
Algorithms for Submodular Function
Minimization (SFMin)

S. Thomas McCormick

Sauder School of Business, UBC
Cargese Workshop on Combinatorial Optimization,

Sept–Oct 2013

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).

2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).

3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).

4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.

I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm

I Order the elements such that w1 ≥ w2 ≥ · · · ≥ wn.

1. Make x1 as large as possible: x1 ← f({e1})− f(∅).
2. Make x2 as large as possible: x2 ← f({e1, e2})− f({e1}).
3. Make x3 as large as possible: x3 ← f({e1, e2, e3})− f({e1, e2}).
4. Etc, etc . . .

I Notice that this Greedy Algorithm depends only on the input
linear order. We derived the order from w, but we could apply
the same algorithm to any order ≺.

I Given linear order ≺ and e ∈ E, define e≺ = {g ∈ E | g ≺ e}.
I E.g., suppose that
≺1 is 3 ≺1 1 ≺1 4 ≺1 5 ≺1 2 and
≺2 is 1 ≺2 2 ≺2 3 ≺2 4 ≺2 5.

I Then 3≺1 = ∅, 3≺2 = {1, 2},
and 2≺1 = {1, 3, 4, 5}, 2≺2 = {1}.

I In this notation we can re-express the main step of Greedy on
the ith element in ≺ as
“Make xei ← f(e≺i + ei)− f(e≺i).”

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).

I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

The Greedy Algorithm produces a feasible x

I We now prove that the x computed by Greedy belongs to
B(f) as follows:

I Index the elements such that ≺ is e1 ≺ e2 ≺ · · · ≺ en. First,
x(E) =

∑
ei∈E [f(e≺i + ei)− f(e≺i)] = f(E)− f(∅) = f(E).

I Now for any ∅ ⊂ S ⊂ E we need to verify that x(S) ≤ f(S).
Define k as the largest index such that ek ∈ S, and use
induction on k.

I If k = 1 then S = {e1} and
x1 = f(e≺1 + e1)− f(e≺1) = f({e1})− f(∅) = f(S).

I If k > 1, then S ∪ e≺k = e≺k+1 and S ∩ e≺k = S − ek. Then
submodularity implies that
f(S) ≥ f(S ∪ e≺k) + f(S ∩ e≺k)− f(e≺k) =
f(e≺k+1) + f(S − ek)− f(e≺k).

I The largest ei in S − ek is smaller than k, so induction applies
to S − ek and we get x(S)− xek

= x(S − ek) ≤ f(S − ek), or
x(S) ≤ f(S − ek) + xek

= f(S − ek) + (f(e≺k + ek)− f(e≺k)).
I Thus x(S) ≤ f(S − ek) + (f(e≺k + ek)− f(e≺k)) =
f(e≺k+1) + f(S − ek)− f(e≺k) ≤ f(S).

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.

I Optimality is proven via duality. Put dual variable πS on
constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Is Greedy’s solution optimal?

I Recall that we are trying to solve maxx∈RE wTx s.t.
x ∈ B(f).

I This is a linear program (LP):

maxwTx
s.t. x(S) ≤ f(S) for all ∅ ⊂ S ⊂ E

x(E) = f(E)
x free.

I This LP has 2n constraints, one for each S.
I Optimality is proven via duality. Put dual variable πS on

constraint x(S) ≤ f(S) to get the dual:

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we for all e ∈ E
πS ≥ 0 for all S ⊂ E
πE free.

I In order to show optimality of the x coming from Greedy, we
construct a dual optimal solution.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Dual feasibility

I Here are the dual LPs:

maxwTx
s.t. x(S) ≤ f(S) ∀S

x(E) = f(E)
x free.

min
∑

S⊆E f(S)πS

s.t.
∑

S3e πS = we

πS ≥ 0 S 6= E
πE free.

I Define πS like this: Put πS = wei−1 − wei if S = e≺i ,
πE = wen − 0 (using “wen+1 = 0”), and πS = 0 otherwise.

I First, note that this πS is feasible for the dual LP:

I We chose ≺ s.t. wei−1 − wei
≥ 0, and so πS ≥ 0.

I Now
∑

S3ek
πS =

∑n+1
i=k+1(wei−1 − wei)

= wek
− wen+1 = wek

, as desired.

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.

I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.

I But then x(S) =
∑

i<k xei
=

∑
i<k(f(e≺i + ei)− f(e≺i)) =

f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).
I Thus we get equality, and so x is (primal) optimal (and π is

dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Optimality from duality

I For any x ∈ B(f) and π feasible for the dual, note that

wTx =
∑

e∈E(
∑

S3e πS)xe

=
∑

S⊆E πS
∑

e∈S xe

=
∑

S⊆E πSx(S)
≤

∑
S⊆E πSf(S).

I Since we already proved that the Greedy output x ∈ B(f) and
our π is feasible, we only need to show that
wTx =

∑
S⊆E πSf(S).

I Consider the above display. The only place there’s an
inequality is

∑
S⊆E πSx(S) ≤

∑
S⊆E πSf(S).

I If πS = 0 then both sides are zero.
I If πS 6= 0, then S is e≺k for some k.
I But then x(S) =

∑
i<k xei

=
∑

i<k(f(e≺i + ei)− f(e≺i)) =
f(e≺k−1 + ek−1)− f(∅) = f(e≺k) = f(S).

I Thus we get equality, and so x is (primal) optimal (and π is
dual optimal).

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.

I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.

I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Notes about the Greedy Algorithm

I The Greedy Algorithm takes O(nEO + n log n) time:

I It takes O(n log n) time to sort the we.
I There are n calls to E that cost O(nEO).

I It can be shown (see below) that the output x of Greedy is in
fact a vertex of B(f).

I When the input to Greedy is linear order ≺, we denote the
output x by v≺.

I We have shown that wTx is maximized at v≺ for an order ≺
consistent with w, and so in fact these Greedy vertices are all
the vertices of B(f). Thus there are at most n! vertices of
B(f).

I Although B(f) has 2n constraints, the linear order ≺ is a
succinct certificate that v≺ ∈ B(f).

I This proves that B(f) 6= ∅.
I Greedy works on B(f) for any w; it works on P (f) if w ≥ 0.

Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



Understanding the basis matrix for Greedy

I The basis matrix M for an LP is the submatrix induced by the
columns of the variables not at their bounds, and the rows
whose constraints are tight (satisfied with equality).

I Here all the xe are free (do not have bounds) and so M
includes columns for every e ∈ E.

I As we saw in the proof, the constraint for S = e≺k is tight for
each ek ∈ E.

I Therefore M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1



I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).

