
SFMin in an “Assemble to Order” inventory
problem

S. Thomas McCormick
(with M. Bolandnazar, W.T. Huh, K. Murota)

Sauder School of Business, UBC
Cargese Workshop on Combinatorial Optimization,

Sept–Oct 2013

Outline

Why Discrete Convexity in Supply Chain?
Supply Chain Models
Discrete Convexity

Assemble to Order (ATO)
ATO Model
A Counterexample

An algorithm
Submodularity on a box in Rn

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?
2. How many units should they order?
3. Can we say anything useful about the structure of an optimal

policy?
4. Can we say anything useful about the qualitative sensitivity of

an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?
2. How many units should they order?
3. Can we say anything useful about the structure of an optimal

policy?
4. Can we say anything useful about the qualitative sensitivity of

an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?

2. How many units should they order?
3. Can we say anything useful about the structure of an optimal

policy?
4. Can we say anything useful about the qualitative sensitivity of

an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?
2. How many units should they order?

3. Can we say anything useful about the structure of an optimal
policy?

4. Can we say anything useful about the qualitative sensitivity of
an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?
2. How many units should they order?
3. Can we say anything useful about the structure of an optimal

policy?

4. Can we say anything useful about the qualitative sensitivity of
an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Questions

I A typical supply chain consists of one or more suppliers who
manufacture components that are supplied to one or more
manufacturers, who assemble the components into products,
which are then sent maybe to retailers and/or end customers.

I Some basic questions are:

1. When should, e.g., a manufacturer order?
2. How many units should they order?
3. Can we say anything useful about the structure of an optimal

policy?
4. Can we say anything useful about the qualitative sensitivity of

an optimal policy? E.g., if there is more stock of product A,
does this mean that we should order more or less of product B?

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Supply Chain Optimization is Hard

I Most of these questions can be posed as optimization
problems. These optimization problems have several
difficulties:

1. They are stochastic: Performance depends on customer
demand, which is random. What sort of demands can we
assume? Normal? Poisson? General?

2. They are discrete: In most cases you can’t order .364 of a
product.

3. They are non-separable: The ordering policy for product A will
affect product B and vice versa.

4. They are big: Real-world supply chains can have thousands of
products in hundreds of locations, and need to be optimized
over dozens of time periods, or even infinite horizon.

5. They are complicated: You can run into capacities,
backlogging or lost sales or a mix of these, release dates/due
dates/time windows/precedence constraints, etc, etc.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.
3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.
5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.
3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.
5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.

2. Analogue to Fenchel duality.
3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.
5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.

3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.
5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.
3. Separation theorem.

4. Reduces to well-know concepts like submodularity or matroids
on 0-1 vectors.

5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.
3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.

5. Has efficient minimization algorithms.

Motivation for Discrete Convexity

I In non-linear optimization, convexity leads to much faster
solution times.

I Idea: try to find an analogue for optimization of functions
defined on integer lattice. Desired properties:

1. Local optimality leads to global optimality.
2. Analogue to Fenchel duality.
3. Separation theorem.
4. Reduces to well-know concepts like submodularity or matroids

on 0-1 vectors.
5. Has efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.

I Suppose that f : Zn → R.
I Then f is L\-convex if it satisfies the discrete midpoint

property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.
I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.
I There is a dual notion called M-convexity (related to valuated

matroids) that doesn’t concern us here.
I We get all items on our wishlist for L- and M-convex

functions, including efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.
I Suppose that f : Zn → R.

I Then f is L\-convex if it satisfies the discrete midpoint
property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.
I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.
I There is a dual notion called M-convexity (related to valuated

matroids) that doesn’t concern us here.
I We get all items on our wishlist for L- and M-convex

functions, including efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.
I Suppose that f : Zn → R.
I Then f is L\-convex if it satisfies the discrete midpoint

property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.

I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.
I There is a dual notion called M-convexity (related to valuated

matroids) that doesn’t concern us here.
I We get all items on our wishlist for L- and M-convex

functions, including efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.
I Suppose that f : Zn → R.
I Then f is L\-convex if it satisfies the discrete midpoint

property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.
I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.

I There is a dual notion called M-convexity (related to valuated
matroids) that doesn’t concern us here.

