Algorithms for Submodular Function Minimization (SFMin)

S. Thomas McCormick

Sauder School of Business, UBC Cargese Workshop on Combinatorial Optimization, Sept-Oct 2013

Optimizing submodular functions The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

• Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.

• Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.

1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) - f(\emptyset)$.

• Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.

- 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
- 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.

• Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.

- 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
- 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
- 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$

• Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.

- 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
- 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
- 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$

4. Etc, etc . . .

- Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.
 - 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
 - 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
 - 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$
 - 4. Etc, etc . . .
- Notice that this Greedy Algorithm depends only on the input linear order. We derived the order from w, but we could apply the same algorithm to any order ≺.

- Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.
 - 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
 - 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
 - 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$
 - 4. Etc, etc . . .
- Notice that this Greedy Algorithm depends only on the input linear order. We derived the order from w, but we could apply the same algorithm to any order ≺.
- Given linear order \prec and $e \in E$, define $e^{\prec} = \{g \in E \mid g \prec e\}$.

- Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.
 - 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
 - 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
 - 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$
 - 4. Etc, etc . . .
- Notice that this Greedy Algorithm depends only on the input linear order. We derived the order from w, but we could apply the same algorithm to any order ≺.

• Given linear order \prec and $e \in E$, define $e^{\prec} = \{g \in E \mid g \prec e\}$.

• E.g., suppose that \prec_1 is $3 \prec_1 1 \prec_1 4 \prec_1 5 \prec_1 2$ and \prec_2 is $1 \prec_2 2 \prec_2 3 \prec_2 4 \prec_2 5$.

- Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.
 - 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
 - 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
 - 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$
 - 4. Etc, etc . . .
- Notice that this Greedy Algorithm depends only on the input linear order. We derived the order from w, but we could apply the same algorithm to any order ≺.

• Given linear order \prec and $e \in E$, define $e^{\prec} = \{g \in E \mid g \prec e\}$.

- E.g., suppose that \prec_1 is $3 \prec_1 1 \prec_1 4 \prec_1 5 \prec_1 2$ and \prec_2 is $1 \prec_2 2 \prec_2 3 \prec_2 4 \prec_2 5$.
- ► Then $3^{\prec_1} = \emptyset$, $3^{\prec_2} = \{1, 2\}$, and $2^{\prec_1} = \{1, 3, 4, 5\}$, $2^{\prec_2} = \{1\}$.

- Order the elements such that $w_1 \ge w_2 \ge \cdots \ge w_n$.
 - 1. Make x_1 as large as possible: $x_1 \leftarrow f(\{e_1\}) f(\emptyset)$.
 - 2. Make x_2 as large as possible: $x_2 \leftarrow f(\{e_1, e_2\}) f(\{e_1\})$.
 - 3. Make x_3 as large as possible: $x_3 \leftarrow f(\{e_1, e_2, e_3\}) f(\{e_1, e_2\})$
 - 4. Etc, etc . . .
- Notice that this Greedy Algorithm depends only on the input linear order. We derived the order from w, but we could apply the same algorithm to any order ≺.

• Given linear order \prec and $e \in E$, define $e^{\prec} = \{g \in E \mid g \prec e\}$.

E.g., suppose that

 \prec_1 is $3 \prec_1 1 \prec_1 4 \prec_1 5 \prec_1 2$ and

- $\prec_2 \text{ is } 1 \prec_2 2 \prec_2 3 \prec_2 4 \prec_2 5.$
- ► Then $3^{\prec_1} = \emptyset$, $3^{\prec_2} = \{1, 2\}$, and $2^{\prec_1} = \{1, 3, 4, 5\}$, $2^{\prec_2} = \{1\}$.
- In this notation we can re-express the main step of Greedy on the *i*th element in ≺ as

"Make $x_{e_i} \leftarrow f(e_i^{\prec} + e_i) - f(e_i^{\prec})$."

► We now prove that the x computed by Greedy belongs to B(f) as follows:

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$
 - Now for any Ø ⊂ S ⊂ E we need to verify that x(S) ≤ f(S). Define k as the largest index such that e_k ∈ S, and use induction on k.

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$
 - Now for any Ø ⊂ S ⊂ E we need to verify that x(S) ≤ f(S). Define k as the largest index such that e_k ∈ S, and use induction on k.

• If
$$k = 1$$
 then $S = \{e_1\}$ and
 $x_1 = f(e_1^{\prec} + e_1) - f(e_1^{\prec}) = f(\{e_1\}) - f(\emptyset) = f(S).$

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$
 - Now for any Ø ⊂ S ⊂ E we need to verify that x(S) ≤ f(S). Define k as the largest index such that e_k ∈ S, and use induction on k.
 - If k = 1 then $S = \{e_1\}$ and $x_1 = f(e_1^{\prec} + e_1) - f(e_1^{\prec}) = f(\{e_1\}) - f(\emptyset) = f(S).$
 - If k > 1, then $S \cup e_k^{\prec} = e_{k+1}^{\prec}$ and $S \cap e_k^{\prec} = S e_k$. Then submodularity implies that $f(S) \ge f(S \cup e_k^{\prec}) + f(S \cap e_k^{\prec}) - f(e_k^{\prec}) = f(e_{k+1}^{\prec}) + f(S - e_k) - f(e_k^{\prec}).$

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$
 - Now for any Ø ⊂ S ⊂ E we need to verify that x(S) ≤ f(S). Define k as the largest index such that e_k ∈ S, and use induction on k.
 - If k = 1 then $S = \{e_1\}$ and $x_1 = f(e_1^{\prec} + e_1) - f(e_1^{\prec}) = f(\{e_1\}) - f(\emptyset) = f(S).$
 - If k > 1, then $S \cup e_k^{\prec} = e_{k+1}^{\prec}$ and $S \cap e_k^{\prec} = S e_k$. Then submodularity implies that $f(S) \ge f(S \cup e_k^{\prec}) + f(S \cap e_k^{\prec}) - f(e_k^{\prec}) =$ $f(e_{k+1}^{\prec}) + f(S - e_k) - f(e_k^{\prec}).$
 - ▶ The largest e_i in $S e_k$ is smaller than k, so induction applies to $S e_k$ and we get $x(S) x_{e_k} = x(S e_k) \le f(S e_k)$, or $x(S) \le f(S e_k) + x_{e_k} = f(S e_k) + (f(e_k^{\prec} + e_k) f(e_k^{\prec})).$

- ► We now prove that the x computed by Greedy belongs to B(f) as follows:
 - ▶ Index the elements such that \prec is $e_1 \prec e_2 \prec \cdots \prec e_n$. First, $x(E) = \sum_{e_i \in E} [f(e_i^{\prec} + e_i) - f(e_i^{\prec})] = f(E) - f(\emptyset) = f(E).$
 - Now for any Ø ⊂ S ⊂ E we need to verify that x(S) ≤ f(S). Define k as the largest index such that e_k ∈ S, and use induction on k.
 - If k = 1 then $S = \{e_1\}$ and $x_1 = f(e_1^{\prec} + e_1) - f(e_1^{\prec}) = f(\{e_1\}) - f(\emptyset) = f(S).$
 - If k > 1, then $S \cup e_k^{\prec} = e_{k+1}^{\prec}$ and $S \cap e_k^{\prec} = S e_k$. Then submodularity implies that $f(S) \ge f(S \cup e_k^{\prec}) + f(S \cap e_k^{\prec}) - f(e_k^{\prec}) =$ $f(e_{k+1}^{\prec}) + f(S - e_k) - f(e_k^{\prec}).$
 - ▶ The largest e_i in $S e_k$ is smaller than k, so induction applies to $S e_k$ and we get $x(S) x_{e_k} = x(S e_k) \le f(S e_k)$, or $x(S) \le f(S e_k) + x_{e_k} = f(S e_k) + (f(e_k + e_k) f(e_k)).$
 - ► Thus $x(S) \le f(S e_k) + (f(e_k^{\prec} + e_k) f(e_k^{\prec})) = f(e_{k+1}^{\prec}) + f(S e_k) f(e_k^{\prec}) \le f(S).$

▶ Recall that we are trying to solve $\max_{x \in \mathbb{R}^E} w^T x$ s.t. $x \in B(f)$.