I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.

I Triangular systems like this are easy to solve, and indeed gives
that xei = f(e≺i + ei)− f(e≺i).

I Duality says that the dual has the same basis matrix, and π
restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).

I Duality says that the dual has the same basis matrix, and π
restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .

I Again this triangular system easily solves to πe≺i
= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

More Greedy basis matrix

I Recall that M is the lower triangular matrix:

M =


e1 e2 . . . en

e≺2 1 0 . . . 0
e≺3 1 1 . . . 0
...

...
...

. . .
...

e≺n+1 1 1 . . . 1


I Let b≺ be the RHS (f(e≺2), f(e≺3), . . . , f(e≺n+1)).
I Then our Greedy primal vector v≺ solves Mv≺ = b≺.
I Triangular systems like this are easy to solve, and indeed gives

that xei = f(e≺i + ei)− f(e≺i).
I Duality says that the dual has the same basis matrix, and π

restricted to the e≺i solves πTM = wT .
I Again this triangular system easily solves to πe≺i

= wi−1 − wi.

I This also shows that v≺ is a vertex, as it follows from M
being nonsingular.

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.

From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.

From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.

From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.

From vertices of B(f) to edges of B(f)

I We now understand the vertices of B(f) via Greedy.

I To be able to move around in B(f) we also need to
understand its edges.

I Suppose that ≺ looks like

e1e2 . . . eilkei+3 . . . en,

and ≺′ looks like

e1e2 . . . eiklei+3 . . . en;

we say that (l, k) are consecutive in ≺.

I For e ∈ E define χ(e) ∈ {0, 1}E by χ(e)e = 1 and χ(e)g = 0
for g 6= e.

I We are going to show that v≺
′ − v≺ = α(χk − χl) for a step

length α.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].

I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.

I Then we see that v≺
′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.

I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we
move k later in ≺, v≺k gets smaller.

Stepping along an edge

I Recall that v≺ comes from
e1e2 . . . eilkei+3 . . . en, and ≺′ comes from
e1e2 . . . eiklei+3 . . . en.

I Notice that for e 6= k, l we have that e≺ = e≺
′
.

I Thus for e 6= k, l we have that
v≺e = f(e≺ + e)− f(e≺) = f(e≺

′
+ e)− f(e≺

′
) = v≺

′

e .

I For e = k we have
v≺k = f(k≺ + k)− f(k≺) = f(l≺ + k + l)− f(l≺ + l) and

v≺
′

k = f(k≺
′
+ k)− f(k≺

′
) = f(l≺ + k)− f(l≺).

I For e = l we have
v≺l = f(l≺ + l)− f(l≺) = f(l≺ + l)− f(l≺) and

v≺
′

l = f(l≺
′
+ l)− f(l≺

′
) = f(l≺ + k + l)− f(l≺ + k).

I Define α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)].
I By submodularity, α ≥ 0.
I Then we see that v≺

′

l = v≺l − α, and v≺
′

k = v≺k + α.
I Intuition: as we move k earlier in ≺, v≺k gets bigger; as we

move k later in ≺, v≺k gets smaller.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Exchange capacities

I We call this step length
α = [f(l≺ + l)− f(l≺)]− [f(l≺ + k + l)− f(l≺ + k)] the
exchange capacity of the consecutive pair (l, k), and denote it
as c(k, l; v≺).

I Since x(E) = f(E) is a constraint of B(f), all x ∈ B(f) have
the constant sum f(E). Thus it is not a surprise that

|v≺k − v
≺′
k | = |v

≺
l − v

≺′
l | = c(k, l; v≺).

I We have indeed shown that when (l, k) is consecutive in ≺,
then v≺

′ − v≺ = c(k, l; v≺)(χk − χl).

I It turns out that all the edges of B(f) come from consecutive
exchanges like this.

I Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if
we can compute the more general exchange capacity c(k, l;x),
which is the largest α such that x+ α(χk − χl) ∈ B(f).

I Unfortunately it turns out that computing c(k, l;x) is provably
as difficult as SFMin.

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.

I GLS then extend this to show a strongly polynomial running
time.

An algorithmic framework for SFMin

I We now start to develop a framework for algorithms for
SFMin (due to Cunningham) that resembles the Max Flow /
Min Cut algorithms.

I The framework starts by showing that SFMin can be modeled
using a dual pair of linear program (due to Edmonds).

I However, the first weakly and strongly polynomial algorithms
for SFMin came from a very different viewpoint.

I There is an equivalence between Separation and Optimization
via the Ellipsoid Algorithm due to Grötschel, Lovász, and
Schrijver.

I For a certain polymatroid, its Separation problem is equivalent
to SFMin.

I The polymatroid’s Optimization problem is equivalent to the
LP we solved via Greedy.

I Therefore Ellipsoid says that SFMin is (weakly) polynomial.
I GLS then extend this to show a strongly polynomial running

time.

Edmonds’ LP formulation of SFMin

I Recall that SFMin is minS⊆E f(S). It is very unclear whether
this can be formulated as an LP.

I Let’s modify the dual LPs we used for Greedy by relaxing
x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u
on x in the primal, and replacing w by the all-ones vector 1:

max1Tx
s.t. x(S) ≤ f(S)

x ≤ u
x free.

minuTσ +
∑

S⊆E f(S)πS

s.t. σe +
∑

S3e πS = 1
σ, π ≥ 0

I These kinds of “combinatorial” LPs often have 0–1 optimal
solutions.

I Even better, we guess (see below) that there exists an optimal
solution to the dual where only one πS is positive, say
πS∗ = 1.

Edmonds’ LP formulation of SFMin

I Recall that SFMin is minS⊆E f(S). It is very unclear whether
this can be formulated as an LP.

I Let’s modify the dual LPs we used for Greedy by relaxing
x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u
on x in the primal, and replacing w by the all-ones vector 1:

max1Tx
s.t. x(S) ≤ f(S)

x ≤ u
x free.

minuTσ +
∑

S⊆E f(S)πS

s.t. σe +
∑

S3e πS = 1
σ, π ≥ 0

I These kinds of “combinatorial” LPs often have 0–1 optimal
solutions.

I Even better, we guess (see below) that there exists an optimal
solution to the dual where only one πS is positive, say
πS∗ = 1.

Edmonds’ LP formulation of SFMin

I Recall that SFMin is minS⊆E f(S). It is very unclear whether
this can be formulated as an LP.

