i \leq m\right\}\right)
$$

So: $y_{0}=1$. Can we say more? Define $v=\left(x^{\pi}\right)$ (all monomials). Also define $M[y] \doteq E_{\mu} \boldsymbol{v} \boldsymbol{v}^{T}$.
So for any tuples $\boldsymbol{\pi}, \boldsymbol{\rho}, \quad M[\boldsymbol{y}]_{\pi, \rho}=\mathbb{E}_{\nu} x^{\pi} x^{\rho}=\boldsymbol{E}_{\nu} x^{\pi+\rho}=y_{\pi+\rho}$
So for any (∞-dimensional) vector \boldsymbol{z}, indexed by tuples, i.e. with entries z_{π} for each tuple $\boldsymbol{\pi}$,

$$
\begin{gathered}
z^{T} M[y] z=\sum_{\pi, \rho} \mathbb{E}_{\mu} z_{\pi} x^{\pi} x^{\rho} z_{\rho}=\mathbb{E}_{\mu}\left(\sum_{\pi} z_{\pi} x^{\pi}\right)^{2} \geq 0 \\
\text { so } M[y] \succeq 0!!
\end{gathered}
$$

so

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

An infinite-dimensional semidefinite program!!

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho
\end{array}
$$

$$
\text { the zeroth row and column of } M \text { both equal } y \text {. }
$$

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq \mathbf{1}$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq \mathbf{1}$. Restrict the SDP to all tuples π with $|\pi| \leq d$.
Example: $d=8$. So we will consider the monomial $x_{1}^{2} x_{2}^{4} x_{3}$ because $2+4+1 \leq 8$.
But we will not consider $x_{3} x_{5}^{7} x_{8}$, because $1+7+1>8$.

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq 1$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
\begin{array}{ll}
f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1,
\end{array}
$$

the rows and columns of M, and the entries in y, indexed by tuples of size $\leq d$ $M \succeq 0$,
$M_{\pi, \rho}=y_{\pi+\rho}, \quad$ for all appropriate tuples π, ρ
the zeroth row and column of M both equal y,

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq 1$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
\begin{array}{ll}
f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1,
\end{array}
$$

the rows and columns of M, and the entries in y, indexed by tuples of size $\leq d$ $M \succeq 0$,
$M_{\pi, \rho}=y_{\pi+\rho}, \quad$ for all appropriate tuples π, ρ
the zeroth row and column of M both equal y
A finite-dimensional semidefinite program!!

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq 1$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
\begin{array}{ll}
f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1,
\end{array}
$$

the rows and columns of M, and the entries in y, indexed by tuples of size $\leq d$ $M \succeq 0$,
$M_{\pi, \rho}=y_{\pi+\rho}, \quad$ for all appropriate tuples π, ρ
the zeroth row and column of M both equal y
A finite-dimensional semidefinite program!! But could be very large!!

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq & \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho}, \quad \text { for all tuples } \pi, \rho \\
& \text { the zeroth row and column of } M \text { both equal } y .
\end{array}
$$

Restrict: pick an integer $\boldsymbol{d} \geq 1$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
\begin{aligned}
& f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
& \text { s.t. } \quad y_{0}=1,
\end{aligned}
$$

the rows and columns of M, and the entries in y, indexed by tuples of size $\leq d$ $M \succeq 0$,
$M_{\pi, \rho}=y_{\pi+\rho}, \quad$ for all appropriate tuples π, ρ
the zeroth row and column of M both equal y
A finite-dimensional semidefinite program!! But could be very large!!

- Can be strengthened to account for the constraints $f_{i}(x) \geq 0$.

$$
f_{0}^{*} \doteq \min \left\{f_{0}(x): f_{i}(x) \geq 0, \quad 1 \leq i \leq m, \quad x \in \mathbb{R}^{n}\right\}
$$

where $f_{i}(x)=\sum_{\pi \in S(i)} a_{i, \pi} x^{\pi}$.

$$
\begin{array}{ll}
f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1, \\
& M \succeq 0, \\
& M_{\pi, \rho}=y_{\pi+\rho},
\end{array}
$$

the zeroth row and column of M both equal y.
Restrict: pick an integer $\boldsymbol{d} \geq 1$. Restrict the SDP to all tuples π with $|\pi| \leq d$.

$$
\begin{array}{ll}
f_{0}^{*} \geq \min \sum_{\pi} a_{0, \pi} y_{\pi} \\
\text { s.t. } & y_{0}=1,
\end{array}
$$

the rows and columns of M, and the entries in y, indexed by tuples of size $\leq d$ $M \succeq 0$,
$M_{\pi, \rho}=y_{\pi+\rho}, \quad$ for all appropriate tuples π, ρ
the zeroth row and column of M both equal y
A finite-dimensional semidefinite program!! But could be very large!!