- ▶ Recall that we are trying to solve $\max_{x \in \mathbb{R}^E} w^T x$ s.t. $x \in B(f)$.
- ► This is a linear program (LP):

$$\max w^T x$$

s.t. $x(S) \leq f(S)$ for all $\emptyset \subset S \subset E$
 $x(E) = f(E)$
 x free.

- ▶ Recall that we are trying to solve $\max_{x \in \mathbb{R}^E} w^T x$ s.t. $x \in B(f)$.
- ► This is a linear program (LP):

$$\begin{array}{rcl} \max w^T x \\ \text{s.t. } x(S) & \leq & f(S) & \text{for all } \emptyset \subset S \subset E \\ x(E) & = & f(E) \\ & x & \text{free.} \end{array}$$

• This LP has 2^n constraints, one for each S.

- ▶ Recall that we are trying to solve $\max_{x \in \mathbb{R}^E} w^T x$ s.t. $x \in B(f)$.
- ► This is a linear program (LP):

$$\begin{array}{rcl} \max w^T x \\ \text{s.t. } x(S) & \leq & f(S) & \text{for all } \emptyset \subset S \subset E \\ x(E) & = & f(E) \\ & x & \text{free.} \end{array}$$

- This LP has 2^n constraints, one for each S.
- ► Optimality is proven via duality. Put dual variable π_S on constraint x(S) ≤ f(S) to get the dual:

$$\begin{array}{rll} \min \sum_{S \subseteq E} f(S) \pi_S \\ \text{s.t.} \ \sum_{S \ni e} \pi_S &= w_e & \text{ for all } e \in E \\ \pi_S &\geq 0 & \text{ for all } S \subset E \\ \pi_E & \text{ free.} \end{array}$$

- ▶ Recall that we are trying to solve $\max_{x \in \mathbb{R}^E} w^T x$ s.t. $x \in B(f)$.
- ► This is a linear program (LP):

r

$$\begin{array}{rcl} \max w^T x \\ \text{s.t. } x(S) &\leq f(S) \quad \text{for all } \emptyset \subset S \subset E \\ x(E) &= f(E) \\ x & \quad \text{free.} \end{array}$$

- This LP has 2^n constraints, one for each S.
- Optimality is proven via duality. Put dual variable π_S on constraint $x(S) \leq f(S)$ to get the dual:

$$\begin{array}{rll} \min \sum_{S \subseteq E} f(S) \pi_S \\ \text{s.t.} \ \sum_{S \ni e} \pi_S &= w_e \\ \pi_S &\geq 0 \\ \pi_E & \text{for all } S \subset E \end{array}$$

In order to show optimality of the x coming from Greedy, we construct a dual optimal solution.

▶ Define π_S like this: Put $\pi_S = w_{e_{i-1}} - w_{e_i}$ if $S = e_i^{\prec}$, $\pi_E = w_{e_n} - 0$ (using " $w_{e_{n+1}} = 0$ "), and $\pi_S = 0$ otherwise.

- ▶ Define π_S like this: Put $\pi_S = w_{e_{i-1}} w_{e_i}$ if $S = e_i^{\prec}$, $\pi_E = w_{e_n} 0$ (using " $w_{e_{n+1}} = 0$ "), and $\pi_S = 0$ otherwise.
- First, note that this π_S is feasible for the dual LP:

- ▶ Define π_S like this: Put $\pi_S = w_{e_{i-1}} w_{e_i}$ if $S = e_i^{\prec}$, $\pi_E = w_{e_n} 0$ (using " $w_{e_{n+1}} = 0$ "), and $\pi_S = 0$ otherwise.
- First, note that this π_S is feasible for the dual LP:

• We chose
$$\prec$$
 s.t. $w_{e_{i-1}} - w_{e_i} \ge 0$, and so $\pi_S \ge 0$.

- ▶ Define π_S like this: Put $\pi_S = w_{e_{i-1}} w_{e_i}$ if $S = e_i^{\prec}$, $\pi_E = w_{e_n} 0$ (using " $w_{e_{n+1}} = 0$ "), and $\pi_S = 0$ otherwise.
- First, note that this π_S is feasible for the dual LP:

▶ We chose
$$\prec$$
 s.t. $w_{e_{i-1}} - w_{e_i} \ge 0$, and so $\pi_S \ge 0$.
▶ Now $\sum_{S \ni e_k} \pi_S = \sum_{i=k+1}^{n+1} (w_{e_{i-1}} - w_{e_i})$
 $= w_{e_k} - w_{e_{n+1}} = w_{e_k}$, as desired.

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S}) x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S} x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S} f(S).$

For any $x \in B(f)$ and π feasible for the dual, note that

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

► Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

- Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$
- ► Consider the above display. The only place there's an inequality is $\sum_{S \subseteq E} \pi_S x(S) \leq \sum_{S \subseteq E} \pi_S f(S)$.

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

- Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$
- ► Consider the above display. The only place there's an inequality is $\sum_{S \subseteq E} \pi_S x(S) \leq \sum_{S \subseteq E} \pi_S f(S)$.
 - If $\pi_S = 0$ then both sides are zero.

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

- Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$
- ► Consider the above display. The only place there's an inequality is $\sum_{S \subseteq E} \pi_S x(S) \leq \sum_{S \subseteq E} \pi_S f(S)$.
 - If $\pi_S = 0$ then both sides are zero.
 - If $\pi_S \neq 0$, then S is e_k^{\prec} for some k.

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

- Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$
- ► Consider the above display. The only place there's an inequality is $\sum_{S \subseteq E} \pi_S x(S) \leq \sum_{S \subseteq E} \pi_S f(S)$.
 - If $\pi_S = 0$ then both sides are zero.
 - If $\pi_S \neq 0$, then S is e_k^{\prec} for some k.
 - But then $x(S) = \sum_{i \leq k} x_{e_i} = \sum_{i < k} (f(e_i^{\prec} + e_i) f(e_i^{\prec})) = f(e_{k-1}^{\prec} + e_{k-1}) f(\emptyset) = f(e_k^{\prec}) = f(S).$

$$w^{T}x = \sum_{e \in E} (\sum_{S \ni e} \pi_{S})x_{e}$$

= $\sum_{S \subseteq E} \pi_{S} \sum_{e \in S} x_{e}$
= $\sum_{S \subseteq E} \pi_{S}x(S)$
 $\leq \sum_{S \subseteq E} \pi_{S}f(S).$

- Since we already proved that the Greedy output $x \in B(f)$ and our π is feasible, we only need to show that $w^T x = \sum_{S \subseteq E} \pi_S f(S).$
- ► Consider the above display. The only place there's an inequality is $\sum_{S \subseteq E} \pi_S x(S) \leq \sum_{S \subseteq E} \pi_S f(S)$.
 - If $\pi_S = 0$ then both sides are zero.
 - If $\pi_S \neq 0$, then S is e_k^{\prec} for some k.
 - ▶ But then $x(S) = \sum_{i \leq k} x_{e_i} = \sum_{i < k} (f(e_i^{\prec} + e_i) f(e_i^{\prec})) = f(e_{k-1}^{\prec} + e_{k-1}) f(\emptyset) = f(e_k^{\prec}) = f(S).$
 - Thus we get equality, and so x is (primal) optimal (and π is dual optimal).
▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).
 - \blacktriangleright When the input to Greedy is linear order \prec , we denote the output x by $v^\prec.$

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).
 - \blacktriangleright When the input to Greedy is linear order \prec , we denote the output x by $v^\prec.$
 - We have shown that w^Tx is maximized at v[≺] for an order ≺ consistent with w, and so in fact these Greedy vertices are all the vertices of B(f). Thus there are at most n! vertices of B(f).