I Let’s modify the dual LPs we used for Greedy by relaxing
x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u
on x in the primal, and replacing w by the all-ones vector 1:

max1Tx
s.t. x(S) ≤ f(S)

x ≤ u
x free.

minuTσ +
∑

S⊆E f(S)πS

s.t. σe +
∑

S3e πS = 1
σ, π ≥ 0

I These kinds of “combinatorial” LPs often have 0–1 optimal
solutions.

I Even better, we guess (see below) that there exists an optimal
solution to the dual where only one πS is positive, say
πS∗ = 1.

Edmonds’ LP formulation of SFMin

I Recall that SFMin is minS⊆E f(S). It is very unclear whether
this can be formulated as an LP.

I Let’s modify the dual LPs we used for Greedy by relaxing
x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u
on x in the primal, and replacing w by the all-ones vector 1:

max1Tx
s.t. x(S) ≤ f(S)

x ≤ u
x free.

minuTσ +
∑

S⊆E f(S)πS

s.t. σe +
∑

S3e πS = 1
σ, π ≥ 0

I These kinds of “combinatorial” LPs often have 0–1 optimal
solutions.

I Even better, we guess (see below) that there exists an optimal
solution to the dual where only one πS is positive, say
πS∗ = 1.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

LP optimal structure

I We believe that there exists an optimal solution to the dual
where only one πS is positive, say πS∗ = 1.

I Then the constraints σe +
∑

S3e πS = 1 would force that
σ = χ(E − S∗), and so the dual objective value would be
u(E − S∗) + f(S∗). Let’s prove this.

I (Weak duality:)
1Tx = x(E) = x(S) + x(E − S) ≤ f(S) + u(E − S). Thus
we only have to show that this is satisfied with equality.

I Suppose that x∗ is primal optimal, and S and T are both
x∗-tight, i.e., x∗(S) = f(S) and x∗(T) = f(T). Then
(homework) both S ∩ T and S ∪ T are also x∗-tight.

I Thus we can take the union of all x∗-tight sets to get S∗,
which is also x∗-tight.

I If x∗e < ue then we must have that e ∈ S∗; if not, then we
could feasibly increase x∗e, contradicting optimality. Thus
x∗e = ue for all e /∈ S∗.

I Thus x∗(E) = x∗(S∗) + x∗(E − S∗) = f(S∗) + u(E − S∗),
proving that S∗ induces a dual optimal solution.

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Specialize the LP to get SFMin

I Our LP strong duality says that
maxx∈P (f):x≤u x(E) = minS⊆E(f(S) + u(E − S)).

I If we choose u = 0 then we get
maxx∈P (f):x≤0 x(E) = minS⊆E f(S) + 0. This dual LP is just
SFMin!

I For y ∈ RE define y− ∈ RE via y−e = min(ye, 0) ≤ 0.

I If y ∈ B(f) then y− ≤ 0 and y− ∈ P (F), so it is primal
feasible.

I We now want to show the converse, that if x ∈ P (f) and
x ≤ 0, then there is some y ∈ B(f) with y ≥ x and y− = x.

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.

I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.

I This LP is quite close to the Greedy LP, except that the
objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Moving from P (f) to B(f)

I We know that an optimal x∗ ∈ P (f) with x∗ ≤ 0 looks like:

(0 0 0 0 0 0 0 0 0 0 0 0︸ ︷︷ ︸
not in any x∗-tight set

0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ = biggest x∗-tight set

)

I Set y = x∗ and pick some e /∈ S∗ and increase ye (making it
positive) until it becomes tight (there is an exponential but
finite number of constraints to check).

I Continue until every e is contained in an y-tight set.
I Now every e is in an y-tight set, and so E is tight, so the new
y is in B(f). It looks like:

(+ + + + + + + +︸ ︷︷ ︸
increased elements

0 0 0 0 0 0 0 0 − − − − − − − −︸ ︷︷ ︸
S∗ is still y-tight

)

I Thus we can use the modified primal LP maxy∈B(f) y
−(E).

I This is the form of the LP that we will use.
I This LP is quite close to the Greedy LP, except that the

objective is the piecewise linear y−(E) instead of x(E), and
this makes solving the problem much harder.

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

SFMin weak duality, complementary slackness

I Here is weak duality for these LPs:

y−(E) ≤ y−(S) tight if ye < 0 =⇒ e ∈ S
≤ y(S) tight if e ∈ S =⇒ ye ≤ 0
≤ f(S) tight if S is y-tight.

Complementary slackness is equivalent to the tightness
conditions that ensure that each inequality is an equality.

I Therefore an optimal y and S look like:

y = (− − − − 0 0 0 0 0 0︸ ︷︷ ︸
S includes all −, no +

0 0 0 0 + + + + + + +)

I If we can achieve this picture along with y(S) = f(S), it
proves that y and S jointly solve SFMin.

I Or does it? What is missing?

SFMin weak duality, complementary slackness

I Here is weak duality for these LPs:

y−(E) ≤ y−(S) tight if ye < 0 =⇒ e ∈ S
≤ y(S) tight if e ∈ S =⇒ ye ≤ 0
≤ f(S) tight if S is y-tight.

Complementary slackness is equivalent to the tightness
conditions that ensure that each inequality is an equality.

I Therefore an optimal y and S look like:

y = (− − − − 0 0 0 0 0 0︸ ︷︷ ︸
S includes all −, no +

0 0 0 0 + + + + + + +)

I If we can achieve this picture along with y(S) = f(S), it
proves that y and S jointly solve SFMin.

I Or does it? What is missing?

SFMin weak duality, complementary slackness

I Here is weak duality for these LPs:

y−(E) ≤ y−(S) tight if ye < 0 =⇒ e ∈ S
≤ y(S) tight if e ∈ S =⇒ ye ≤ 0
≤ f(S) tight if S is y-tight.

Complementary slackness is equivalent to the tightness
conditions that ensure that each inequality is an equality.

I Therefore an optimal y and S look like:

y = (− − − − 0 0 0 0 0 0︸ ︷︷ ︸
S includes all −, no +

0 0 0 0 + + + + + + +)

I If we can achieve this picture along with y(S) = f(S), it
proves that y and S jointly solve SFMin.

I Or does it? What is missing?

SFMin weak duality, complementary slackness

I Here is weak duality for these LPs:

y−(E) ≤ y−(S) tight if ye < 0 =⇒ e ∈ S
≤ y(S) tight if e ∈ S =⇒ ye ≤ 0
≤ f(S) tight if S is y-tight.

Complementary slackness is equivalent to the tightness
conditions that ensure that each inequality is an equality.

I Therefore an optimal y and S look like:

y = (− − − − 0 0 0 0 0 0︸ ︷︷ ︸
S includes all −, no +

0 0 0 0 + + + + + + +)

I If we can achieve this picture along with y(S) = f(S), it
proves that y and S jointly solve SFMin.