I We get all items on our wishlist for L- and M-convex
functions, including efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.
I Suppose that f : Zn → R.
I Then f is L\-convex if it satisfies the discrete midpoint

property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.
I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.
I There is a dual notion called M-convexity (related to valuated

matroids) that doesn’t concern us here.

I We get all items on our wishlist for L- and M-convex
functions, including efficient minimization algorithms.

Definitions of Discrete Convexity

These concepts were first defined by Kazuo Murota.

I We first define L\-convex functions.
I Suppose that f : Zn → R.
I Then f is L\-convex if it satisfies the discrete midpoint

property:

f(x) + f(y) ≥ f(d 1
2
(x+ y)e) + f(b 1

2
(x+ y)c)

for all x, y ∈ Zn with ||x− y||∞ ≤ 2.
I It can be shown that this implies generalized submodularity:

f(x) + f(y) ≥ f(min(x, y)) + f(max(x, y))

but that submodularity does not imply L\-convexity.
I There is a dual notion called M-convexity (related to valuated

matroids) that doesn’t concern us here.
I We get all items on our wishlist for L- and M-convex

functions, including efficient minimization algorithms.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Discrete Convexity to the Rescue?

I Given this definition, why is L\-convexity appealing in the
supply chain context?

1. Submodularity: It was already understood that submodularity
arises surprisingly and usefully often in supply chain models.

2. Integer lattice: Many supply chain models have decision
variables that are naturally general integer vectors, and where
component-wise min and max make sense.

3. Non-separable costs: Many supply chain models have
non-separable costs, and L\-convexity can deal gracefully with
this.

4. Good qualitative properties: If you can prove L\-convexity,
then you understand a lot about the qualitative sensitivity of
your problem.

5. Efficient solution algorithms: If a problem is L\-convex, then
there is a polynomial-time minimization algorithm for it.

Outline

Why Discrete Convexity in Supply Chain?
Supply Chain Models
Discrete Convexity

Assemble to Order (ATO)
ATO Model
A Counterexample

An algorithm
Submodularity on a box in Rn

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.

I Assume that the time to assemble components into the
product is negligible.

I Assume that each product uses either zero of one of each
component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.

I Assume that the time to assemble components into the
product is negligible.

I Assume that each product uses either zero of one of each
component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.

I Assume that the time to assemble components into the
product is negligible.

I Assume that each product uses either zero of one of each
component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.

I Assume that the time to assemble components into the
product is negligible.

I Assume that each product uses either zero of one of each
component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.
I Assume that the time to assemble components into the

product is negligible.

I Assume that each product uses either zero of one of each
component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.
I Assume that the time to assemble components into the

product is negligible.
I Assume that each product uses either zero of one of each

component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.
I Assume that the time to assemble components into the

product is negligible.
I Assume that each product uses either zero of one of each

component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.
I Assume that the time to assemble components into the

product is negligible.
I Assume that each product uses either zero of one of each

component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

What is Assemble to Order (ATO)?

I We follow the model from the paper “Order-Based Cost
Optimization in Assemble-to-Order Systems” by Y. Lu and
J-S. Song, OR 2005.

I Imagine, e.g., a company like Dell Computers that makes
customized products out of components.

I Dell keeps in stock some inventory Ij of each component j,
where j belongs to a set J of all possible components.

I In this context a product is essentially a subset of components.
I Assume that the time to assemble components into the

product is negligible.
I Assume that each product uses either zero of one of each

component.

I When an order for a product P ⊆ J arrives, Dell takes the
components out of inventory and assembles P and sends it to
the customer.

I Assume that each product is ordered only one at a time.

I This is happening in discrete time periods t = 0, 1, 2,

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.
I We set aside, or earmark, one unit of each component j ∈ P

such that Ij > 0.
I As soon as the missing components arrive in future deliveries

from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.
I We set aside, or earmark, one unit of each component j ∈ P

such that Ij > 0.
I As soon as the missing components arrive in future deliveries

from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.

I We set aside, or earmark, one unit of each component j ∈ P
such that Ij > 0.

I As soon as the missing components arrive in future deliveries
from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.
I We set aside, or earmark, one unit of each component j ∈ P

such that Ij > 0.

I As soon as the missing components arrive in future deliveries
from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.
I We set aside, or earmark, one unit of each component j ∈ P

such that Ij > 0.
I As soon as the missing components arrive in future deliveries

from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

Stockouts

I What happens if j ∈ P but Ij = 0, i.e., a stockout?