- Can be strengthened to account for the constraints $f_{i}(x) \geq 0$. How? e.g. use RLT
- This is the level- \boldsymbol{d} Lasserre relaxation (abridged).

Solving SDP relaxations of QCQPs

$$
\begin{align*}
\text { (QCQP): } & \min x^{T} Q x+2 c^{T} x \\
\text { s.t. } & x^{T} A_{i} x+2 b_{i}^{T} x+r_{i} \geq 0 \quad i=1, \ldots, m \tag{6}\\
& x \in \mathbb{R}^{n} .
\end{align*}
$$

$$
\begin{align*}
\text { (SR): } & \min \left(\begin{array}{cc}
0 & c^{T} \\
c & Q
\end{array}\right) \bullet X \\
\text { s.t. } & \left(\begin{array}{cc}
r_{i} & b_{i}^{T} \\
b_{i} & A^{i}
\end{array}\right) \bullet X \geq 0 \quad i=1, \ldots, m \tag{7}\\
& X \succeq 0, \quad X_{00}=1 .
\end{align*}
$$

Solving SDP relaxations of QCQPs

$$
\begin{align*}
(\mathrm{QCQP}): & \min x^{T} Q x+2 c^{T} x \\
\text { s.t. } & x^{T} A_{i} x+2 b_{i}^{T} x+r_{i} \geq 0 \quad i=1, \ldots, m \tag{8}\\
& x \in \mathbb{R}^{n} .
\end{align*}
$$

Matrix completion theorem.

- Form a graph, \mathcal{G} with vertex set $0,1, \ldots, n$
- Include an edge $\{\boldsymbol{i}, \boldsymbol{j}\}$ if the $(\boldsymbol{i}, \boldsymbol{j})$ entry of some constraint (9) (or objective) is nonzero
- Suppose there is a chordal supergraph \mathcal{H} of \mathcal{G} such that:
\mathcal{H} is the union of \boldsymbol{k} maximal cliques $\boldsymbol{Q}_{1}, \ldots, \boldsymbol{Q}_{\boldsymbol{k}}$
- Then $\boldsymbol{X} \succeq \mathbf{0}$ is equivalent to:

$$
\left.\boldsymbol{X}\right|_{Q_{1}} \succeq 0, \ldots,\left.X\right|_{Q_{k}} \succeq 0
$$

$\left(\left.\boldsymbol{X}\right|_{Q_{j}}\right.$: submatrix of \boldsymbol{X} indexed by vertices of $\boldsymbol{Q}_{\boldsymbol{j}}$).

- \rightarrow If the submatrices are small this approach can be effective
- Current SDP-based methods for ACOPF rely on this paradigm

Can we do anything else involving SDP?

Chen, Atamtürk and Oren (2016):
For $n>1$ a nonzero $n \times n$ Hermitian psd matrix has rank one iff all of its 2×2 principal minors are zero.
\rightarrow use this criterion to drive branching:

- Minimum eigenvalue of any 2×2 principal submatrix should be zero
- Choose submatrix with largest deviation from this constraint
- Can then (spatially) branch on any of the three values

Can we do anything else involving SDP?

Chen, Atamtürk and Oren (2016):
For $n>1$ a nonzero $n \times n$ Hermitian psd matrix has rank one iff all of its 2×2 principal minors are zero.
\rightarrow use this criterion to drive branching:

- Minimum eigenvalue of any 2×2 principal submatrix should be zero
- Choose submatrix with largest deviation from this constraint
- Can then (spatially) branch on any of the three values

Kocuk, Dey, Sun (2017):
For $n>1$ a nonzero $n \times n$ Hermitian matrix is psd of rank one iff its diagonal is nonnegative and all the 2×2 minors are zero.