I Or does it? What is missing?

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).

I For each i ∈ I we have a linear order ≺i with associated
Greedy vertex vi.

I We keep multipliers λi ≥ 0 for i ∈ I satisfying
∑

i∈I λi = 1.
I Then y =

∑
i∈I λiv

i is a succinct certificate proving that
y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.

I We keep multipliers λi ≥ 0 for i ∈ I satisfying
∑

i∈I λi = 1.
I Then y =

∑
i∈I λiv

i is a succinct certificate proving that
y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

How do we know that y ∈ B(f)?

I How can we verify that y ∈ B(f)? There are 2n inequalities
to check.

I Here is a clever way to do it (Cunningham):

1. B(f) is bounded, and so it is the convex hull of its vertices,
i.e., y ∈ B(f) iff y is a convex combination of vertices of B(f).

2. We know that all vertices of B(f) come from Greedy applied
to linear orders, which have succinct certificates.

3. Carathéodory’s Theorem says that in fact there is always a
convex hull representation of y using at most n vertices.

I Therefore the algorithms will keep a representation of y like
this:

I We have an index set I of size O(n).
I For each i ∈ I we have a linear order ≺i with associated

Greedy vertex vi.
I We keep multipliers λi ≥ 0 for i ∈ I satisfying

∑
i∈I λi = 1.

I Then y =
∑

i∈I λiv
i is a succinct certificate proving that

y ∈ B(f).

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Keeping |I| = O(n)

I As the algorithms proceed, they will add new indices to I (and
possibly delete some old indices), and so |I| grows over time.

I When I becomes too large, from time to time we need to
“Carathéodory-ize” it and bring its size back down to n.

I Let V be the matrix with |E|+ 1 rows and |I| columns which
has a row of all ones at the top, and whose column i
otherwise is vi.

I Therefore we keep the equation V λ = (1 y).

I The task of subroutine ReduceV is to eliminate redundant
columns of V while maintaining V λ = (1 y) and λ ≥ 0.

I This can be done with standard linear algebra techniques in
O(n3) time.

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.

I And if we don’t have any ≺i with (l, k) consecutive in ≺i,
then how can we change the representation y =

∑
i∈I λiv

i to
track this χk − χl direction?

Outline of a generic SFMin algorithm

I We keep linear orders ≺i with associated vi, and y ∈ B(f) as
y =

∑
i∈I λiv

i.

I Suppose that y looks like:

y = (− − − − − −︸ ︷︷ ︸
S−(y)

0 0 0 0 0︸ ︷︷ ︸
S0(y)

+ + + +︸ ︷︷ ︸
S+(y)

)

I To maximize y−(E) (⇐⇒ minS y
+(E)), we want to increase

ye for some e ∈ S−(y) (or decrease ye for some e ∈ S+(y)).

I We know that ye increases if we move e to the left in some ≺i,
and ye decreases if we move e to the right in some ≺i.

I This suggests we find some k ∈ S−(y) and l ∈ S+(y) and
compute c(k, l; y), then set y′ ← y + α(χk − χl) for some
α ≤ c(k, l; y).

I But unfortunately computing c(k, l; y) is as hard as SFMin.
I And if we don’t have any ≺i with (l, k) consecutive in ≺i,

then how can we change the representation y =
∑

i∈I λiv
i to

track this χk − χl direction?

SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.

S+(y)S−(y)

S0(y)

k4k1

k2

k3

SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
We could swap k2 and k1 in ≺1 to ↑ yk1 and ↓ yk2 , but this wouldn’t
increase y−(E).

S−(y)

S0(y)

S+(y)

Makes yk1 ↑, yk2 ↓

k1

k2

k3

k4

SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
We could swap k3 and k2 in ≺2 to ↑ yk2 and ↓ yk3 , but this wouldn’t
increase y−(E).

Makes yk2 ↑, yk3 ↓

S−(y)

S0(y)

S+(y)

k4k1

k2

k3

SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
We could swap k4 and k3 in ≺3 to ↑ yk3 and ↓ yk4 , but this wouldn’t
increase y−(E).

Makes yk3 ↑, yk4 ↓

S−(y)

S0(y)

S+(y)

k4k1

k2

k3

SFMin augmenting paths

Assume that we have the situation as in the picture below, where
(k2, k1) is consecutive in ≺1, (k3, k2) is consecutive in ≺2, and
(k4, k3) is consecutive in ≺3.
But if we do all three swaps at the same time this would ↑ yk1 and
↓ yk4 , and this would increase y−(E).

Makes yk1 ↑, yk4 ↓

S−(y)

S0(y)

S+(y)

k4k1

k2

k3

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.

I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I This suggests a rudimentary algorithm:

1. Make a network with nodes E, and arc e→ g whenever (g, e)
is consecutive in some ≺i.

2. If there is a directed path from S−(y) to S+(y) then augment
along it; repeat until no such path remains.

3. If 6 ∃ a directed path from S−(y) to S+(y), define
S∗ = {e ∈ E | ∃ augmenting path from S−(y) up to e}. Then
we show below that S∗ solves SFMin.

I Note that S−(y) ⊆ S∗ ⊆ E − S+(y), so S∗ satisfies two of
the three complementary slackness conditions.

I I claim that S∗ is at the left of every ≺i.

I Suppose that there is some ≺i with l /∈ S∗ to the left of some
k ∈ S∗.

I Then there must be such a pair (l, k) that is consecutive in ≺i.
I But then we could extend the augmenting path to k along arc
k → l coming from consecutive pair (l, k), contradicting that
l /∈ S∗.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is like Max Flow / Min Cut

I I just showed that S∗ is at the left of every ≺i.

I Now S∗ at the left of ≺i implies that vi(S∗) = f(S∗).

I Then y(S∗) =
∑

i∈I λiv
i(S∗) =

∑
i∈I λif(S∗) =

f(S∗)
∑

i∈I λi = f(S∗).

I Thus S∗ is y-tight, the third complementary slackness
condition, and so S∗ is indeed optimal for SFMin.

I This proof is very much in the same spirit as the Max Flow /
Min Cut augmenting path proof.

I The same proof works with a more general definition of arcs:
Put e→ g ∈ A whenever g ≺i e for some i ∈ I.

I The “only” remaining thing to do is to find some way to
arrange augmentations so there is only a polynomial number
of them.

SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.

SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.

SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.

SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.

SFMin is not like Max Flow / Min Cut

I The set of arcs changes dynamically as I changes and y
changes.