I Then we backorder P in a special way:

I We tell the customer to wait.
I We set aside, or earmark, one unit of each component j ∈ P

such that Ij > 0.
I As soon as the missing components arrive in future deliveries

from our suppliers, we put them together with the earmarked
components and assemble and deliver product P to the patient
customer.

I Thus demand from backlogged products takes precedence over
subsequent orders that use the same component - we satisfy
orders in first come, first served (FCFS) fashion.

The Ordering Process

I Assume that each component comes from a different supplier.

I When we order component j from its supplier, the order
arrives after some leadtime Lj , which could be random.

I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.

I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.

I Whenever a customer orders product P with j ∈ P , if the
inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

The Ordering Process

I Assume that each component comes from a different supplier.
I When we order component j from its supplier, the order

arrives after some leadtime Lj , which could be random.
I When do we order?

I This is a complicated situation where the form of an optimal
ordering policy is far from clear.

I To try to make things tractable, we will assume that we follow
a base stock ordering policy, which is common in practice.

I For each component j we decide on a base stock level sj ≥ 0.
I Whenever a customer orders product P with j ∈ P , if the

inventory position of j = (inventory on hand) + (inventory on
order)− (backorders) is less than sj , then we immediately
order a replacement unit of j.

I Note that “inventory on hand” does not include earmarked
components.

I In practice, this means that for each customer order with
j ∈ P , we immediately order a replacement unit from j’s
supplier.

Costs

I There is a per-period holding cost hj levied on each unit of
component j in inventory.

I We have to be careful about inventory: We have both available
(non-earmarked) inventory Ij and earmarked inventory Fj .

I Holding cost is assessed on both of these.

I There is a per-period backorder cost bP levied on each unit of
product P when it is backordered.

I The interaction between per-component holding costs, and
per-product backorder costs, including that the FCFS
fulfillment policy means that the choice of sj affects not only
the costs for component j, but also the costs of other items,
makes this a difficult problem.

Costs

I There is a per-period holding cost hj levied on each unit of
component j in inventory.

I We have to be careful about inventory: We have both available
(non-earmarked) inventory Ij and earmarked inventory Fj .

I Holding cost is assessed on both of these.

I There is a per-period backorder cost bP levied on each unit of
product P when it is backordered.

I The interaction between per-component holding costs, and
per-product backorder costs, including that the FCFS
fulfillment policy means that the choice of sj affects not only
the costs for component j, but also the costs of other items,
makes this a difficult problem.

Costs

I There is a per-period holding cost hj levied on each unit of
component j in inventory.

I We have to be careful about inventory: We have both available
(non-earmarked) inventory Ij and earmarked inventory Fj .

I Holding cost is assessed on both of these.

I There is a per-period backorder cost bP levied on each unit of
product P when it is backordered.

I The interaction between per-component holding costs, and
per-product backorder costs, including that the FCFS
fulfillment policy means that the choice of sj affects not only
the costs for component j, but also the costs of other items,
makes this a difficult problem.

Costs

I There is a per-period holding cost hj levied on each unit of
component j in inventory.

I We have to be careful about inventory: We have both available
(non-earmarked) inventory Ij and earmarked inventory Fj .

I Holding cost is assessed on both of these.

I There is a per-period backorder cost bP levied on each unit of
product P when it is backordered.

I The interaction between per-component holding costs, and
per-product backorder costs, including that the FCFS
fulfillment policy means that the choice of sj affects not only
the costs for component j, but also the costs of other items,
makes this a difficult problem.

Costs

I There is a per-period holding cost hj levied on each unit of
component j in inventory.

I We have to be careful about inventory: We have both available
(non-earmarked) inventory Ij and earmarked inventory Fj .

I Holding cost is assessed on both of these.

I There is a per-period backorder cost bP levied on each unit of
product P when it is backordered.

I The interaction between per-component holding costs, and
per-product backorder costs, including that the FCFS
fulfillment policy means that the choice of sj affects not only
the costs for component j, but also the costs of other items,
makes this a difficult problem.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

Demand Process

I Assume that customer orders arrive in a Poisson process at
rate λ.

I Further assume that the probability of a customer order being
for subset P is qP , so that

∑
P qP = 1.

I Thus orders for product P arrive as a Poisson process at rate
qPλ.

I We now have the broad outlines of our problem: choose the
base stock levels sj for each j ∈ J so as to minimize the
expected sum of holding and backorder costs in the long run.

