Implementing a B\&C algorithm for Mixed-Integer Bilevel Linear Programming

Matteo Fischetti, University of Padova

Bilevel Optimization

- The general Bilevel Optimization Problem (optimistic version) reads:

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n_{1}}, y \in \mathbb{R}^{n_{2}}} & F(x, y) \\
& G(x, y) \leq 0 \\
y & \in \arg \min _{y^{\prime} \in \mathbb{R}^{n_{2}}}\left\{f\left(x, y^{\prime}\right): g\left(x, y^{\prime}\right) \leq 0\right\}
\end{array}
$$

where x var.s only are controlled by the leader, while y var.s are computed by another player (the follower) solving a different problem.

- A very very hard problem even in a convex setting with continuous var.s only
- Convergent solution algorithms are problematic and typically require additional assumptions (binary/integer var.s or alike)

Example: 0-1 ILP

- A generic 0-1 ILP can be reformulated as the following linear \& continuos bilevel problem

$$
\begin{aligned}
\min c^{T} x & \\
A x & =b \\
x & \in\{0,1\}^{n}
\end{aligned}
$$

$$
\begin{gathered}
\min c^{T} x \\
A x=b \\
x \in[0,1]^{n} \\
y=0 \\
y \in \arg \min _{y^{\prime}}\left\{-\sum_{j=1}^{n} y_{j}^{\prime}: y_{j}^{\prime} \leq x_{j}, y_{j}^{\prime} \leq 1-x_{j} \quad \forall j=1, \ldots, n\right\}
\end{gathered}
$$

Note that y is fixed to 0 but it cannot be removed from the model!

Reformulation

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n_{1}}, y \in \mathbb{R}^{n_{2}}} & F(x, y) \\
& G(x, y) \leq 0 \\
& y \in \arg \min _{y^{\prime} \in \mathbb{R}^{n_{2}}}\left\{f\left(x, y^{\prime}\right): g\left(x, y^{\prime}\right) \leq 0\right\}
\end{array}
$$

$$
\Phi(x)=\min _{y \in \mathbb{R}^{n_{2}}}\{f(x, y): g(x, y) \leq 0\}
$$

the problem can be restated as

$$
\begin{aligned}
\min F(x, y) & \\
G(x, y) & \leq 0 \\
g(x, y) & \leq 0 \\
f(x, y) & \leq \Phi(x) \\
(x, y) & \in \mathbb{R}^{n} .
\end{aligned}
$$

- Dropping the nonconvex condition $f(x, y) \leq \Phi(x)$ one gets the socalled High Point Relaxation (HPR)

Mixed-Integer Bilevel Linear Problems

- We will focus the Mixed-Integer Bilevel Linear case (MIBLP)

$$
\begin{aligned}
\min F(x, y) & \\
G(x, y) & \leq 0 \\
g(x, y) & \leq 0 \\
(x, y) & \in \mathbb{R}^{n} \\
f(x, y) & \leq \Phi(x) \\
x_{j} & \text { integer, } \quad \forall j \in J_{1} \\
y_{j} & \text { integer, } \quad \forall j \in J_{2}
\end{aligned}
$$

where F, G, f and g are affine functions

- Note that $f(x, y) \leq \Phi(x)$ is nonconvex even when all y var.s are continuous

MIBLP statement

- Using standard LP notation, our MIBLP reads

$$
\begin{aligned}
& \min _{x, y} c_{x}^{T} x+c_{y}^{T} y \\
& G_{x} x+G_{y} y \leq q \\
& A x+B y \leq b \\
& l \leq y \leq u \\
& x_{j} \text { integer, }, \forall j \in J_{x} \\
& y_{j} \text { integer, } \quad \forall j \in J_{y} \\
& d^{T} y \leq \Phi(x)
\end{aligned}
$$

where for a given $x=x^{*}$ one computes the value function by solving the following MILP:

$$
\Phi\left(x^{*}\right):=\min _{y \in \mathbb{R}^{n_{2}}}\left\{d^{T} y: B y \leq b-A x^{*}, \quad l \leq y \leq u, \quad y_{j} \text { integer } \forall j \in J_{y}\right\}
$$

Example

- A notorious example from
J. Moore and J. Bard. The mixed integer linear bilevel programming problem.

Operations Research, 38(5):911-921, 1990.

$$
\begin{aligned}
\min _{x \in \mathbb{Z}} & -x-10 y \\
y & \in \arg \min _{y^{\prime} \in \mathbb{Z}}\left\{y^{\prime}:\right.
\end{aligned}
$$

$$
\begin{aligned}
-25 x+20 y^{\prime} & \leq 30 \\
x+2 y^{\prime} & \leq 10 \\
2 x-y^{\prime} & \leq 15 \\
2 x+10 y^{\prime} & \geq 15\}
\end{aligned}
$$

where $f(x, y)=y$
\mathbf{x} points of HPR relax.
__ LP relax. of HPR

Example (cont.d)