I The “capacity” of arcs changes dynamically.

I One augmenting path could contain several arcs coming from
the same ≺i, implying that computing the augmentation
amount is quite complicated.

I Augmentation amounts depend on the λi, which can be
arbitrarily small.

I These are some of the reasons why it took many, many years
to figure out how to get a combinatorial SFMin algorithm,
and why Cunningham’s SFMin algorithm was only
pseudo-polynomial.

Current state of the art in SFMin

(Taken from S. T. McCormick (2006). Submodular Function
Minimization. Chapter 7 in the Handbook on Discrete
Optimization, Elsevier, K. Aardal, G. Nemhauser, and R.
Weismantel, eds, 321–391.; see my webpage for updated version.)

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Why is Carathéodory bad?

1. The Carathéodory subroutine ReduceV is a bottleneck in
the worst-case running time of the fastest SFMin algorithms.

2. The linear algebra involved in ReduceV is ugly and produces
highly fractional λi in general.

I With integral f(S), it is easy to prove that there is always an
integral y∗ that solves the dual of SFMin.

3. The linear algebra of ReduceV is also a bottleneck in the
empirical running time of SFMin algorithms (Iwata).

4. Potentially, replacing ReduceV by something more
combinatorial would be a way to get a faster SFMin algorithm.

I Challenge: Find a linear algebra-free way to prove that the
current y belongs to B(f). This new method should be:

1. Efficient: Calling ReduceV costs O(n3) time, so the new
method needs to be at least this fast.

2. Integral: It should work without using any multiplication or
division, i.e., no linear algebra, and it should be able to
maintain that y is always integral.

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

A useful theorem?

I Recall that if y, y′ ∈ B(f), then y(E) = y′(E) = f(E).

I Thus we can’t have y ≥ y′ with y 6= y′.

I Use tilde to represent projecting out the first component, so
that Ẽ = E − {1} and ỹ = (y2, y3, . . . , yn).

I Now we can have ỹ ≥ ỹ′ with ỹ 6= ỹ′.

I Suppose that we have x, z ∈ B(f), y(E) = f(E), and
x̃ ≤ ỹ ≤ z̃.

I Theorem (Fujishige): Then y ∈ B(f).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).

I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.

I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.

I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.

I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.

I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).

I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and

I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and

I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and

I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and
I ỹ ∈ P (f̃) (submodular polyhedron) and

I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and
I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Proof of the theorem

I We need to show that for all S ⊆ E that y(S) ≤ f(S).
I Case 1: Suppose that 1 /∈ S, so that S̃ = S.

I Then y(S) = y(S̃) ≤ z(S̃) = z(S) ≤ f(S).

I Case 2: Suppose that 1 ∈ S, so that S̃ = S − {1}.
I Then y(E) = f(E) implies that y1 = f(E)− ỹ(Ẽ).
I Thus y(S) = ỹ(S̃) + y1 = ỹ(S̃) + f(E)− ỹ(Ẽ) =
f(E)− ỹ(Ẽ − S̃) ≤ f(E)− x̃(Ẽ − S̃) =
x̃(S̃) + f(E)− x̃(Ẽ) = x(S̃) + x1 = x(S) ≤ f(S).

I These show that y ∈ B(f) iff y(E) = f(E) and
I ỹ(S) ≤ f̃(S) ∀ S ⊆ Ẽ, and
I ỹ(T) ≥ f̃#(T) ≡ f(E)− f(T) ∀ T s.t. T ⊆ Ẽ (with
S ≡ E − T , so that 1 ∈ S).

I I.e., iff y(E) = f(E) and
I ỹ ∈ P (f̃) (submodular polyhedron) and
I ỹ ∈ P#(f̃#) (supermodular polyhedron).

I This projection of B(f) along one component is a
g-polymatroid (and all g-polymatroids arise this way).

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?

I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).

I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).

I Similar proof show that this means that we can decrease
components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).
I Similar proof show that this means that we can decrease

components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).
I Similar proof show that this means that we can decrease

components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Implications of the theorem

I Suppose, e.g., that x and z are vertices of B(f) coming from
linear orders ≺x and ≺z.

I Thus ≺x and ≺z certify that x, z ∈ B(f) via Greedy.

I Then y(E) = f(E) and x̃ ≤ ỹ ≤ z̃ certify that y ∈ B(f)
using no linear algebra.

I Do these “projected boxes” starting from vertices cover B(f)?
I YES; Proof:

I Suppose that y ∈ B(f).
I This implies that ỹ ∈ P (f̃).

I We already saw that this means that we can increase
components of ỹ to get z̃ with ỹ ≤ z̃ and z̃ ∈ B(f̃).

I This also implies that ỹ ∈ P#(f̃).
I Similar proof show that this means that we can decrease

components of ỹ to get x̃ with x̃ ≤ ỹ and x̃ ∈ B#(f̃).

I Now apply induction: z̃ ∈ B(f̃) (one dimension less) implies
that we express z̃ as a combinatorial hull from vertices.

I . . . and apply induction to x̃ ∈ B#(f̃) to get x̃ as a
combinatorial hull from vertices.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but

I It does not appear to be efficient (so far). That is, we don’t
have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Good news, bad news

I Good news: This proof shows that we can use this
combinatorial hull operation to prove that y ∈ B(f) without
using linear algebra.

I The “depth” of this representation is only O(n).

I Bad news: The size of this representation is potentially 2n:

I Each new dimension doubles the number of points we are
using.

I This achieves only half of what we challenged ourselves to do:

I It does avoid linear algebra, but
I It does not appear to be efficient (so far). That is, we don’t

have a combinatorial hull equivalent to Carathéodory’s
Theorem.

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

What is “combinatorial hull”?

I The word “hull” typically means a closure operation.

I Here is the closure operation we want: Given a set of points
P ⊆ Rn satisfying x(E) = c for all x ∈ P , we say that y with
y(E) = c is in the combinatorial hull of P if there exists some
i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where
the tildes are w.r.t. projecting out component i).

I Then the combinatorial hull of P , combhull(P), is the set of
points we obtain by iterating this operation.

I In these terms we have shown that if V (f) is the set of
vertices of B(f), then combhull(V (f)) = B(f), and
B(f) = combhull(B(f)).

I What we have not shown is, starting from V (f), how many
iterations of the combinatorial hull operation are necessary to
get to an arbitrary point of B(f).

What is “combinatorial hull”?

I The word “hull” typically means a closure operation.

I Here is the closure operation we want: Given a set of points
P ⊆ Rn satisfying x(E) = c for all x ∈ P , we say that y with
y(E) = c is in the combinatorial hull of P if there exists some
i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where
the tildes are w.r.t. projecting out component i).