I We have the classic tension between holding costs and
backorder penalties here: if sj is big then we make Bj small
and so a small backorder penalty, but we make Ij big, and so
a big holding cost.

I Our decision vector s takes values on the integer lattice, and
is non-separable.

I Therefore classic optimization techniques will not work unless
we can prove that there is additional structure here.

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.

I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .

I Holding costs are also assessed on earmarked units, denoted
by Fj .

I Define BP
j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .

I Define BP
j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .

I Then Fj =
∑

P3j(B
P −BP

j) =
∑

P3j B
P −Bj .

I Thus Ij + Fj =
(sj −Xj +Bj) +

∑
P3j B

P −Bj = sj −Xj +
∑

P3j B
P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .

I Thus Ij + Fj =
(sj −Xj +Bj) +

∑
P3j B

P −Bj = sj −Xj +
∑

P3j B
P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 1

I Define Xj(t) to be the number of outstanding orders for
component j at time t (and suppress t), and Bj to be the
number of units of j that are backordered.

I Notice that Ij = (sj −Xj)+ and Bj = (Xj − sj)+.
I Thus Ij −Bj = sj −Xj , or Ij = sj −Xj +Bj .
I Holding costs are also assessed on earmarked units, denoted

by Fj .
I Define BP

j as the number of backorders for j due to product

P , so that Bj =
∑

P3j B
P
j . Also define BP as the total

number of backorders for product P .
I Then Fj =

∑
P3j(B

P −BP
j) =

∑
P3j B

P −Bj .
I Thus Ij + Fj =

(sj −Xj +Bj) +
∑

P3j B
P −Bj = sj −Xj +

∑
P3j B

P .

I Thus C(s) =
∑

j hjE(Ij + Fj) +
∑

P b
PE(BP) =∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj), where

b̃P = bP +
∑

j∈P hj .

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Objective Function 2

I Recall C(s) =
∑

j hjsj +
∑

P b̃
PE(BP)−

∑
j hjE(Xj).

I Think carefully: what depends on s?

I Answer: not
∑

j hjE(Xj).

I So we want to solve
mins

∑
j hjsj +

∑
P b̃

PE(BP) = mins C̃(s).

I The term
∑

j hjsj is separable and linear, so easy.

I The term
∑

P b̃
PE(BP) is non-separable and non-linear, so

(maybe) difficult.

The Main Claim

I A main result in Lu and Song’s paper is:

I Proposition 1 (c): C̃(s) is L\-convex.

I Recall that this is equivalent to having the discrete midpoint
property that for all s′, s′′ with ||s′ − s′′||∞ ≤ 2:

C̃(s′) + C̃(s′′) ≥ C̃
(⌊

s′ + s′′

2

⌋)
+ C̃

(⌈
s′ + s′′

2

⌉)
.

The Main Claim

I A main result in Lu and Song’s paper is:

I Proposition 1 (c): C̃(s) is L\-convex.

I Recall that this is equivalent to having the discrete midpoint
property that for all s′, s′′ with ||s′ − s′′||∞ ≤ 2:

C̃(s′) + C̃(s′′) ≥ C̃
(⌊

s′ + s′′

2

⌋)
+ C̃

(⌈
s′ + s′′

2

⌉)
.

The Main Claim

I A main result in Lu and Song’s paper is:

I Proposition 1 (c): C̃(s) is L\-convex.

I Recall that this is equivalent to having the discrete midpoint
property that for all s′, s′′ with ||s′ − s′′||∞ ≤ 2:

C̃(s′) + C̃(s′′) ≥ C̃
(⌊

s′ + s′′

2

⌋)
+ C̃

(⌈
s′ + s′′

2

⌉)
.

Outline

Why Discrete Convexity in Supply Chain?
Supply Chain Models
Discrete Convexity

Assemble to Order (ATO)
ATO Model
A Counterexample

An algorithm
Submodularity on a box in Rn

The Data

I Start with J = {1, 2}, and two products: P = {1, 2} and
Q = {1}. We use superscript “12” in place of “P” and “1” in
place of “Q”.

I The general objective C̃(s) =
∑

j hjsj +
∑

P b̃
PE(BP) is now

C̃(s1, s2) = h1s1 + h2s2 + (b12 + h1 + h2)E(B12(s1, s2))
+(b1 + h1)E(B1(s1, s2))

I Let’s further simplify by setting b1 = h1 = h2 = 0, so that C̃
becomes

C̃(s1, s2) = b12E(B12(s1, s2)).