- Also, any $k \times k$ principal submatrix should be psd $(k \geq 2)$
- Use $k=3$ or $k=4$ and cycles
- Use SDP duality (whiteboard) to generate cuts
\bullet Let's think about it. Why cycles? \rightarrow use chordal extensions

Digitization and Discretization

Glover, (1975)
Given an integer variable $0 \leq \boldsymbol{x} \leq \boldsymbol{u}$ (integral), we can reformulate

$$
\begin{gathered}
x=\sum_{i=1}^{k} 2^{i} y_{i}, \quad \text { where each } y_{i} \text { is binary, and } \boldsymbol{k}=\log _{2} \boldsymbol{u}, \text { or } \\
x=\sum_{i=1}^{u} z_{i}, \quad \text { where each } z_{i} \text { is binary, or } \\
x=\sum_{i=1}^{u} i w_{i}, \quad \sum_{i} w_{i} \leq 1, \quad \text { where each } w_{i} \text { is binary }
\end{gathered}
$$

Digitization and Discretization

Glover, (1975)
Given an integer variable $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}$ (integral), we can reformulate

$$
\begin{gathered}
x=\sum_{i=1}^{k} 2^{i} y_{i}, \quad \text { where each } y_{i} \text { is binary, and } \boldsymbol{k}=\log _{\mathbf{2}} \boldsymbol{u}, \text { or } \\
x=\sum_{i=1}^{u} z_{i}, \quad \text { where each } z_{i} \text { is binary, or } \\
x=\sum_{i=1}^{u} i w_{i}, \quad \sum_{i} w_{i} \leq 1, \quad \text { where each } w_{i} \text { is binary }
\end{gathered}
$$

And if we have a bilinear expression $x f(0 \leq f \geq F)$ then we get an exact linear representation for e.g. each $\boldsymbol{w}_{i} \boldsymbol{f}$ through RLT

$$
\begin{aligned}
0 & \leq P_{i} \leq F w_{i} \\
f-F\left(1-w_{i}\right) & \leq P_{i} \leq f
\end{aligned}
$$

Digitization and Discretization

B., (2006), Dash, Günlük, Lodi (2007):

Discretization to approximate a bilinear form on continuous variables:
Consider a bilinear expression $\boldsymbol{x} \boldsymbol{y}$ where $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}^{\boldsymbol{x}}, \mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{u}^{\boldsymbol{y}}$.
Then we write:

$$
\begin{aligned}
\boldsymbol{x}= & u^{x}\left(\sum_{j=1}^{L} 2^{-j} \boldsymbol{z}_{\boldsymbol{j}}+\boldsymbol{\delta}\right) \\
& \text { each } \boldsymbol{z}_{\boldsymbol{j}} \text { binary, } \quad 0 \leq \boldsymbol{\delta} \leq 2^{-L}
\end{aligned}
$$

And so we can represent

$$
\begin{aligned}
x y= & u^{x}\left(\sum_{j=1}^{L} 2^{-j} \boldsymbol{w}_{\boldsymbol{j}}+\boldsymbol{\gamma}\right) \\
& 0 \leq \boldsymbol{\gamma} \leq \min \left\{2^{-L} \boldsymbol{y}, \boldsymbol{\delta} u^{y}\right\} \quad(\mathrm{RLT}) \\
& \text { each } \boldsymbol{w}_{\boldsymbol{j}}: \mathrm{RLT} \text { of } \boldsymbol{z}_{\boldsymbol{j}} \boldsymbol{y}
\end{aligned}
$$

\rightarrow A valid relaxation. We will come back to this later.

Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

1. We have \boldsymbol{K} commodities ('specs') present at the inputs in different amounts.
2. Flows have to be routed to the outputs subject to flow conservation and capacity constraints.
3. Flows that reach a pool become mixed, and the proportion of each spec is upper- and lower-bounded.
4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec

Formulation

- $\mathcal{J}=$ set of inputs, $\mathcal{M}=$ set of pools,
- $\boldsymbol{\lambda}_{\boldsymbol{i}}=$ fraction of spec \boldsymbol{k} at input \boldsymbol{i} (data)
$\min \sum_{i j \in \mathcal{A}} c_{i j} \boldsymbol{y}_{i j} \quad \leftarrow \boldsymbol{y}_{i j}=$ total flow on $i j$
s.t. flow conservation, capacity constraints on $y_{i j}$
and for all spec \boldsymbol{k}, pool \boldsymbol{j},
$\boldsymbol{p}_{\boldsymbol{j} k}=\frac{\sum_{i \in \mathcal{J}} \lambda_{i k} \boldsymbol{y}_{i j}+\sum_{m \in \mathcal{M}} \boldsymbol{p}_{\boldsymbol{m} \boldsymbol{k}} \boldsymbol{y}_{m j}}{\sum_{i \in \mathcal{J} \cup \mathcal{M}} \boldsymbol{y}_{\boldsymbol{i j}}} \leftarrow p_{j k}=$ fraction of spec k in pool j
$p_{j k}^{\min } \leq \boldsymbol{p}_{j k} \leq p_{j k}^{\max }$

Digitization and Discretization in the Pooling Problem

Ahmed, Dey, Gupte, Jeon $(2015,2017)$
Consider a bilinear expression $x \boldsymbol{y}$ where $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}^{\boldsymbol{x}}, \mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{u}^{\boldsymbol{y}}$.
Then we approximate

$$
\begin{aligned}
& \boldsymbol{x}= u^{x} \sum_{j=1}^{L} 2^{-j} \boldsymbol{z}_{\boldsymbol{j}}, \\
& \quad \text { each } \boldsymbol{z}_{\boldsymbol{j}} \text { binary, } 0 \leq \boldsymbol{\delta} \leq 2^{-L}
\end{aligned}
$$

And so one can approximate

$$
x \boldsymbol{y}=u^{x} \sum_{j=1}^{L} 2^{-j} \boldsymbol{w}_{\boldsymbol{j}} .
$$

- An approximation, not a relaxation
- In some cases, the best upper bounds for larger pooling problems are obtained this way

"Take-away" and next talk

- We want strong relaxations, but the relaxations can be hard to solve
- A challenge: come up with strong branching, cutting and reformulation mechanisms that are robust across problem classes
- And how about accuracy and numerical stability?
- Local search for nonconvex nonlinear optimization?

Crimes against computers

$$
\left.\begin{array}{rl}
\max \quad x_{2}-20 s_{5}-20 s_{6}+2 s_{7}+s_{5}^{2} & \\
\text { s.t. } & =3+\frac{\phi}{10} \\
\left(x_{1}-1\right)^{2}+x_{2}^{2} & \geq 3+1)^{2}+x_{2}^{2}
\end{array}\right) 3 \begin{aligned}
\frac{1}{10} x_{1}^{2}+x_{2}^{2} & \leq 2 \\
10 \delta+10 \phi^{2} & \geq 1 \\
-10 a+\delta+10 \phi^{2} & \leq 0 \\
-10 b+a+10 \phi^{2} & \leq 0 \\
-10 c+b+10 \phi^{2} & \leq 0 \\
-10 d+c+10 \phi^{2} & \leq 0 \\
-10 e+d+10 \phi^{2}+10 s_{5}^{2} & =0 \\
-10 f+e+10 \phi^{2}+10 s_{6}^{2} & =0 \\
-10 g+f+10 \phi^{2}+10 s_{7}^{2} & =0 \\
-10 \phi+g+10 \phi^{2} & \leq 0
\end{aligned}
$$

What's going on?

$$
\begin{aligned}
\max & x_{2} \\
\text { s.t. } \quad\left(x_{1}-1\right)^{2}+x_{2}^{2} & \geq 3 \\
\left(x_{1}+1\right)^{2}+x_{2}^{2} & \geq 3 \\
\frac{x_{1}^{2}}{10}+x_{2}^{2} & \leq 2
\end{aligned}
$$

What's going on?

$$
\begin{aligned}
& \max \quad x_{2} \\
& \text { s.t. } \quad\left(x_{1}-1\right)^{2}+x_{2}^{2} \geq 3+\phi \quad(\phi>0) \\
&\left(x_{1}+1\right)^{2}+x_{2}^{2} \geq 3 \\
& \frac{x_{1}^{2}}{10}+x_{2}^{2} \leq 2
\end{aligned}
$$

S-free Sets for Polynomial Optimization and Oracle-Based Cuts

B., Chen Chen and Gonzalo Muñoz, 2017

Consider:

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & x \in S \cap P .
\end{aligned}
$$

$\boldsymbol{P}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x} \leq \boldsymbol{b}\right\}$ is a polyhedral set, and $S \subset \mathbb{R}^{n}$ is a closed set.
Can we strengthen the description of P with cuts?