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).
 - \blacktriangleright When the input to Greedy is linear order \prec , we denote the output x by $v^\prec.$
 - We have shown that w^Tx is maximized at v[≺] for an order ≺ consistent with w, and so in fact these Greedy vertices are all the vertices of B(f). Thus there are at most n! vertices of B(f).
 - ▶ Although B(f) has 2^n constraints, the linear order \prec is a succinct certificate that $v^{\prec} \in B(f)$.

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).
 - \blacktriangleright When the input to Greedy is linear order \prec , we denote the output x by $v^\prec.$
 - We have shown that w^Tx is maximized at v[≺] for an order ≺ consistent with w, and so in fact these Greedy vertices are all the vertices of B(f). Thus there are at most n! vertices of B(f).
 - ▶ Although B(f) has 2^n constraints, the linear order \prec is a succinct certificate that $v^{\prec} \in B(f)$.
 - This proves that $B(f) \neq \emptyset$.

- ▶ The Greedy Algorithm takes $O(nEO + n \log n)$ time:
 - It takes $O(n \log n)$ time to sort the w_e .
 - There are n calls to \mathcal{E} that cost O(n EO).
- ► It can be shown (see below) that the output x of Greedy is in fact a vertex of B(f).
 - \blacktriangleright When the input to Greedy is linear order \prec , we denote the output x by $v^\prec.$
 - We have shown that w^Tx is maximized at v[≺] for an order ≺ consistent with w, and so in fact these Greedy vertices are all the vertices of B(f). Thus there are at most n! vertices of B(f).
 - ▶ Although B(f) has 2^n constraints, the linear order \prec is a succinct certificate that $v^{\prec} \in B(f)$.
 - This proves that $B(f) \neq \emptyset$.
 - Greedy works on B(f) for any w; it works on P(f) if $w \ge 0$.

The basis matrix M for an LP is the submatrix induced by the columns of the variables not at their bounds, and the rows whose constraints are tight (satisfied with equality).

- The basis matrix M for an LP is the submatrix induced by the columns of the variables not at their bounds, and the rows whose constraints are tight (satisfied with equality).
 - Here all the x_e are free (do not have bounds) and so M includes columns for every $e \in E$.

- The basis matrix M for an LP is the submatrix induced by the columns of the variables not at their bounds, and the rows whose constraints are tight (satisfied with equality).
 - Here all the x_e are free (do not have bounds) and so M includes columns for every $e \in E$.
 - ► As we saw in the proof, the constraint for $S = e_k^{\prec}$ is tight for each $e_k \in E$.

- The basis matrix M for an LP is the submatrix induced by the columns of the variables not at their bounds, and the rows whose constraints are tight (satisfied with equality).
 - ▶ Here all the x_e are free (do not have bounds) and so M includes columns for every $e \in E$.
 - As we saw in the proof, the constraint for S = e[≺]_k is tight for each e_k ∈ E.
- ▶ Therefore *M* is the lower triangular matrix:

$$M = \begin{cases} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & 1 & \dots & 1 \end{pmatrix}$$

 \blacktriangleright Recall that M is the lower triangular matrix:

$$M = \begin{array}{cccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & 1 & 1 & \dots & 1 \end{array}$$

▶ Recall that *M* is the lower triangular matrix:

$$M = \begin{array}{cccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & 1 & 1 & \dots & 1 \end{array}\right)$$

▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec})).$

$$M = \begin{array}{cccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & 1 & 1 & \dots & 1 \end{array}$$

- ▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec}))$.
- ▶ Then our Greedy primal vector v^{\prec} solves $Mv^{\prec} = b^{\prec}$.

$$M = \begin{array}{ccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{array}\right)$$

- ▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec})).$
- ▶ Then our Greedy primal vector v^{\prec} solves $Mv^{\prec} = b^{\prec}$.
- ▶ Triangular systems like this are easy to solve, and indeed gives that $x_{e_i} = f(e_i^{\prec} + e_i) f(e_i^{\prec})$.

$$M = \begin{array}{ccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ e_3^{\prec} & \\ \vdots & \vdots & \ddots & \vdots \\ e_{n+1}^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{array}\right)$$

- ▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec}))$.
- ▶ Then our Greedy primal vector v^{\prec} solves $Mv^{\prec} = b^{\prec}$.
- Triangular systems like this are easy to solve, and indeed gives that x_{e_i} = f(e[≺]_i + e_i) − f(e[≺]_i).
- ▶ Duality says that the dual has the same basis matrix, and π restricted to the e_i^{\prec} solves $\pi^T M = w^T$.

$$M = \begin{array}{cccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

- ▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec}))$.
- ▶ Then our Greedy primal vector v^{\prec} solves $Mv^{\prec} = b^{\prec}$.
- Triangular systems like this are easy to solve, and indeed gives that x_{e_i} = f(e[≺]_i + e_i) − f(e[≺]_i).
- ▶ Duality says that the dual has the same basis matrix, and π restricted to the e_i^{\prec} solves $\pi^T M = w^T$.
- Again this triangular system easily solves to $\pi_{e_i^{\prec}} = w_{i-1} w_i$.

$$M = \begin{array}{cccc} e_1 & e_2 & \dots & e_n \\ e_2^{\prec} & \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

- ▶ Let b^{\prec} be the RHS $(f(e_2^{\prec}), f(e_3^{\prec}), \dots, f(e_{n+1}^{\prec}))$.
- ▶ Then our Greedy primal vector v^{\prec} solves $Mv^{\prec} = b^{\prec}$.
- Triangular systems like this are easy to solve, and indeed gives that x_{e_i} = f(e[≺]_i + e_i) − f(e[≺]_i).
- ▶ Duality says that the dual has the same basis matrix, and π restricted to the e_i^{\prec} solves $\pi^T M = w^T$.
- Again this triangular system easily solves to $\pi_{e_i^{\prec}} = w_{i-1} w_i$.
- ► This also shows that v[≺] is a vertex, as it follows from M being nonsingular.

Optimizing submodular functions The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

• We now understand the vertices of B(f) via Greedy.

- \blacktriangleright We now understand the vertices of B(f) via Greedy.
- ► To be able to move around in B(f) we also need to understand its edges.

- We now understand the vertices of B(f) via Greedy.
- ► To be able to move around in B(f) we also need to understand its edges.
- Suppose that \prec looks like

$$e_1e_2\ldots e_i lk e_{i+3}\ldots e_n,$$

and \prec' looks like

$$e_1e_2\ldots e_i kle_{i+3}\ldots e_n;$$

we say that (l, k) are *consecutive* in \prec .