I Now verifying the discrete midpoint property for C̃ reduces to
verifying it for E(B12(s1, s2)).

The Data

I Start with J = {1, 2}, and two products: P = {1, 2} and
Q = {1}. We use superscript “12” in place of “P” and “1” in
place of “Q”.

I The general objective C̃(s) =
∑

j hjsj +
∑

P b̃
PE(BP) is now

C̃(s1, s2) = h1s1 + h2s2 + (b12 + h1 + h2)E(B12(s1, s2))
+(b1 + h1)E(B1(s1, s2))

I Let’s further simplify by setting b1 = h1 = h2 = 0, so that C̃
becomes

C̃(s1, s2) = b12E(B12(s1, s2)).

I Now verifying the discrete midpoint property for C̃ reduces to
verifying it for E(B12(s1, s2)).

The Data

I Start with J = {1, 2}, and two products: P = {1, 2} and
Q = {1}. We use superscript “12” in place of “P” and “1” in
place of “Q”.

I The general objective C̃(s) =
∑

j hjsj +
∑

P b̃
PE(BP) is now

C̃(s1, s2) = h1s1 + h2s2 + (b12 + h1 + h2)E(B12(s1, s2))
+(b1 + h1)E(B1(s1, s2))

I Let’s further simplify by setting b1 = h1 = h2 = 0, so that C̃
becomes

C̃(s1, s2) = b12E(B12(s1, s2)).

I Now verifying the discrete midpoint property for C̃ reduces to
verifying it for E(B12(s1, s2)).

The Data

I Start with J = {1, 2}, and two products: P = {1, 2} and
Q = {1}. We use superscript “12” in place of “P” and “1” in
place of “Q”.

I The general objective C̃(s) =
∑

j hjsj +
∑

P b̃
PE(BP) is now

C̃(s1, s2) = h1s1 + h2s2 + (b12 + h1 + h2)E(B12(s1, s2))
+(b1 + h1)E(B1(s1, s2))

I Let’s further simplify by setting b1 = h1 = h2 = 0, so that C̃
becomes

C̃(s1, s2) = b12E(B12(s1, s2)).

I Now verifying the discrete midpoint property for C̃ reduces to
verifying it for E(B12(s1, s2)).

The Instance

I We assume that both leadtimes are deterministic, and equal
L.

I Now set (s′1, s
′
2) = (0, 0) and (s′′1, s

′′
2) = (2, 1).

I Thus
⌊

s′+s′′

2

⌋
= (1, 0) and

⌈
s′+s′′

2

⌉
= (1, 1).

I Thus we need to verify that
E(B12(0, 0)) + E(B12(2, 1)) ≥ E(B12(1, 0)) + E(B12(1, 1)).

I Instead we will show that
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)).

The Instance

I We assume that both leadtimes are deterministic, and equal
L.

I Now set (s′1, s
′
2) = (0, 0) and (s′′1, s

′′
2) = (2, 1).

I Thus
⌊

s′+s′′

2

⌋
= (1, 0) and

⌈
s′+s′′

2

⌉
= (1, 1).

I Thus we need to verify that
E(B12(0, 0)) + E(B12(2, 1)) ≥ E(B12(1, 0)) + E(B12(1, 1)).

I Instead we will show that
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)).

The Instance

I We assume that both leadtimes are deterministic, and equal
L.

I Now set (s′1, s
′
2) = (0, 0) and (s′′1, s

′′
2) = (2, 1).

I Thus
⌊

s′+s′′

2

⌋
= (1, 0) and

⌈
s′+s′′

2

⌉
= (1, 1).

I Thus we need to verify that
E(B12(0, 0)) + E(B12(2, 1)) ≥ E(B12(1, 0)) + E(B12(1, 1)).

I Instead we will show that
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)).

The Instance

I We assume that both leadtimes are deterministic, and equal
L.

I Now set (s′1, s
′
2) = (0, 0) and (s′′1, s

′′
2) = (2, 1).

I Thus
⌊

s′+s′′

2

⌋
= (1, 0) and

⌈
s′+s′′

2

⌉
= (1, 1).