I Then the combinatorial hull of P , combhull(P), is the set of
points we obtain by iterating this operation.

I In these terms we have shown that if V (f) is the set of
vertices of B(f), then combhull(V (f)) = B(f), and
B(f) = combhull(B(f)).

I What we have not shown is, starting from V (f), how many
iterations of the combinatorial hull operation are necessary to
get to an arbitrary point of B(f).

What is “combinatorial hull”?

I The word “hull” typically means a closure operation.

I Here is the closure operation we want: Given a set of points
P ⊆ Rn satisfying x(E) = c for all x ∈ P , we say that y with
y(E) = c is in the combinatorial hull of P if there exists some
i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where
the tildes are w.r.t. projecting out component i).

I Then the combinatorial hull of P , combhull(P), is the set of
points we obtain by iterating this operation.

I In these terms we have shown that if V (f) is the set of
vertices of B(f), then combhull(V (f)) = B(f), and
B(f) = combhull(B(f)).

I What we have not shown is, starting from V (f), how many
iterations of the combinatorial hull operation are necessary to
get to an arbitrary point of B(f).

What is “combinatorial hull”?

I The word “hull” typically means a closure operation.

I Here is the closure operation we want: Given a set of points
P ⊆ Rn satisfying x(E) = c for all x ∈ P , we say that y with
y(E) = c is in the combinatorial hull of P if there exists some
i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where
the tildes are w.r.t. projecting out component i).

I Then the combinatorial hull of P , combhull(P), is the set of
points we obtain by iterating this operation.

I In these terms we have shown that if V (f) is the set of
vertices of B(f), then combhull(V (f)) = B(f), and
B(f) = combhull(B(f)).

I What we have not shown is, starting from V (f), how many
iterations of the combinatorial hull operation are necessary to
get to an arbitrary point of B(f).

What is “combinatorial hull”?

I The word “hull” typically means a closure operation.

I Here is the closure operation we want: Given a set of points
P ⊆ Rn satisfying x(E) = c for all x ∈ P , we say that y with
y(E) = c is in the combinatorial hull of P if there exists some
i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where
the tildes are w.r.t. projecting out component i).

I Then the combinatorial hull of P , combhull(P), is the set of
points we obtain by iterating this operation.

I In these terms we have shown that if V (f) is the set of
vertices of B(f), then combhull(V (f)) = B(f), and
B(f) = combhull(B(f)).

I What we have not shown is, starting from V (f), how many
iterations of the combinatorial hull operation are necessary to
get to an arbitrary point of B(f).

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

A glimmer of hope

I When n = 2, B(f) is one-dimensional with at most two
vertices, and it is easy to see that any y ∈ B(f) is in the
combinatorial hull of the two vertices.

I When n = 3, B(f) is two-dimensional.

I Our naive proof would give a combinatorial hull representation
using four vertices.

I But a brute force proof shows that we can always get a
combinatorial hull representation using at most three vertices.

I So maybe this naive proof is not being clever enough, and
maybe we could get a more clever proof that (efficiently,
algorithmically) produces a representation with only a
polynomial number of vertices?

I Spoiler alert: I’m not going to give you such an algorithm.

I Hopefulness: But I will give you some tools you might use to
construct such an algorithm.

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).

I But to prove optimality, we need more: we also have the
subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.

I Then linear algebra says that y(S) =
∑

i∈I λiv
i(S) =∑

i∈I λif(S) = f(S)
∑

i∈I λi = f(S), and so S is indeed
y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Combinatorial hull and SFMin

I Imagine the last step of some SFMin algorithm where we are
verifying that our current y is optimal.

I We are using the old-style representation y =
∑

i∈I λiv
i,

which proves that y ∈ B(f).
I But to prove optimality, we need more: we also have the

subset S of elements reachable from S−, and we want to
verify that y(S) = f(S) (part of complementary slackness).

I “Reachable” implies that S is consecutive at the beginning of
every ≺i.

I Then Greedy implies that vi(S) = f(S) for all i ∈ I.
I Then linear algebra says that y(S) =

∑
i∈I λiv

i(S) =∑
i∈I λif(S) = f(S)

∑
i∈I λi = f(S), and so S is indeed

y-tight.

I Can we also do this for combinatorial hull?

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).

I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Tightness and combinatorial hull

I Easy direction: Proof that S tight for x and z implies that S
is also tight for y.

I If 1 /∈ S: f(S) = x(S) = x̃(S̃) ≤ ỹ(S̃) ≤ z̃(S̃) = z(S) = f(S),
so we get equality everywhere, and so ỹ(S̃) = y(S) = f(S).

I If 1 ∈ S: (same proof with everything complemented).
I This is the direction that we need for SFMin optimality.

I Slightly harder direction: If S is tight for y, is it necessarily
also tight for x and z?

I NO! A simple counterexample shows that we can have, e.g., S
tight for y and z but not tight for x.

I But if we have that x̃e < ỹe < z̃e for all e ∈ Ẽ with xe < ze

(i.e., if y is strictly interior wherever possible), then it’s fairly
easy to show that S tight for y implies that it is also tight for
x and z.

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or

2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,
i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).

I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.

I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.

I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and combinatorial hull

I Given a polyhedron P and point y ∈ Rn, the membership
problem is to either

1. Prove that y ∈ P , or
2. Find a valid inequality (facet?) αTx ≤ b for P violated by y,

i.e., αT y > b.

I Given an instance B(f), y of membership, we are hoping for a
polynomial algorithm that proves either that y ∈ B(f) (via
constructing a combinatorial hull representation), or some S
such that y(S) > f(S).

I It is easy to reduce general membership for general B(f) and
y to membership for a related submodular B(f̂) and 0, where
f̂(E) = f̂(∅) = 0

I Define f̂(S) = f(S)− y(S).
I Clearly f̂(E) = f̂(∅) = 0.
I Since y(S) is modular, f̂(S) is submodular.
I Now S proves that y /∈ B(f) iff y(S) > f(S) iff

0 > f(S)− y(S) = f̂(S), and so y ∈ B(f) iff 0 ∈ B(f̂).

Membership and SFMin

I Even better, if we can solve this membership problem w.r.t.
B(f̂) and 0, then Fujishige and Iwata (2001) show that O(n2)
calls to this subroutine suffice to solve SFMin.

I If we had a membership subroutine that didn’t use linear
algebra, then we’d have a linear algebra-free SFMin algorithm.

I Thus a polynomial combinatorial algorithm that uses
combinatorial hull to solve membership of 0 in B(f̂) is a
worthwhile target.