- We now understand the vertices of B(f) via Greedy.
- ► To be able to move around in B(f) we also need to understand its edges.
- Suppose that \prec looks like

$$e_1e_2\ldots e_i lk e_{i+3}\ldots e_n,$$

and \prec' looks like

$$e_1e_2\ldots e_i kle_{i+3}\ldots e_n;$$

we say that (l, k) are *consecutive* in \prec .

For $e \in E$ define $\chi(e) \in \{0,1\}^E$ by $\chi(e)_e = 1$ and $\chi(e)_g = 0$ for $g \neq e$.

- We now understand the vertices of B(f) via Greedy.
- ► To be able to move around in B(f) we also need to understand its edges.
- Suppose that \prec looks like

$$e_1e_2\ldots e_i lk e_{i+3}\ldots e_n,$$

and \prec' looks like

$$e_1e_2\ldots e_ikle_{i+3}\ldots e_n;$$

we say that (l, k) are *consecutive* in \prec .

- For $e \in E$ define $\chi(e) \in \{0,1\}^E$ by $\chi(e)_e = 1$ and $\chi(e)_g = 0$ for $g \neq e$.
- We are going to show that v^{≺'} − v[≺] = α(χ_k − χ_l) for a step length α.

▶ Recall that v^{\prec} comes from $e_1e_2 \dots e_i lke_{i+3} \dots e_n$, and \prec' comes from $e_1e_2 \dots e_i kle_{i+3} \dots e_n$.

Recall that v[≺] comes from
e₁e₂...e_ilke_{i+3}...e_n, and ≺' comes from
e₁e₂...e_ikle_{i+3}...e_n.

Notice that for e ≠ k, l we have that e[≺] = e^{≺'}.

- Recall that v[≺] comes from

 e₁e₂...e_ilke_{i+3}...e_n, and ≺' comes from

 e₁e₂...e_ikle_{i+3}...e_n.

 Notice that for e ≠ k, l we have that e[≺] = e^{≺'}.
 - ► Thus for $e \neq k, l$ we have that $v_e^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_e^{\prec'}.$

Recall that v[≺] comes from e₁e₂...e_ilke_{i+3}...e_n, and ≺' comes from e₁e₂...e_ikle_{i+3}...e_n.
Notice that for e ≠ k, l we have that e[≺] = e^{≺'}.
Thus for e ≠ k, l we have that v[≺]_e = f(e[≺] + e) - f(e[≺]) = f(e^{≺'} + e) - f(e^{≺'}) = v^{≺'}_e.
For e = k we have v[≺]_k = f(k[≺] + k) - f(k[≺]) = f(l[≺] + k + l) - f(l[≺] + l) and v[≺]_k = f(k^{≺'} + k) - f(k^{≺'}) = f(l[≺] + k) - f(l[≺]).

 \blacktriangleright Recall that v^{\prec} comes from $e_1e_2\ldots e_i lke_{i+3}\ldots e_n$, and \prec' comes from $e_1e_2\ldots e_i kle_{i+3}\ldots e_n$ • Notice that for $e \neq k, l$ we have that $e^{\prec} = e^{\prec'}$. • Thus for $e \neq k, l$ we have that $v_e^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_e^{\prec'}.$ For e = k we have $v_{k}^{\prec} = f(k^{\prec} + k) - f(k^{\prec}) = f(l^{\prec} + k + l) - f(l^{\prec} + l)$ and $v_{k}^{\prec'} = f(k^{\prec'} + k) - f(k^{\prec'}) = f(l^{\prec} + k) - f(l^{\prec}).$ For e = l we have $v_{l}^{\prec} = f(l^{\prec} + l) - f(l^{\prec}) = f(l^{\prec} + l) - f(l^{\prec})$ and $v_{l}^{\prec'} = f(l^{\prec'} + l) - f(l^{\prec'}) = f(l^{\prec} + k + l) - f(l^{\prec} + k).$

 \blacktriangleright Recall that v^{\prec} comes from $e_1e_2\ldots e_i lke_{i+3}\ldots e_n$, and \prec' comes from $e_1e_2\ldots e_i k l e_{i+3}\ldots e_n$. • Notice that for $e \neq k, l$ we have that $e^{\prec} = e^{\prec'}$. • Thus for $e \neq k, l$ we have that $v_e^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_e^{\prec'}.$ For e = k we have $v_{k}^{\prec} = f(k^{\prec} + k) - f(k^{\prec}) = f(l^{\prec} + k + l) - f(l^{\prec} + l)$ and $v_{k}^{\prec'} = f(k^{\prec'} + k) - f(k^{\prec'}) = f(l^{\prec} + k) - f(l^{\prec}).$ For e = l we have $v_{l}^{\prec} = f(l^{\prec} + l) - f(l^{\prec}) = f(l^{\prec} + l) - f(l^{\prec})$ and $v_{l}^{\prec'} = f(l^{\prec'}+l) - f(l^{\prec'}) = f(l^{\prec}+k+l) - f(l^{\prec}+k).$ • Define $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)].$

 \blacktriangleright Recall that v^{\prec} comes from $e_1e_2\ldots e_i lke_{i+3}\ldots e_n$, and \prec' comes from $e_1e_2\ldots e_i k l e_{i+3}\ldots e_n$. ▶ Notice that for $e \neq k, l$ we have that $e^{\prec} = e^{\prec'}$. • Thus for $e \neq k, l$ we have that $v_e^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_e^{\prec'}.$ For e = k we have $v_{k}^{\prec} = f(k^{\prec} + k) - f(k^{\prec}) = f(l^{\prec} + k + l) - f(l^{\prec} + l)$ and $v_{k}^{\prec'} = f(k^{\prec'} + k) - f(k^{\prec'}) = f(l^{\prec} + k) - f(l^{\prec}).$ For e = l we have $v_{i}^{\prec} = f(l^{\prec} + l) - f(l^{\prec}) = f(l^{\prec} + l) - f(l^{\prec})$ and $v_{l}^{\prec'} = f(l^{\prec'}+l) - f(l^{\prec'}) = f(l^{\prec}+k+l) - f(l^{\prec}+k).$ • Define $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)].$ • By submodularity. $\alpha > 0$.

 \blacktriangleright Recall that v^{\prec} comes from $e_1e_2\ldots e_i lke_{i+3}\ldots e_n$, and \prec' comes from $e_1e_2\ldots e_i k l e_{i+3}\ldots e_n$. ▶ Notice that for $e \neq k, l$ we have that $e^{\prec} = e^{\prec'}$. • Thus for $e \neq k, l$ we have that $v_{\uparrow}^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_{\uparrow}^{\prec'}.$ For e = k we have $v_{k}^{\prec} = f(k^{\prec} + k) - f(k^{\prec}) = f(l^{\prec} + k + l) - f(l^{\prec} + l)$ and $v_{k}^{\prec'} = f(k^{\prec'} + k) - f(k^{\prec'}) = f(l^{\prec} + k) - f(l^{\prec}).$ For e = l we have $v_{l}^{\prec} = f(l^{\prec} + l) - f(l^{\prec}) = f(l^{\prec} + l) - f(l^{\prec})$ and $v_{l}^{\prec'} = f(l^{\prec'}+l) - f(l^{\prec'}) = f(l^{\prec}+k+l) - f(l^{\prec}+k).$ • Define $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)].$ By submodularity, α > 0. • Then we see that $v_1^{\prec'} = v_1^{\prec} - \alpha$, and $v_h^{\prec'} = v_h^{\prec} + \alpha$.