I Thus we need to verify that
E(B12(0, 0)) + E(B12(2, 1)) ≥ E(B12(1, 0)) + E(B12(1, 1)).

I Instead we will show that
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)).

The Instance

I We assume that both leadtimes are deterministic, and equal
L.

I Now set (s′1, s
′
2) = (0, 0) and (s′′1, s

′′
2) = (2, 1).

I Thus
⌊

s′+s′′

2

⌋
= (1, 0) and

⌈
s′+s′′

2

⌉
= (1, 1).

I Thus we need to verify that
E(B12(0, 0)) + E(B12(2, 1)) ≥ E(B12(1, 0)) + E(B12(1, 1)).

I Instead we will show that
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)).

Proving the Counterexample 1

I First focus on E(B12(0, 0)) and E(B12(1, 0)) and recall that
these are expected backorders for P = {1, 2}.

I Both (0, 0) and (1, 0) keep zero units of component 2 in
stock. Thus every time that a customer orders P , a unit of
component 2 is ordered, and so the order for P can’t be filled
until the component 2 arrives in L time periods.

I Therefore, under every demand scenario, both (0, 0) and (1, 0)
generate exactly the same sequence of backorders of P , and
so E(B12(0, 0)) = E(B12(1, 0)).

Proving the Counterexample 1

I First focus on E(B12(0, 0)) and E(B12(1, 0)) and recall that
these are expected backorders for P = {1, 2}.

I Both (0, 0) and (1, 0) keep zero units of component 2 in
stock. Thus every time that a customer orders P , a unit of
component 2 is ordered, and so the order for P can’t be filled
until the component 2 arrives in L time periods.

I Therefore, under every demand scenario, both (0, 0) and (1, 0)
generate exactly the same sequence of backorders of P , and
so E(B12(0, 0)) = E(B12(1, 0)).

Proving the Counterexample 1

I First focus on E(B12(0, 0)) and E(B12(1, 0)) and recall that
these are expected backorders for P = {1, 2}.

I Both (0, 0) and (1, 0) keep zero units of component 2 in
stock. Thus every time that a customer orders P , a unit of
component 2 is ordered, and so the order for P can’t be filled
until the component 2 arrives in L time periods.

I Therefore, under every demand scenario, both (0, 0) and (1, 0)
generate exactly the same sequence of backorders of P , and
so E(B12(0, 0)) = E(B12(1, 0)).

Proving the Counterexample 2

I Now focus instead on E(B12(2, 1)) and E(B12(1, 1)). More
stock always reduces backorders, so
E(B12(2, 1)) ≤ E(B12(1, 1)). We’ll show that in fact
E(B12(2, 1)) < E(B12(1, 1)).

I At any given time t, there is a positive probability that the
demand stream in (t− L, t] will be one order for Q = {1}
followed by one order for P = {1, 2}.

I In this scenario, the (2, 1) system will not have a backorder for
P = {1, 2}, whereas the (1, 1) system will have a backorder
for P = {1, 2} (since the prior order for Q = {1} “used up”
the stock of component 1 before it could be used to satisfy
the order for P).

I This proves that E(B12(2, 1)) < E(B12(1, 1)).

I Since we had E(B12(0, 0)) = E(B12(1, 0)), we get
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)),
and so C̃(s) is not in general L\-convex.

Proving the Counterexample 2

I Now focus instead on E(B12(2, 1)) and E(B12(1, 1)). More
stock always reduces backorders, so
E(B12(2, 1)) ≤ E(B12(1, 1)). We’ll show that in fact
E(B12(2, 1)) < E(B12(1, 1)).

I At any given time t, there is a positive probability that the
demand stream in (t− L, t] will be one order for Q = {1}
followed by one order for P = {1, 2}.

I In this scenario, the (2, 1) system will not have a backorder for
P = {1, 2}, whereas the (1, 1) system will have a backorder
for P = {1, 2} (since the prior order for Q = {1} “used up”
the stock of component 1 before it could be used to satisfy
the order for P).

I This proves that E(B12(2, 1)) < E(B12(1, 1)).

I Since we had E(B12(0, 0)) = E(B12(1, 0)), we get
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)),
and so C̃(s) is not in general L\-convex.

Proving the Counterexample 2

I Now focus instead on E(B12(2, 1)) and E(B12(1, 1)). More
stock always reduces backorders, so
E(B12(2, 1)) ≤ E(B12(1, 1)). We’ll show that in fact
E(B12(2, 1)) < E(B12(1, 1)).