I With this reduction to membership for 0, what we are trying
to do is to construct points x, z ∈ B(f̂) via combinatorial hull
such that x̃ ≤ 0 and z̃ ≥ 0.

I The problem is symmetric between x and z: If we can succeed
in constructing a point z ∈ B(f̂) with z̃ ≥ 0 (or prove that no
such z exists), then we could run the same algorithm with
signs reversed to get some x ∈ B(f̂) with x̃ ≤ 0 (or prove
that no such x exists).

Membership and SFMin

I Even better, if we can solve this membership problem w.r.t.
B(f̂) and 0, then Fujishige and Iwata (2001) show that O(n2)
calls to this subroutine suffice to solve SFMin.

I If we had a membership subroutine that didn’t use linear
algebra, then we’d have a linear algebra-free SFMin algorithm.

I Thus a polynomial combinatorial algorithm that uses
combinatorial hull to solve membership of 0 in B(f̂) is a
worthwhile target.

I With this reduction to membership for 0, what we are trying
to do is to construct points x, z ∈ B(f̂) via combinatorial hull
such that x̃ ≤ 0 and z̃ ≥ 0.

I The problem is symmetric between x and z: If we can succeed
in constructing a point z ∈ B(f̂) with z̃ ≥ 0 (or prove that no
such z exists), then we could run the same algorithm with
signs reversed to get some x ∈ B(f̂) with x̃ ≤ 0 (or prove
that no such x exists).

Membership and SFMin

I Even better, if we can solve this membership problem w.r.t.
B(f̂) and 0, then Fujishige and Iwata (2001) show that O(n2)
calls to this subroutine suffice to solve SFMin.

I If we had a membership subroutine that didn’t use linear
algebra, then we’d have a linear algebra-free SFMin algorithm.

I Thus a polynomial combinatorial algorithm that uses
combinatorial hull to solve membership of 0 in B(f̂) is a
worthwhile target.

I With this reduction to membership for 0, what we are trying
to do is to construct points x, z ∈ B(f̂) via combinatorial hull
such that x̃ ≤ 0 and z̃ ≥ 0.

I The problem is symmetric between x and z: If we can succeed
in constructing a point z ∈ B(f̂) with z̃ ≥ 0 (or prove that no
such z exists), then we could run the same algorithm with
signs reversed to get some x ∈ B(f̂) with x̃ ≤ 0 (or prove
that no such x exists).

Membership and SFMin

I Even better, if we can solve this membership problem w.r.t.
B(f̂) and 0, then Fujishige and Iwata (2001) show that O(n2)
calls to this subroutine suffice to solve SFMin.

I If we had a membership subroutine that didn’t use linear
algebra, then we’d have a linear algebra-free SFMin algorithm.

I Thus a polynomial combinatorial algorithm that uses
combinatorial hull to solve membership of 0 in B(f̂) is a
worthwhile target.

I With this reduction to membership for 0, what we are trying
to do is to construct points x, z ∈ B(f̂) via combinatorial hull
such that x̃ ≤ 0 and z̃ ≥ 0.

I The problem is symmetric between x and z: If we can succeed
in constructing a point z ∈ B(f̂) with z̃ ≥ 0 (or prove that no
such z exists), then we could run the same algorithm with
signs reversed to get some x ∈ B(f̂) with x̃ ≤ 0 (or prove
that no such x exists).

Membership and SFMin

I Even better, if we can solve this membership problem w.r.t.
B(f̂) and 0, then Fujishige and Iwata (2001) show that O(n2)
calls to this subroutine suffice to solve SFMin.

I If we had a membership subroutine that didn’t use linear
algebra, then we’d have a linear algebra-free SFMin algorithm.

I Thus a polynomial combinatorial algorithm that uses
combinatorial hull to solve membership of 0 in B(f̂) is a
worthwhile target.

I With this reduction to membership for 0, what we are trying
to do is to construct points x, z ∈ B(f̂) via combinatorial hull
such that x̃ ≤ 0 and z̃ ≥ 0.

I The problem is symmetric between x and z: If we can succeed
in constructing a point z ∈ B(f̂) with z̃ ≥ 0 (or prove that no
such z exists), then we could run the same algorithm with
signs reversed to get some x ∈ B(f̂) with x̃ ≤ 0 (or prove
that no such x exists).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).

I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Some useful facts about vertices of B(f)

I We would start an algorithm with a Greedy vertex v coming
from linear order ≺.

I Recall that Greedy has the property that if S is an initial
subset of ≺, then v(S) = f(S).

I Since y(S) ≤ f(S) for all y ∈ B(f), clearly v solves
maxy∈B(f) y(S).

I Slightly trickier: Suppose now that S is a terminal subset of
≺.

I Since v solves maxy∈B(f) y(E − S), and since y(E) is
constant on B(f), we have that v must solve miny∈B(f) y(S).

I Application to membership of 0 in B(f̂): Suppose that
≺= (1, 2, 3, . . . , n).

I If v1 < 0, then y({1}) ≤ f̂({1}) = v1 certifies that 0 /∈ B(f̂).
I If vn > 0, then −yn = y(E)− yn =
y(E − {n}) ≤ f̂(E − {n}) = v(E − {n}) = v(E)− vn = −vn

certifies that 0 /∈ B(f̂).

Outline

Optimizing submodular functions
The Greedy Algorithm
Edges of B(f)

SFMin algorithms
An algorithmic framework
Algorithm-izing the dual LPs

Combinatorial Hull
Carathéodory is a bottleneck
Avoiding linear algebra
Combinatorial hull and membership
Algorithmic ideas for combinatorial hull

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

An algorithmic idea

I Let’s start with v coming from ≺, and we’ll concentrate on
trying to find an x̃ ≤ 0.

I Previous slide showed that we can assume that v1 ≥ 0 and
vn ≤ 0.

I More generally, we can assume that for any initial subset S of
≺, v(S) ≥ 0 (same proof), and . . .

I . . . for any terminal subset S of ≺ we can assume that
v(S) ≤ 0 (same proof).

I So now let’s try to find combinatorial hull moves that will
modify v into the x̃ we need.

I All we need to do is to “re-distribute” the negativity in the
terminal elements of v to make every individual component
non-positive (not just the terminal partial sums).

A good start

I Suppose that vn < 0 but that vn−1 > 0.

I Consider v′ generated by ≺′= (1, 2, . . . , n− 2, n, n− 1).

I We saw that v′n ≥ vn and v′n−1 ≤ vn−1, but that v′i = vi for
all i < n− 1.

I As we move v in the v′ − v direction, vn increases towards 0,
and vn−1 decreases towards 0.