S-free Sets for Polynomial Optimization and Oracle-Based Cuts

B., Chen Chen and Gonzalo Muñoz, 2017

Consider:

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & x \in S \cap P .
\end{aligned}
$$

$\boldsymbol{P}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ is a polyhedral set, and $S \subset \mathbb{R}^{n}$ is a closed set.
Can we strengthen the description of P with cuts?
We will focus on the geometric approach: cuts via \boldsymbol{S}-free sets.
(Many other ways to generate cuts, e.g. disjunctions, algebraic arguments, combinatorics, convex cuts, etc.)
(McCormick, RLT)

Tightening P with an S-free set C

$$
\boldsymbol{C}=\text { closed convex, } \boldsymbol{C} \cap \boldsymbol{X}=\emptyset
$$

Tightening P with an S-free set C

$C=$ closed convex, $\boldsymbol{C} \cap \boldsymbol{X}=\emptyset$

Tightening P with an S-free set C

$C=\operatorname{closed}$ convex, $\boldsymbol{C} \cap \boldsymbol{X}=\emptyset . \operatorname{conv}(\boldsymbol{P} \backslash \boldsymbol{C}):$

Could be more complex:

- Might need an infinite number of cuts to get $\operatorname{conv}(\boldsymbol{P} \cap \boldsymbol{S})$.
- The problem: given a polytope \boldsymbol{P} and a ball \boldsymbol{B}, is $\boldsymbol{P} \subseteq \boldsymbol{B}$? is strongly NP-complete (Freund and Orlin, 1985).
- Given a polyhedral cone \boldsymbol{C} and a ball \boldsymbol{B} it is strongly NP-hard to minimize a convex quadratic over $\boldsymbol{C} \cap \overline{\boldsymbol{B}}$ (B. 2010)

Recent work on the geometry of convex quadratics in the complement of a convex quadratic region

- B. 2010, B and Michalka (2014)
- Belotti, Goez, Pólik, Ralphs, Terlaki (2013)
- Modaresi, M. Kilinc, Vilema (2015)
- F. Kilinc (2015)

From a polyhedral perspective

- Balas (1971), Tuy (1964): if \boldsymbol{Q} is a simplicial cone then the intersection cut guarantees separation over $\operatorname{conv}(\boldsymbol{Q} \backslash \operatorname{int}(\boldsymbol{C}))$.
- (Simplicial cone: \boldsymbol{n} linearly independent linear inequalities)
- Simplicial conic relaxation $\boldsymbol{P}^{\boldsymbol{\prime}} \supseteq \boldsymbol{P}$ is easily obtained from a basic solution of \boldsymbol{P}
- And so we could attempt to get $\operatorname{conv}\left(\boldsymbol{P}^{\prime} \backslash \operatorname{int} \boldsymbol{C}\right.$.
- Intersection cut (w.r.t. \boldsymbol{P}^{\prime}) is described in closed form \rightarrow fast separation of extreme points of \boldsymbol{P} using \boldsymbol{P}^{\prime}

Larger $\boldsymbol{C}, \rightarrow$ deeper cut

Def: \boldsymbol{S}-free maximal set.

(Some) additional literature

- Maximal S-free sets and minimal valid inequalities: [Basu et al. 2010], [Conforti et al. 2014], [Cornuejols, Wolsey, Yildiz, 2015], [Kilinc-Karzan 2015]
- Intersection cuts and for mixed-integer conic programs programming: [Atamturk and Narayanan 2010], [Belotti et al., 2013], [Andersen and Jensen, 2013], [Dadush, Dey, Vielma 2011], [Modaresi, Kilinc, Vielma 2015/2016]
- Intersection cuts for bilevel optimization: [Fischetti, Monaci, Sinnl, 2016].
- Generalized intersection cut procedures: [Balas and Margot, 2013], [Balas, Kazachkov, Margot 2016].
- Huge literature on split cuts.

This talk

1. A simple, generic way to generate S-free sets that ensures separation. Also, a corresponding cutting plane method for arbitrary closed sets, guaranteed to converge on bounded problems.
2. A study of maximal S-free sets for polynomial optimization
3. Experiments with a resulting cutting-plane procedure that solves LPs only.
4. Joint work with a couple of characters in the audience.