I At any given time t, there is a positive probability that the
demand stream in (t− L, t] will be one order for Q = {1}
followed by one order for P = {1, 2}.

I In this scenario, the (2, 1) system will not have a backorder for
P = {1, 2}, whereas the (1, 1) system will have a backorder
for P = {1, 2} (since the prior order for Q = {1} “used up”
the stock of component 1 before it could be used to satisfy
the order for P).

I This proves that E(B12(2, 1)) < E(B12(1, 1)).

I Since we had E(B12(0, 0)) = E(B12(1, 0)), we get
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)),
and so C̃(s) is not in general L\-convex.

Proving the Counterexample 2

I Now focus instead on E(B12(2, 1)) and E(B12(1, 1)). More
stock always reduces backorders, so
E(B12(2, 1)) ≤ E(B12(1, 1)). We’ll show that in fact
E(B12(2, 1)) < E(B12(1, 1)).

I At any given time t, there is a positive probability that the
demand stream in (t− L, t] will be one order for Q = {1}
followed by one order for P = {1, 2}.

I In this scenario, the (2, 1) system will not have a backorder for
P = {1, 2}, whereas the (1, 1) system will have a backorder
for P = {1, 2} (since the prior order for Q = {1} “used up”
the stock of component 1 before it could be used to satisfy
the order for P).

I This proves that E(B12(2, 1)) < E(B12(1, 1)).

I Since we had E(B12(0, 0)) = E(B12(1, 0)), we get
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)),
and so C̃(s) is not in general L\-convex.

Proving the Counterexample 2

I Now focus instead on E(B12(2, 1)) and E(B12(1, 1)). More
stock always reduces backorders, so
E(B12(2, 1)) ≤ E(B12(1, 1)). We’ll show that in fact
E(B12(2, 1)) < E(B12(1, 1)).

I At any given time t, there is a positive probability that the
demand stream in (t− L, t] will be one order for Q = {1}
followed by one order for P = {1, 2}.

I In this scenario, the (2, 1) system will not have a backorder for
P = {1, 2}, whereas the (1, 1) system will have a backorder
for P = {1, 2} (since the prior order for Q = {1} “used up”
the stock of component 1 before it could be used to satisfy
the order for P).

I This proves that E(B12(2, 1)) < E(B12(1, 1)).

I Since we had E(B12(0, 0)) = E(B12(1, 0)), we get
E(B12(0, 0)) + E(B12(2, 1)) < E(B12(1, 0)) + E(B12(1, 1)),
and so C̃(s) is not in general L\-convex.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.

I We show that the counterexample can be adapted to any
definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Implications of the Counterexample

I We have communicated this proposed counterexample to Lu
and Song and they agree with it.

I The counterexample is robust:

I We show that the counterexample translates to “big” s.
I We show that the counterexample can be adapted to any

definition of discrete convexity in the class of “D-convex”
functions (Ui).

I There does not appear to be any meaningful change to the
model that would make C̃(s) L\-convex, due to an inherent
flaw in the proof.

I Although C̃(s) is not L\-convex, it is (uncontroversially)
submodular and is convex in each coordinate direction.

I We now show how to use these properties to get a
pseudo-polynomial algorithm.

Outline

Why Discrete Convexity in Supply Chain?
Supply Chain Models
Discrete Convexity

Assemble to Order (ATO)
ATO Model
A Counterexample

An algorithm
Submodularity on a box in Rn

Submodularity on a box in Rn

I Lu and Song give nice bound l and u such that the optimal
solution is contained in the box [l, u] ≡ {s ∈ Rn | l ≤ s ≤ u}.

I Thus we want to solve mins∈[l,u] C̃(s), where C̃(s) is
submodular on the integer lattice [l, u] (with component-wise
min and max as the lattice operations).

I There is a general technique for solving such problems
descended from Birkhoff’s Theorem on distributive lattices.

I The technique was developed by Iri in ’70, ’84 as part of his
theory of “principal partitions”.

I Another version was developed by Queyranne and Tardella ’92.

Submodularity on a box in Rn

I Lu and Song give nice bound l and u such that the optimal
solution is contained in the box [l, u] ≡ {s ∈ Rn | l ≤ s ≤ u}.