I This movement is along the edge which is the convex hull of v
and v′ (this sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
valid combinatorial hull operation (which sounds good).

A good start

I Suppose that vn < 0 but that vn−1 > 0.

I Consider v′ generated by ≺′= (1, 2, . . . , n− 2, n, n− 1).

I We saw that v′n ≥ vn and v′n−1 ≤ vn−1, but that v′i = vi for
all i < n− 1.

I As we move v in the v′ − v direction, vn increases towards 0,
and vn−1 decreases towards 0.

I This movement is along the edge which is the convex hull of v
and v′ (this sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
valid combinatorial hull operation (which sounds good).

A good start

I Suppose that vn < 0 but that vn−1 > 0.

I Consider v′ generated by ≺′= (1, 2, . . . , n− 2, n, n− 1).

I We saw that v′n ≥ vn and v′n−1 ≤ vn−1, but that v′i = vi for
all i < n− 1.

I As we move v in the v′ − v direction, vn increases towards 0,
and vn−1 decreases towards 0.

I This movement is along the edge which is the convex hull of v
and v′ (this sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
valid combinatorial hull operation (which sounds good).

A good start

I Suppose that vn < 0 but that vn−1 > 0.

I Consider v′ generated by ≺′= (1, 2, . . . , n− 2, n, n− 1).

I We saw that v′n ≥ vn and v′n−1 ≤ vn−1, but that v′i = vi for
all i < n− 1.

I As we move v in the v′ − v direction, vn increases towards 0,
and vn−1 decreases towards 0.

I This movement is along the edge which is the convex hull of v
and v′ (this sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
valid combinatorial hull operation (which sounds good).

A good start

I Suppose that vn < 0 but that vn−1 > 0.

I Consider v′ generated by ≺′= (1, 2, . . . , n− 2, n, n− 1).

I We saw that v′n ≥ vn and v′n−1 ≤ vn−1, but that v′i = vi for
all i < n− 1.

I As we move v in the v′ − v direction, vn increases towards 0,
and vn−1 decreases towards 0.

I This movement is along the edge which is the convex hull of v
and v′ (this sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
valid combinatorial hull operation (which sounds good).

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.

I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.

I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

Three possible outcomes

1. We could stop if vn hits 0 before vn−1.

I But then the terminal partial sum of n and n− 1 is positive, so
we get a proof that 0 /∈ B(f̂).

2. We could stop if vn−1 hits 0 before vn.

I Now we have the last two components of v non-positive, so we
could “continue the algorithm” (towards our ideal of having
the last n− 1 components of v non-positive).

3. We could stop if we move all the way from v to v′ and neither
one of vn nor vn−1 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n−1 > 0.
I This violates that yn−1 ≥ f̂#({n− 1}) = v′n−1, proving that

0 /∈ B(f̂).

I In all three case we make real progress.

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.

I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .

I . . . but we could move to (. . . , 0,−1, 0), which is integral
(good).

More complicated

I Suppose instead that vn < 0, but vn−1 = 0 and vn−2 > 0.
I Consider now the block change

v′ = (1 2 . . . n− 3 n n− 2 n− 1)

I The same proof shows that v′n ≥ vn, and v′n−2 ≤ vn−2,
v′n−1 ≤ vn−1.

I Again if we move v in the v′ − v direction, vn increases
towards 0, vn−1 decreases from 0, and vn−2 decreases towards
0.

I This move is not along an edge, and is a convex hull move
(which again sounds bad), but since v′ − v has all signs
non-positive (after projecting out coordinate n), this is also a
combinatorial hull operation (which sounds good).

I This looks non-integral: Suppose that v = (. . . , 3, 0,−4) and
v′ = (. . . ,−2,−1, 2). Then we’d move to (. . . , 0,− 3

5 ,−
2
5),

which is not integral (bad) . . .
I . . . but we could move to (. . . , 0,−1, 0), which is integral

(good).

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.

I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.

I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the
last two terms of v′ must be non-positive.

I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before
where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.

I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before
where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

Again three possible outcomes

1. We could stop if vn hits 0 before vn−2.

I Now we could do a step as before with vn−2 > 0, vn−1 < 0.

2. We could stop if vn−2 hits 0 before vn.

I Now we have the last three components of v non-positive, so
we could “continue the algorithm”.

3. We could stop if we move all the way from v to v′ and neither
vn nor vn−2 hits 0.

I Now we have effectively replaced v by v′.
I We ended with v′n < 0, v′n−1 ≤ 0, and v′n−2 > 0.
I If v′n−1 + v′n−2 > 0 then we violate that the partial sum of the

last two terms of v′ must be non-positive.
I If instead v′n−1 + v′n−2 ≤ 0 then we can do a step as before

where we move v′n−1 up and v′n−2 down.

I Again we make real progress in all cases.

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

A more complicated, problematic example

I Suppose that ≺= (1 2 3 4 5) and v = (1, 4, 3, 0,−8).

I We’d set ≺1= (1 2 5 3 4), with, say, v1 = (1, 4,−1,−2,−2).

I This would lead to, say, v′ = (1, 4, 0,−1,−4).

I Now we’d set ≺2= (1 4 2 3 5), with, say,
v2 = (1,−1, 1, 7,−8).

I We were expecting that after projecting out 4, we’d have that
v2
2 ≤ v′2 and v2

3 ≤ v′3, but this is false.

I This is the problem with combinatorial hull: Unlike convex
hull, you cannot arbitrarily pile on an operation that works in
one place (e.g., v2 − v is a good direction w.r.t. v) and
necessarily have it work in another place (e.g., v2 doesn’t have
the right signs w.r.t. v′).

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.

I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.

I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.

I Bad: These algorithmic ideas don’t yet seem strong enough to
make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

(Tentative) conclusions

1. Finding a more combinatorial replacement for ReduceV is
important.

2. Combinatorial hull has some good points and some bad
points:

I Good: It proves that y ∈ B(f) with no linear algebra.
I Good: There are some promising algorithmic ideas.
I Good: These algorithmic ideas preserve integrality.
I Bad: These algorithmic ideas don’t yet seem strong enough to

make combinatorial hull work.

3. But we don’t have an alternative to combinatorial hull in hand
either . . .

	Optimizing submodular functions
	The Greedy Algorithm
	Edges of B(f)

	SFMin algorithms
	An algorithmic framework
	Algorithm-izing the dual LPs

	Combinatorial Hull
	Carathéodory is a bottleneck
	Avoiding linear algebra
	Combinatorial hull and membership
	Algorithmic ideas for combinatorial hull