Value-function reformulation

$$
\begin{aligned}
\min -x-10 y & \\
-25 x+20 y & \leq 30 \\
x+2 y & \leq 10 \\
2 x-y & \leq 15 \\
-2 x-10 y & \leq-15 \\
x, y \in \mathbb{Z} & \\
y \leq \Phi(x) &
\end{aligned}
$$

A convergent B\&B scheme

```
Algorithm 2: A basic branch-and-bound scheme for MIBLP
    Input : A MIBLP instance satisfying proper assumptions;
    Output: An optimal MIBLP solution.
    Apply a standard LP-based B\&B to HPR, branching as customary on integer-constrained
    variables \(x_{j}\) and \(y_{j}\) that are fractional at the optimal LP solution; incumbent update is instead
    inhibited as it requires the bilevel-specific check described below;
    for each unfathomed BEBB node where standard branching cannot be performed do
        Let \(\left(x^{*}, y^{*}\right)\) be the integer HPR solution at the current node;
        Compute \(\Phi\left(x^{*}\right)\) by solving the follower MILP for \(x=x^{*}\);
        if \(d^{T} y^{*} \leq \Phi\left(x^{*}\right)\) then
            The current solution \(\left(x^{*}, y^{*}\right)\) is bilevel feasible: update the incumbent and fathom the
            current node
        else
            if not all variables \(x_{j}\) with \(j \in J_{F}\) are fixed by branching then
                    Branch on any \(x_{j}\left(j \in J_{F}\right)\) not fixed by branching yet, even if \(x_{j}^{*}\) is integer, so as to
                    reduce its domain in both child nodes
            else
                    let \((\hat{x}, \hat{y})\) be an optimal solution of the HPR at the current node amended by the
                    additional restriction \(d^{T} y \leq \Phi\left(x^{*}\right)\);
                    Possibly update the incumbent with ( \(\hat{x}, \hat{y}\) ), and fathom the current node
            end
        end
    end
```

Here J_{F} is the set of the leader x-variables appearing in the follower problem, all of which are assumed to be integer constrained (we also exclude HPR unboundedness)

A MILP-based B\&C solver

- Suppose you want to apply a Branch-and-Cut MILP solver to HPR
- Forget for a moment about internal heuristics (i.e., deactivate all of them), and assume the LP relaxation at each node is solved by the simplex algorithm
- What do we need to add to the MILP solver to handle a MIBLP?
- At each node, let $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ be the current LP optimal vertex:

$$
\text { if }\left(x^{*}, y^{*}\right) \text { is fractional } \rightarrow \text { branch as usual }
$$

if $\left(\boldsymbol{x}^{*}, \boldsymbol{y}^{*}\right)$ is integer and $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right) \rightarrow$ update the incumbent as usual

The difficult case

- But, what can we do in third possible case, namely ($\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$) is integer but not bilevel-feasible, i.e., when $f\left(x^{*}, y^{*}\right)>\Phi\left(x^{*}\right)$?
- Question: how can we cut this integer $\left(\boldsymbol{x}^{*}, y^{*}\right)$?

Possible answers from the literature

- If (x, y) is restricted to be binary, add a no-good cut requiring to flip at least one variable w.r.t. (x^{*}, y^{*}) or w.r.t. x^{*}
- If (x, y) is restricted to be integer and all MILP coeff.s are integer, add a cut requiring a slack of 1 for the sum of all the inequalities that are tight at $\left(x^{*}, y^{*}\right)$
- Weak conditions as they do not addresses the reason of infeasibility by trying to enforce $f\left(x^{*}, y^{*}\right) \leq \Phi\left(x^{*}\right)$ somehow

Intersection Cuts (ICs)

- Try and use of intersection cuts (Balas, 1971) instead
- ICs are a powerful tool to separate a point \mathbf{x}^{*} from a set \mathbf{X} by a linear cut

- All you need is
- a cone pointed at \mathbf{x}^{*} containing all $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$
- a convex set S with x^{*} (but no $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$) in its interior
- If x^{*} vertex of an LP relaxation, a suitable cone comes for the LP basis

ICs for bilevel problems

- Our idea is first illustrated on the Moore\&Bard example

```
min}x\in\mathbb{Z
    y\in\operatorname{arg}\mp@subsup{\operatorname{min}}{\mp@subsup{y}{}{\prime}\in\mathbb{Z}}{{}{\mp@subsup{y}{}{\prime}:
```

$$
\begin{aligned}
-25 x+20 y^{\prime} & \leq 30 \\
x+2 y^{\prime} & \leq 10 \\
2 x-y^{\prime} & \leq 15 \\
2 x+10 y^{\prime} & \geq 15\}
\end{aligned}
$$

where $f(x, y)=y$
x points of HPR relax.
_ LP relax. of HPR

Define a suitable bilevel-free set

- Take the LP vertex $\left(x^{*}, y^{*}\right)=(2,4) \rightarrow f\left(x^{*}, y^{*}\right)=y^{*}=4>\operatorname{Phi}\left(x^{*}\right)=2$

Intersection cut

- We can therefore generate the intersection cut $y<=2$ and repeat

A basic bilevel-free set

Lemma 1. For any feasible solution \hat{y} of the follower, the set

$$
\begin{equation*}
S(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: f(x, y) \geq f(x, \hat{y}), g(x, \hat{y}) \leq 0\right\} \tag{10}
\end{equation*}
$$

does not contain any bilevel-feasible point in its interior.