I Thus we want to solve mins∈[l,u] C̃(s), where C̃(s) is
submodular on the integer lattice [l, u] (with component-wise
min and max as the lattice operations).

I There is a general technique for solving such problems
descended from Birkhoff’s Theorem on distributive lattices.

I The technique was developed by Iri in ’70, ’84 as part of his
theory of “principal partitions”.

I Another version was developed by Queyranne and Tardella ’92.

Submodularity on a box in Rn

I Lu and Song give nice bound l and u such that the optimal
solution is contained in the box [l, u] ≡ {s ∈ Rn | l ≤ s ≤ u}.

I Thus we want to solve mins∈[l,u] C̃(s), where C̃(s) is
submodular on the integer lattice [l, u] (with component-wise
min and max as the lattice operations).

I There is a general technique for solving such problems
descended from Birkhoff’s Theorem on distributive lattices.

I The technique was developed by Iri in ’70, ’84 as part of his
theory of “principal partitions”.

I Another version was developed by Queyranne and Tardella ’92.

Submodularity on a box in Rn

I Lu and Song give nice bound l and u such that the optimal
solution is contained in the box [l, u] ≡ {s ∈ Rn | l ≤ s ≤ u}.

I Thus we want to solve mins∈[l,u] C̃(s), where C̃(s) is
submodular on the integer lattice [l, u] (with component-wise
min and max as the lattice operations).

I There is a general technique for solving such problems
descended from Birkhoff’s Theorem on distributive lattices.

I The technique was developed by Iri in ’70, ’84 as part of his
theory of “principal partitions”.

I Another version was developed by Queyranne and Tardella ’92.

Submodularity on a box in Rn

I Lu and Song give nice bound l and u such that the optimal
solution is contained in the box [l, u] ≡ {s ∈ Rn | l ≤ s ≤ u}.

I Thus we want to solve mins∈[l,u] C̃(s), where C̃(s) is
submodular on the integer lattice [l, u] (with component-wise
min and max as the lattice operations).

I There is a general technique for solving such problems
descended from Birkhoff’s Theorem on distributive lattices.

I The technique was developed by Iri in ’70, ’84 as part of his
theory of “principal partitions”.

I Another version was developed by Queyranne and Tardella ’92.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).

3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so
(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Join-irreducible elements

I A key idea: For L a distributive lattice with x ∈ L, we call x
join-irreducible if x = y ∨ z implies that y = x or z = x.

I For the vector lattice [l, u] it can be shown that the set J of
join-irreducible elements is
J ≡ {x ∈ [l, u] | ∃ 1 ≤ j ≤ n s.t. xi = li∀i 6= j, and xj > lj}.

I Any distributive L has a partial order “�”; for [l, u] this is just
“≤”.

I Then it can be shown that for x ∈ L, the set
φ(x) ≡ {j ∈ J | j � x} satisfies

1. x =
∨
j∈φ(x) j.

2. J ≡ {φ(x) | x ∈ L} is a ring family (closed under ∩, ∪).
3. φ(x ∧ y) = φ(x) ∩ φ(y) and φ(x ∨ y) = φ(x) ∪ φ(y), and so

(lattice) submodularity on L carries over to (ordinary)
submodularity on J .

I Therefore we can minimize C̃(s) over [l, u] via minimizing
C̃(φ(s)) over J using a version of SFMin adapted to ring
families.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.

I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?

I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we
have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?

I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

Implications of the algorithm

I Notice that |J | = |u− l|1, and so this is only a
pseudo-polynomial algorithm.

I This is the “price” we pay for not being L\-convex.
I Natural question: does there exist a polynomial algorithm?
I No: Look at interval [l, u] ∈ Z1; any f is submodular, and we

have to look at every point to minimize.

I But |u− l|1 might not be big in practice, so
pseudo-polynomial might not be bad.

I At least this is better than brute-force enumeration.

I We could probably do better by exploiting the
component-wise convexity via an algorithm from
Favati-Tardella to shrink |u− l|1 between SFMin steps.

I Natural question again: Is there a polynomial algorithm?
I Tardella conjecture: no.

I It’s cool that we can use all these sophisticated discrete
optimization tools to get an algorithm for this supply chain
problem.

	Why Discrete Convexity in Supply Chain?
	Supply Chain Models
	Discrete Convexity

	Assemble to Order (ATO)
	ATO Model
	A Counterexample

	An algorithm
	Submodularity on a box in Rn