 \blacktriangleright Recall that v^{\prec} comes from $e_1e_2\ldots e_i lke_{i+3}\ldots e_n$, and \prec' comes from $e_1e_2\ldots e_i k l e_{i+3}\ldots e_n$. • Notice that for $e \neq k, l$ we have that $e^{\prec} = e^{\prec'}$. • Thus for $e \neq k, l$ we have that $v_{\uparrow}^{\prec} = f(e^{\prec} + e) - f(e^{\prec}) = f(e^{\prec'} + e) - f(e^{\prec'}) = v_{\uparrow}^{\prec'}.$ For e = k we have $v_{L}^{\prec} = f(k^{\prec} + k) - f(k^{\prec}) = f(l^{\prec} + k + l) - f(l^{\prec} + l)$ and $v_{k}^{\prec'} = f(k^{\prec'} + k) - f(k^{\prec'}) = f(l^{\prec} + k) - f(l^{\prec}).$ For e = l we have $v_{i}^{\prec} = f(l^{\prec} + l) - f(l^{\prec}) = f(l^{\prec} + l) - f(l^{\prec})$ and $v_{l}^{\prec'} = f(l^{\prec'} + l) - f(l^{\prec'}) = f(l^{\prec} + k + l) - f(l^{\prec} + k).$ • Define $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)].$ By submodularity, α > 0. • Then we see that $v_l^{\prec'} = v_l^{\prec} - \alpha$, and $v_k^{\prec'} = v_k^{\prec} + \alpha$. ▶ Intuition: as we move k earlier in \prec , v_k^{\prec} gets bigger; as we

move k later in \prec , v_k^\prec gets smaller.

Exchange capacities

► We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.
▶ We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.

• Since x(E) = f(E) is a constraint of B(f), all $x \in B(f)$ have the constant sum f(E). Thus it is not a surprise that $|v_k^{\prec} - v_k^{\prec'}| = |v_l^{\prec} - v_l^{\prec'}| = c(k, l; v^{\prec}).$

▶ We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.

- Since x(E) = f(E) is a constraint of B(f), all $x \in B(f)$ have the constant sum f(E). Thus it is not a surprise that $|v_k^{\prec} v_k^{\prec'}| = |v_l^{\prec} v_l^{\prec'}| = c(k, l; v^{\prec}).$
- ▶ We have indeed shown that when (l,k) is consecutive in \prec , then $v^{\prec'} v^{\prec} = c(k,l;v^{\prec})(\chi_k \chi_l).$

▶ We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.

- Since x(E) = f(E) is a constraint of B(f), all $x \in B(f)$ have the constant sum f(E). Thus it is not a surprise that $|v_k^{\prec} v_k^{\prec'}| = |v_l^{\prec} v_l^{\prec'}| = c(k, l; v^{\prec}).$
- ▶ We have indeed shown that when (l,k) is consecutive in \prec , then $v^{\prec'} v^{\prec} = c(k,l;v^{\prec})(\chi_k \chi_l).$
- ► It turns out that all the edges of B(f) come from consecutive exchanges like this.

► We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.

- Since x(E) = f(E) is a constraint of B(f), all $x \in B(f)$ have the constant sum f(E). Thus it is not a surprise that $|v_k^{\prec} v_k^{\prec'}| = |v_l^{\prec} v_l^{\prec'}| = c(k, l; v^{\prec}).$
- ▶ We have indeed shown that when (l,k) is consecutive in \prec , then $v^{\prec'} v^{\prec} = c(k,l;v^{\prec})(\chi_k \chi_l).$
- ► It turns out that all the edges of B(f) come from consecutive exchanges like this.
- Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if we can compute the more general exchange capacity c(k, l; x), which is the largest α such that x + α(χ_k − χ_l) ∈ B(f).

► We call this step length $\alpha = [f(l^{\prec} + l) - f(l^{\prec})] - [f(l^{\prec} + k + l) - f(l^{\prec} + k)] \text{ the}$ exchange capacity of the consecutive pair (l, k), and denote it as $c(k, l; v^{\prec})$.

- Since x(E) = f(E) is a constraint of B(f), all $x \in B(f)$ have the constant sum f(E). Thus it is not a surprise that $|v_k^{\prec} v_k^{\prec'}| = |v_l^{\prec} v_l^{\prec'}| = c(k, l; v^{\prec}).$
- ▶ We have indeed shown that when (l,k) is consecutive in \prec , then $v^{\prec'} v^{\prec} = c(k,l;v^{\prec})(\chi_k \chi_l).$
- ► It turns out that all the edges of B(f) come from consecutive exchanges like this.
- Given some x ∈ B(f) and k, l ∈ E, it is natural to wonder if we can compute the more general exchange capacity c(k, l; x), which is the largest α such that x + α(χ_k − χ_l) ∈ B(f).
 - Unfortunately it turns out that computing c(k, l; x) is provably as difficult as SFMin.

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms An algorithmic framework

Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

 We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.
 - There is an equivalence between Separation and Optimization via the Ellipsoid Algorithm due to Grötschel, Lovász, and Schrijver.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.
 - There is an equivalence between Separation and Optimization via the Ellipsoid Algorithm due to Grötschel, Lovász, and Schrijver.
 - For a certain polymatroid, its Separation problem is equivalent to SFMin.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.
 - There is an equivalence between Separation and Optimization via the Ellipsoid Algorithm due to Grötschel, Lovász, and Schrijver.
 - For a certain polymatroid, its Separation problem is equivalent to SFMin.
 - The polymatroid's Optimization problem is equivalent to the LP we solved via Greedy.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.
 - There is an equivalence between Separation and Optimization via the Ellipsoid Algorithm due to Grötschel, Lovász, and Schrijver.
 - For a certain polymatroid, its Separation problem is equivalent to SFMin.
 - The polymatroid's Optimization problem is equivalent to the LP we solved via Greedy.
 - Therefore Ellipsoid says that SFMin is (weakly) polynomial.

- We now start to develop a framework for algorithms for SFMin (due to Cunningham) that resembles the Max Flow / Min Cut algorithms.
- The framework starts by showing that SFMin can be modeled using a dual pair of linear program (due to Edmonds).
- However, the first weakly and strongly polynomial algorithms for SFMin came from a very different viewpoint.
 - There is an equivalence between Separation and Optimization via the Ellipsoid Algorithm due to Grötschel, Lovász, and Schrijver.
 - For a certain polymatroid, its Separation problem is equivalent to SFMin.
 - The polymatroid's Optimization problem is equivalent to the LP we solved via Greedy.
 - Therefore Ellipsoid says that SFMin is (weakly) polynomial.
 - GLS then extend this to show a strongly polynomial running time.

► Recall that SFMin is min_{S⊆E} f(S). It is very unclear whether this can be formulated as an LP.

- ► Recall that SFMin is min_{S⊆E} f(S). It is very unclear whether this can be formulated as an LP.
- Let's modify the dual LPs we used for Greedy by relaxing x(E) = f(E) to just x(E) ≤ f(E), putting an upper bound u on x in the primal, and replacing w by the all-ones vector 1:

$$\max \mathbb{1}^T x \qquad \min u^T \sigma + \sum_{S \subseteq E} f(S) \pi_S \\ \text{s.t. } x(S) \leq f(S) \qquad \text{s.t. } \sigma_e + \sum_{S \ni e} \pi_S = 1 \\ x \leq u \qquad \sigma, \pi \geq 0 \\ x \qquad \text{free.}$$

- ► Recall that SFMin is min_{S⊆E} f(S). It is very unclear whether this can be formulated as an LP.
- ▶ Let's modify the dual LPs we used for Greedy by relaxing x(E) = f(E) to just $x(E) \le f(E)$, putting an upper bound u on x in the primal, and replacing w by the all-ones vector 1:

$$\max \mathbb{1}^T x \qquad \min u^T \sigma + \sum_{S \subseteq E} f(S) \pi_S \\ \text{s.t. } x(S) \leq f(S) \qquad \text{s.t. } \sigma_e + \sum_{S \ni e} \pi_S = 1 \\ x \leq u \qquad \qquad \sigma, \pi \geq 0 \\ x \qquad \text{free.}$$

 These kinds of "combinatorial" LPs often have 0–1 optimal solutions.