Distance Oracle

We assume we have an oracle for a closed set \boldsymbol{S} that gives us the distance $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{S})$ from any point $\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}}$ to the nearest point in \boldsymbol{S}.

Examples:

- Integer programming: if \boldsymbol{S} is the integer lattice, then one can round.
- Cardinality constraint nearest vector of cardinality $\leq \boldsymbol{k}$ can be obtained by rounding.
- Semidefinite cone: we will see this later

Observation. The ball centered around x with radius $d(x, S)$ is S-free. Call it $\mathcal{B}(\boldsymbol{x}, \boldsymbol{d}(\boldsymbol{x}, \boldsymbol{S}))$.

We will call the corresponding intersection cut an oracle ball cut.

Convergence

- Start with polytope $\boldsymbol{P}_{0}=\boldsymbol{P}$.
- Let $\boldsymbol{P}_{\boldsymbol{k + 1}} \doteq \cap_{v \in V_{k}} \operatorname{conv}\left(\boldsymbol{P}_{\boldsymbol{k}} \backslash \operatorname{int}(\mathcal{B}(\boldsymbol{v}, \boldsymbol{d}(\boldsymbol{v}, \boldsymbol{S})))\right)$
$V_{k}=$ set of extreme points of P_{k}.
- $\boldsymbol{P}_{\boldsymbol{k}}=$ rank \boldsymbol{k} closure of $\boldsymbol{P}_{\mathbf{0}}$.

Convergence

- Start with polytope $\boldsymbol{P}_{0}=\boldsymbol{P}$.
- Let $\boldsymbol{P}_{\boldsymbol{k}+\boldsymbol{1}} \doteq \cap_{\boldsymbol{v} \in \boldsymbol{V}_{\boldsymbol{k}}} \operatorname{conv}\left(\boldsymbol{P}_{\boldsymbol{k}} \backslash \operatorname{int}(\mathcal{B}(\boldsymbol{v}, \boldsymbol{d}(\boldsymbol{v}, \boldsymbol{S})))\right)$ $V_{k}=$ set of extreme points of P_{k}.
- $\boldsymbol{P}_{\boldsymbol{k}}=$ rank \boldsymbol{k} closure of $\boldsymbol{P}_{\mathbf{0}}$.

Theorem: $\lim _{k \rightarrow \infty} P_{k}=\operatorname{conv}(S \cap P)$.
Corollary: iven an inexact but arbitrarily accurate distance oracle, we can obtain arbitrarily close (in terms of Hausdorff distance) polyhedral approximation to $\operatorname{conv}(\boldsymbol{S} \cap \boldsymbol{P})$ in finite time.

Borrows from proof technique used in [Averkov 2011].

Application: Polynomial Optimization

$$
\begin{aligned}
z^{*}:= & \inf p_{0}(x) \\
& \text { s.t. } \quad x \in \boldsymbol{S} \doteq\left\{x \in \mathbb{R}^{n} \mid p_{1}(x) \geq 0, \ldots, p_{m}(x) \geq 0\right\}
\end{aligned}
$$

- Saxena, Bonami, Lee 2010-2011: Disjunctive cuts from MILP innerapproximation + convex cuts. Applies to bounded polynomial optimization.
- Ghaddar, Vera, Anjos 2011: Projections of moment relaxations. Generalizes Balas, Ceria, Cornuejols lifting. Separation not guaranteed in general.
- Other literature on convex envelopes of functions, e.g. multilinear. McCormick, spatial branching, RLT.
- Our intersection cuts guarantee polynomial-time separation without boundedness assumptions.

How, 1: lifted polynomial representation

\rightarrow this takes us to the moment relaxation we saw before.
[Shor 1987], [Lovasz and Schrijver 1991]

- Define a vector of monomials, $\boldsymbol{m} \doteq\left[1, x_{1}, \ldots, x_{n}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n}^{k}\right]$. Let $\boldsymbol{X} \doteq \boldsymbol{m m}^{T}$.
- Polynomial optimization can be formulated as

$$
\begin{array}{ll}
\min & P_{0} \bullet X \\
\text { s.t. } & P_{i} \bullet X \leq b_{i}, i=1, \ldots, m
\end{array}
$$

($\boldsymbol{P}_{\boldsymbol{i}}$ appropriately defined from the coefficients of $\boldsymbol{p}_{\boldsymbol{i}}$)

- This is a linear programming relaxation with variables \boldsymbol{X}. $P_{i} \bullet X \doteq \sum p_{i j} m_{i j}$ is the inner product.
- Equivalency when $\boldsymbol{X} \succeq 0$ and $\operatorname{rank}(\boldsymbol{X})=1$ and consistency constraints (among entries of \boldsymbol{X}). Dropping the rank constraint gives the moment relaxation [Lasserre, 2001].