- Note: $S(\hat{y})$ is a convex set (actually, a polyhedron) when f and g are affine functions, i.e., in the MIBLP case
- Separation algorithm: given an optimal vertex $\left(x^{*}, y^{*}\right)$ of the LP relaxation of HPR
- Solve the follower for $x=x^{*}$ and get an optimal sol., say \hat{y}
- if $\left(x^{*}, y^{*}\right)$ strictly inside $S(\hat{y})$ then
generate a violated IC using the LP-cone pointed at (x^{*}, y^{*}) together with the bilevel-free set $S(\hat{y})$

It looks simple, but ...

- However, the above does not lead to a proper MILP algorithm as a bilevel-infeasible integer vertex ($\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$) can be on the frontier of the bilevel-free set S, so we cannot be sure to cut it by using our IC's

- We need to define the bilevel-free set in a more clever way if we want be sure to cut (x^{*}, y^{*})

An enlarged bilevel-free set

- Assuming $g(x, y)$ is integer for all integer HPR solutions, one can "move apart" the frontier of $S(\hat{y})$ so as be sure that vertex (x^{*}, y^{*}) belongs to its interior

Theorem 1. Assume that $g(x, y)$ is integer for all HPR solutions (x, y). Then, for any feasible solution \hat{y} of the follower, the extended set

$$
\begin{equation*}
S^{+}(\hat{y})=\left\{(x, y) \in \mathbb{R}^{n}: f(x, y) \geq f(x, \hat{y}), g(x, \hat{y}) \leq 1\right\} \tag{11}
\end{equation*}
$$

does not contain any bilevel-feasible point in its interior, where 1 denotes a vector of all one's.

- The corresponding IC is always violated by $\left(x^{*}, y^{*}\right) \rightarrow$ IC separation to be implemented in a lazy constraint/usercut callback to produce a (locally valid) violated cut \rightarrow B\&C solver for MIBLP
- Note: alternative bilevel-free sets can be defined to produce hopefully deeper ICs

IC separation issues

- IC separation can be probematic, as we need to read the cone rays from the LP tableau \rightarrow numerical accuracy can be a big issue here!
- For MILPs, ICs like Gomory cuts are not mandatory (so we can skip their generation in case of numerical problems), but for MIBLPs they are more instrumental \#SeparateOrPerish
- Notation change: let $\xi=(x, y) \in \mathbb{R}^{n}$
$\min \left\{\hat{c}^{T} \xi: \hat{A} \xi=\hat{b}, \xi \geq 0\right\}$ be the LP relaxation at a given node
$S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}$ be the bilevel-free set
k
$\bigvee\left(g_{i}^{T} \xi \geq g_{i 0}\right)$ be the disjunction to be satisfied by all feas. sol.s $i=1$

Numerically safe ICs

```
Algorithm 1: Intersection cut separation
    Input : An LP vertex \(\xi^{*}\) along with its associated LP basis \(\hat{B}\);
                valid disjunction \(\bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right)\) whose members are violated by \(\xi^{*}\);
    Output: A valid intersection cut violated by \(\xi^{*}\);
    1 for \(i:=1\) to \(k\) do
    \(2 \mid\left(\bar{g}_{i}^{T}, \bar{g}_{i 0}\right):=\left(g_{i}^{T}, g_{i 0}\right)-u_{i}^{T}(\hat{A}, \hat{b})\), where \(u_{i}^{T}=\left(g_{i}\right)_{\hat{B}}^{T} \hat{B}^{-1}\)
    3 end
    4 for \(j:=1\) to \(n\) do \(\gamma_{j}:=\max \left\{g_{i j} / g_{i 0}: i \in\{1, \ldots, k\}\right\}\);
    5 if \(\gamma \geq 0\) then
6 for \(j:=1\) to \(n\) do
            if \(\xi_{j}\) is integer constrained then \(\gamma_{j}:=\min \left\{\gamma_{j}, 1\right\} ;\)
        end
    end
10 return the violated cut \(\gamma^{T} \xi \geq 1\)
```

 the feasible-free polyhedron \(S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}\) and the associated

Conclusions

- Mixed-Integer Bilevel Linear Programming is a MILP plus additional constr.s
- Intersection cuts can produce valuable information at the B\&B nodes
- Sound MIBLP heuristics, preprocessing etc. (not discussed here) available
- Many instances from the literature can be solved in a satisfactory way

Slides http://www.dei.unipd.it/~fisch/papers/slides/

Reference papers:

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "Intersection cuts for bilevel optimization", in Integer Programming and Combinatorial Optimization: 18th International Conference, IPCO 2016 Proceedings, 77-88, 2016 (to appear in Mathematical Programming)
M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "A new general-purpose algorithm for mixedinteger bilevel linear program", to appear in Operations Research.
M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "Interdiction Games and Monotonicity", Tech. Report 2016 (submitted)