How, 2: S-free sets for Polynomial Optimization

\rightarrow this takes us to the moment relaxation we saw before.
[Shor 1987], [Lovasz and Schrijver 1991]
\bullet Define a vector of monomials, $\boldsymbol{m} \doteq\left[1, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}_{1} \boldsymbol{x}_{2}, \boldsymbol{x}_{1} \boldsymbol{x}_{3}, \ldots, \boldsymbol{x}_{n}^{k}\right]$. Let $\boldsymbol{X} \doteq \boldsymbol{m m}^{\boldsymbol{T}}$.

- Polynomial optimization can be formulated as

$$
\begin{aligned}
& \min P_{0} \bullet X \\
& \text { s.t. } P_{i} \bullet X \leq b_{i}, i=1, \ldots, m
\end{aligned}
$$

($\boldsymbol{P}_{\boldsymbol{i}}$ appropriately defined from the coefficients of $\boldsymbol{p}_{\boldsymbol{i}}$)

- This is a linear programming relaxation with variables \boldsymbol{X}. $P_{i} \bullet X \doteq \sum p_{i j} m_{i j}$ is the inner product.
- Equivalency when $\boldsymbol{X} \succeq 0$ and $\operatorname{rank}(\boldsymbol{X})=1$ and consistency constraints (among entries of \boldsymbol{X}). Dropping the rank constraint gives the moment relaxation [Lasserre, 2001].

Three types of S-free condtions or cuts

Notation: always over vectorized matrices, e.g.

$$
M \in \mathbb{S}^{2 \times 2} \rightarrow\left\{M_{11}, M_{12}, M_{22}\right\} \in \mathbb{R}^{3}
$$

$\boldsymbol{S}^{2 \times 2}=2 \times 2$ symmetric matrices

- 2×2 minors. Theorem (Chen et al 2016):

A psd matrix M is of rank one iff every principal $\mathbf{2} \times \mathbf{2}$ minor is zero. So, given $\overline{\boldsymbol{X}}$, if $\overline{\boldsymbol{X}}_{i, j} \succ \mathbf{0}$ for some $\boldsymbol{i}, \boldsymbol{j}$ we have a violation.
\boldsymbol{S}-free set: $\quad \boldsymbol{M}_{\boldsymbol{i}, \boldsymbol{j}} \succeq \mathbf{0}$, which is maximal \boldsymbol{S}-free.

- Positive-semidefiniteness: of $\overline{\boldsymbol{X}}$ is not psd, i.e. $c^{T} \overline{\boldsymbol{X}} \boldsymbol{c}<0$ for some \boldsymbol{c}, then get cut $\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{c} \geq \mathbf{0}$ (also defines a maximal set, but we have a cut anyway)
- Oracle (rank-1) ball, and shifted oracle ball. EYM theorem gives distance from a psd matrix to the nearest rank one matrix (Modification by Dax for non-psd case).

Numerical Experiments

- Python
- All the cuts mentioned above
- Gurobi 7.0.1 to solve LPs
- 20-core server, but only Gurobi uses more than one
- 26 QCQP problems from GLOBALLib (6-63 variables)
- BoxQP instances (21-126 variables)

Results

Cut Family	Initial Gap	End Gap	Closed Gap	\# Cuts	Iters	Time (s)	LPTime (\%)
OB	1387.92%	1387.85%	1.00%	16.48	17.20	2.59	2.06%
SO		1387.83%	8.77%	18.56	19.52	4.14	2.29%
OA		1001.81%	8.61%	353.40	83.76	33.25	7.51%
$2 \times 2+$ OA		1003.33%	32.61%	284.98	118.08	30.40	15.03%
SO+2x2+OA		1069.59%	31.91%	174.79	107.16	29.55	12.56%

Table 1: Averages for GLOBALLib instances

Comparison with V2: BoxQP

V2: second-order conic outer-approximation of PSD constraint; MIP to derive disjunctive cuts (Saxena, Bonami, Lee)