- ► Recall that SFMin is min_{S⊆E} f(S). It is very unclear whether this can be formulated as an LP.
- Let's modify the dual LPs we used for Greedy by relaxing x(E) = f(E) to just $x(E) \le f(E)$, putting an upper bound u on x in the primal, and replacing w by the all-ones vector 1:

$$\begin{array}{rcl} \max \mathbb{1}^T x & \min u^T \sigma + \sum_{S \subseteq E} f(S) \pi_S \\ \text{s.t. } x(S) &\leq f(S) & \text{s.t. } \sigma_e + \sum_{S \ni e} \pi_S &= 1 \\ x &\leq u & \sigma, \pi &\geq 0 \\ x & \text{free.} \end{array}$$

- These kinds of "combinatorial" LPs often have 0–1 optimal solutions.
- Even better, we guess (see below) that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.

We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.
 - (Weak duality:) $\mathbb{1}^T x = x(E) = x(S) + x(E-S) \le f(S) + u(E-S)$. Thus we only have to show that this is satisfied with equality.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.
 - (Weak duality:) $\mathbb{1}^T x = x(E) = x(S) + x(E-S) \le f(S) + u(E-S)$. Thus we only have to show that this is satisfied with equality.
 - Suppose that x^* is primal optimal, and S and T are both x^* -tight, i.e., $x^*(S) = f(S)$ and $x^*(T) = f(T)$. Then (homework) both $S \cap T$ and $S \cup T$ are also x^* -tight.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.
 - (Weak duality:) $\mathbb{1}^T x = x(E) = x(S) + x(E-S) \le f(S) + u(E-S)$. Thus we only have to show that this is satisfied with equality.
 - ▶ Suppose that x^* is primal optimal, and S and T are both x^* -tight, i.e., $x^*(S) = f(S)$ and $x^*(T) = f(T)$. Then (homework) both $S \cap T$ and $S \cup T$ are also x^* -tight.
 - Thus we can take the union of all x*-tight sets to get S*, which is also x*-tight.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.
 - (Weak duality:) $\mathbb{1}^T x = x(E) = x(S) + x(E-S) \le f(S) + u(E-S)$. Thus we only have to show that this is satisfied with equality.
 - Suppose that x^* is primal optimal, and S and T are both x^* -tight, i.e., $x^*(S) = f(S)$ and $x^*(T) = f(T)$. Then (homework) both $S \cap T$ and $S \cup T$ are also x^* -tight.
 - ► Thus we can take the union of all x*-tight sets to get S*, which is also x*-tight.
 - If $x_e^* < u_e$ then we must have that $e \in S^*$; if not, then we could feasibly increase x_e^* , contradicting optimality. Thus $x_e^* = u_e$ for all $e \notin S^*$.

- We believe that there exists an optimal solution to the dual where only one π_S is positive, say π_{S*} = 1.
- ► Then the constraints $\sigma_e + \sum_{S \ni e} \pi_S = 1$ would force that $\sigma = \chi(E S^*)$, and so the dual objective value would be $u(E S^*) + f(S^*)$. Let's prove this.
 - (Weak duality:) $\mathbb{1}^T x = x(E) = x(S) + x(E-S) \le f(S) + u(E-S)$. Thus we only have to show that this is satisfied with equality.
 - Suppose that x^* is primal optimal, and S and T are both x^* -tight, i.e., $x^*(S) = f(S)$ and $x^*(T) = f(T)$. Then (homework) both $S \cap T$ and $S \cup T$ are also x^* -tight.
 - Thus we can take the union of all x*-tight sets to get S*, which is also x*-tight.
 - If $x_e^* < u_e$ then we must have that $e \in S^*$; if not, then we could feasibly increase x_e^* , contradicting optimality. Thus $x_e^* = u_e$ for all $e \notin S^*$.
 - ► Thus x*(E) = x*(S*) + x*(E S*) = f(S*) + u(E S*), proving that S* induces a dual optimal solution.

• Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E - S)).$

- Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E S)).$
- ▶ If we choose u = 0 then we get $\max_{x \in P(f):x \le 0} x(E) = \min_{S \subseteq E} f(S) + 0$. This dual LP is just SFMin!

- Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E - S)).$
- ▶ If we choose u = 0 then we get $\max_{x \in P(f):x \le 0} x(E) = \min_{S \subseteq E} f(S) + 0$. This dual LP is just SFMin!
- For $y \in \mathbb{R}^E$ define $y^- \in \mathbb{R}^E$ via $y^-_e = \min(y_e, 0) \le 0$.

- Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E - S)).$
- ▶ If we choose u = 0 then we get $\max_{x \in P(f):x \le 0} x(E) = \min_{S \subseteq E} f(S) + 0$. This dual LP is just SFMin!
- For $y \in \mathbb{R}^E$ define $y^- \in \mathbb{R}^E$ via $y_e^- = \min(y_e, 0) \le 0$.
- If $y \in B(f)$ then $y^- \leq 0$ and $y^- \in P(F)$, so it is primal feasible.

- Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E - S)).$
- ▶ If we choose u = 0 then we get $\max_{x \in P(f):x \le 0} x(E) = \min_{S \subseteq E} f(S) + 0$. This dual LP is just SFMin!
- For $y \in \mathbb{R}^E$ define $y^- \in \mathbb{R}^E$ via $y_e^- = \min(y_e, 0) \le 0$.
- If $y \in B(f)$ then $y^- \leq 0$ and $y^- \in P(F)$, so it is primal feasible.
- We now want to show the converse, that if $x \in P(f)$ and $x \leq 0$, then there is some $y \in B(f)$ with $y \geq x$ and $y^- = x$.

- Our LP strong duality says that $\max_{x \in P(f): x \leq u} x(E) = \min_{S \subseteq E} (f(S) + u(E - S)).$
- ▶ If we choose u = 0 then we get $\max_{x \in P(f):x \le 0} x(E) = \min_{S \subseteq E} f(S) + 0$. This dual LP is just SFMin!
- For $y \in \mathbb{R}^E$ define $y^- \in \mathbb{R}^E$ via $y^-_e = \min(y_e, 0) \le 0$.
- If $y \in B(f)$ then $y^- \leq 0$ and $y^- \in P(F)$, so it is primal feasible.
- ▶ We now want to show the converse, that if $x \in P(f)$ and $x \leq 0$, then there is some $y \in B(f)$ with $y \geq x$ and $y^- = x$.
- We know that an optimal $x^* \in P(f)$ with $x^* \leq 0$ looks like:

- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).

- We know that an optimal $x^* \in P(f)$ with $x^* \leq 0$ looks like: $\underbrace{(\underbrace{0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0}_{\text{not in any }x^*-\text{tight set}}}_{S^* = \text{ biggest }x^*-\text{tight set}})$
- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).
- ► Continue until every *e* is contained in an *y*-tight set.

- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).
- ▶ Continue until every *e* is contained in an *y*-tight set.
- ▶ Now every e is in an y-tight set, and so E is tight, so the new y is in B(f). It looks like:

- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).
- ► Continue until every *e* is contained in an *y*-tight set.
- ▶ Now every e is in an y-tight set, and so E is tight, so the new y is in B(f). It looks like:

▶ Thus we can use the modified primal LP $\max_{y \in B(f)} y^{-}(E)$.
Moving from P(f) to B(f)

- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).
- ▶ Continue until every *e* is contained in an *y*-tight set.
- ▶ Now every e is in an y-tight set, and so E is tight, so the new y is in B(f). It looks like:

- ▶ Thus we can use the modified primal LP $\max_{y \in B(f)} y^{-}(E)$.
 - This is the form of the LP that we will use.

Moving from P(f) to B(f)

- Set y = x^{*} and pick some e ∉ S^{*} and increase y_e (making it positive) until it becomes tight (there is an exponential but finite number of constraints to check).
- ► Continue until every *e* is contained in an *y*-tight set.
- ▶ Now every e is in an y-tight set, and so E is tight, so the new y is in B(f). It looks like:

- ▶ Thus we can use the modified primal LP $\max_{y \in B(f)} y^{-}(E)$.
 - This is the form of the LP that we will use.
 - ▶ This LP is quite close to the Greedy LP, except that the objective is the piecewise linear $y^-(E)$ instead of x(E), and this makes solving the problem *much* harder.

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

• Here is weak duality for these LPs:

$$\begin{array}{rcl} y^-(E) & \leq & y^-(S) & \text{tight if } y_e < 0 \implies e \in S \\ & \leq & y(S) & \text{tight if } e \in S \implies y_e \leq 0 \\ & \leq & f(S) & \text{tight if } S \text{ is } y\text{-tight.} \end{array}$$

Complementary slackness is equivalent to the tightness conditions that ensure that each inequality is an equality.

Here is weak duality for these LPs:

$$\begin{array}{rcl} y^-(E) & \leq & y^-(S) & \text{tight if } y_e < 0 \implies e \in S \\ & \leq & y(S) & \text{tight if } e \in S \implies y_e \leq 0 \\ & \leq & f(S) & \text{tight if } S \text{ is } y\text{-tight.} \end{array}$$

Complementary slackness is equivalent to the tightness conditions that ensure that each inequality is an equality.

▶ Therefore an optimal y and S look like:

• Here is weak duality for these LPs:

$$\begin{array}{rcl} y^-(E) & \leq & y^-(S) & \text{tight if } y_e < 0 \implies e \in S \\ & \leq & y(S) & \text{tight if } e \in S \implies y_e \leq 0 \\ & \leq & f(S) & \text{tight if } S \text{ is } y\text{-tight.} \end{array}$$

Complementary slackness is equivalent to the tightness conditions that ensure that each inequality is an equality.

▶ Therefore an optimal *y* and *S* look like:

► If we can achieve this picture along with y(S) = f(S), it proves that y and S jointly solve SFMin.

• Here is weak duality for these LPs:

$$\begin{array}{rcl} y^-(E) & \leq & y^-(S) & \text{tight if } y_e < 0 \implies e \in S \\ & \leq & y(S) & \text{tight if } e \in S \implies y_e \leq 0 \\ & \leq & f(S) & \text{tight if } S \text{ is } y\text{-tight.} \end{array}$$

Complementary slackness is equivalent to the tightness conditions that ensure that each inequality is an equality.

▶ Therefore an optimal *y* and *S* look like:

- ► If we can achieve this picture along with y(S) = f(S), it proves that y and S jointly solve SFMin.
- Or does it? What is missing?

• How can we verify that $y \in B(f)$? There are 2^n inequalities to check.

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.
- Therefore the algorithms will keep a representation of y like this:

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.
- Therefore the algorithms will keep a representation of y like this:
 - We have an index set \mathcal{I} of size O(n).

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.
- Therefore the algorithms will keep a representation of y like this:
 - We have an index set \mathcal{I} of size O(n).
 - ▶ For each $i \in \mathcal{I}$ we have a linear order \prec_i with associated Greedy vertex v^i .

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.
- Therefore the algorithms will keep a representation of y like this:
 - We have an index set \mathcal{I} of size O(n).
 - For each $i \in \mathcal{I}$ we have a linear order \prec_i with associated Greedy vertex v^i .
 - We keep multipliers $\lambda_i \geq 0$ for $i \in \mathcal{I}$ satisfying $\sum_{i \in \mathcal{I}} \lambda_i = 1$.

- ▶ How can we verify that $y \in B(f)$? There are 2^n inequalities to check.
- Here is a clever way to do it (Cunningham):
 - 1. B(f) is bounded, and so it is the convex hull of its vertices, i.e., $y \in B(f)$ iff y is a convex combination of vertices of B(f).
 - 2. We know that all vertices of B(f) come from Greedy applied to linear orders, which have succinct certificates.
 - 3. Carathéodory's Theorem says that in fact there is always a convex hull representation of y using at most n vertices.
- Therefore the algorithms will keep a representation of y like this:
 - We have an index set \mathcal{I} of size O(n).
 - For each $i \in \mathcal{I}$ we have a linear order \prec_i with associated Greedy vertex v^i .
 - We keep multipliers $\lambda_i \geq 0$ for $i \in \mathcal{I}$ satisfying $\sum_{i \in \mathcal{I}} \lambda_i = 1$.
 - Then $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$ is a succinct certificate proving that $y \in B(f)$.

► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.

- ► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.
- ► When *I* becomes too large, from time to time we need to "Carathéodory-ize" it and bring its size back down to *n*.

- ► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.
- ► When *I* becomes too large, from time to time we need to "Carathéodory-ize" it and bring its size back down to *n*.
- Let V be the matrix with |E| + 1 rows and $|\mathcal{I}|$ columns which has a row of all ones at the top, and whose column i otherwise is v^i .

- ► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.
- ► When *I* becomes too large, from time to time we need to "Carathéodory-ize" it and bring its size back down to *n*.
- ▶ Let V be the matrix with |E| + 1 rows and |I| columns which has a row of all ones at the top, and whose column i otherwise is vⁱ.
- Therefore we keep the equation $V\lambda = (1 \ y)$.

- ► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.
- ► When *I* becomes too large, from time to time we need to "Carathéodory-ize" it and bring its size back down to *n*.
- ▶ Let V be the matrix with |E| + 1 rows and |I| columns which has a row of all ones at the top, and whose column i otherwise is vⁱ.
- Therefore we keep the equation $V\lambda = (1 \ y)$.
- ► The task of subroutine REDUCEV is to eliminate redundant columns of V while maintaining $V\lambda = \begin{pmatrix} 1 & y \end{pmatrix}$ and $\lambda \ge 0$.

- ► As the algorithms proceed, they will add new indices to I (and possibly delete some old indices), and so |I| grows over time.
- ► When *I* becomes too large, from time to time we need to "Carathéodory-ize" it and bring its size back down to *n*.
- ▶ Let V be the matrix with |E| + 1 rows and |I| columns which has a row of all ones at the top, and whose column i otherwise is vⁱ.
- Therefore we keep the equation $V\lambda = (1 \ y)$.
- ► The task of subroutine REDUCEV is to eliminate redundant columns of V while maintaining $V\lambda = \begin{pmatrix} 1 & y \end{pmatrix}$ and $\lambda \ge 0$.
- ► This can be done with standard linear algebra techniques in O(n³) time.

▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

$$y = (\underbrace{- - - - -}_{S^{-}(y)} \underbrace{0 \ 0 \ 0 \ 0}_{S^{0}(y)} \underbrace{+ + +}_{S^{+}(y)})$$

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

▶ To maximize $y^-(E)$ ($\iff \min_S y^+(E)$), we want to increase y_e for some $e \in S^-(y)$ (or decrease y_e for some $e \in S^+(y)$).

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

- ▶ To maximize $y^-(E)$ ($\iff \min_S y^+(E)$), we want to increase y_e for some $e \in S^-(y)$ (or decrease y_e for some $e \in S^+(y)$).
 - We know that y_e increases if we move e to the left in some ≺_i, and y_e decreases if we move e to the right in some ≺_i.

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

- ▶ To maximize $y^-(E)$ ($\iff \min_S y^+(E)$), we want to increase y_e for some $e \in S^-(y)$ (or decrease y_e for some $e \in S^+(y)$).
 - We know that y_e increases if we move e to the left in some ≺_i, and y_e decreases if we move e to the right in some ≺_i.
 - ▶ This suggests we find some $k \in S^-(y)$ and $l \in S^+(y)$ and compute c(k, l; y), then set $y' \leftarrow y + \alpha(\chi_k \chi_l)$ for some $\alpha \leq c(k, l; y)$.

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

- ▶ To maximize $y^-(E)$ ($\iff \min_S y^+(E)$), we want to increase y_e for some $e \in S^-(y)$ (or decrease y_e for some $e \in S^+(y)$).
 - We know that y_e increases if we move e to the left in some ≺_i, and y_e decreases if we move e to the right in some ≺_i.
 - ▶ This suggests we find some $k \in S^-(y)$ and $l \in S^+(y)$ and compute c(k, l; y), then set $y' \leftarrow y + \alpha(\chi_k \chi_l)$ for some $\alpha \leq c(k, l; y)$.
 - But unfortunately computing c(k, l; y) is as hard as SFMin.

- ▶ We keep linear orders \prec_i with associated v^i , and $y \in B(f)$ as $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$.
- Suppose that y looks like:

- ▶ To maximize $y^-(E)$ ($\iff \min_S y^+(E)$), we want to increase y_e for some $e \in S^-(y)$ (or decrease y_e for some $e \in S^+(y)$).
 - We know that y_e increases if we move e to the left in some ≺_i, and y_e decreases if we move e to the right in some ≺_i.
 - ▶ This suggests we find some $k \in S^-(y)$ and $l \in S^+(y)$ and compute c(k, l; y), then set $y' \leftarrow y + \alpha(\chi_k \chi_l)$ for some $\alpha \leq c(k, l; y)$.
 - But unfortunately computing c(k, l; y) is as hard as SFMin.
 - And if we don't have any \prec_i with (l,k) consecutive in \prec_i , then how can we change the representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$ to track this $\chi_k \chi_l$ direction?

Assume that we have the situation as in the picture below, where (k_2, k_1) is consecutive in \prec_1 , (k_3, k_2) is consecutive in \prec_2 , and (k_4, k_3) is consecutive in \prec_3 .

Assume that we have the situation as in the picture below, where (k_2, k_1) is consecutive in \prec_1 , (k_3, k_2) is consecutive in \prec_2 , and (k_4, k_3) is consecutive in \prec_3 . We could swap k_2 and k_1 in \prec_1 to $\uparrow y_{k_1}$ and $\downarrow y_{k_2}$, but this wouldn't

increase $y^-(E)$.

Assume that we have the situation as in the picture below, where (k_2, k_1) is consecutive in \prec_1 , (k_3, k_2) is consecutive in \prec_2 , and (k_4, k_3) is consecutive in \prec_3 . We could swap k_3 and k_2 in \prec_2 to $\uparrow y_{k_2}$ and $\downarrow y_{k_3}$, but this wouldn't

we could swap k_3 and k_2 in \prec_2 to $| y_{k_2}$ and $\downarrow y_{k_3}$, but this wouldn't increase $y^-(E)$.

Assume that we have the situation as in the picture below, where (k_2, k_1) is consecutive in \prec_1 , (k_3, k_2) is consecutive in \prec_2 , and (k_4, k_3) is consecutive in \prec_3 . We could swap k_4 and k_3 in \prec_3 to $\uparrow y_{k_3}$ and $\downarrow y_{k_4}$, but this wouldn't

we could swap k_4 and k_3 in \prec_3 to $| y_{k_3}$ and $\downarrow y_{k_4}$, but this wouldn't increase $y^-(E)$.

Assume that we have the situation as in the picture below, where (k_2, k_1) is consecutive in \prec_1 , (k_3, k_2) is consecutive in \prec_2 , and (k_4, k_3) is consecutive in \prec_3 .

But if we do all three swaps at the same time this would $\uparrow y_{k_1}$ and $\downarrow y_{k_4}$, and this would increase $y^-(E)$.

SFMin is like Max Flow / Min Cut

> This suggests a rudimentary algorithm:
- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$

- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g, e) is consecutive in some \prec_i .
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.

- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^-(y)$ to $S^+(y)$ then augment along it; repeat until no such path remains.
 - 3. If $\not\exists$ a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.

- > This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.
 - 3. If \exists a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.
- Note that S⁻(y) ⊆ S^{*} ⊆ E − S⁺(y), so S^{*} satisfies two of the three complementary slackness conditions.

- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.
 - 3. If \nexists a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.
- Note that S⁻(y) ⊆ S^{*} ⊆ E − S⁺(y), so S^{*} satisfies two of the three complementary slackness conditions.
- ▶ I claim that S^* is at the left of every \prec_i .

- > This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.
 - 3. If \nexists a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.
- Note that S⁻(y) ⊆ S^{*} ⊆ E − S⁺(y), so S^{*} satisfies two of the three complementary slackness conditions.
- ▶ I claim that S^* is at the left of every \prec_i .
 - ▶ Suppose that there is some \prec_i with $l \notin S^*$ to the left of some $k \in S^*$.

- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.
 - 3. If \nexists a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.
- Note that S⁻(y) ⊆ S^{*} ⊆ E − S⁺(y), so S^{*} satisfies two of the three complementary slackness conditions.
- ▶ I claim that S^* is at the left of every \prec_i .
 - \blacktriangleright Suppose that there is some \prec_i with $l \notin S^*$ to the left of some $k \in S^*.$
 - Then there must be such a pair (l,k) that is consecutive in \prec_i .

- This suggests a rudimentary algorithm:
 - 1. Make a network with nodes E, and arc $e \to g$ whenever (g,e) is consecutive in some $\prec_i.$
 - 2. If there is a directed path from $S^{-}(y)$ to $S^{+}(y)$ then augment along it; repeat until no such path remains.
 - 3. If $\not\exists$ a directed path from $S^-(y)$ to $S^+(y)$, define $S^* = \{e \in E \mid \exists \text{ augmenting path from } S^-(y) \text{ up to } e\}$. Then we show below that S^* solves SFMin.
- Note that S⁻(y) ⊆ S^{*} ⊆ E − S⁺(y), so S^{*} satisfies two of the three complementary slackness conditions.
- ▶ I claim that S^* is at the left of every \prec_i .
 - \blacktriangleright Suppose that there is some \prec_i with $l \notin S^*$ to the left of some $k \in S^*.$
 - Then there must be such a pair (l,k) that is consecutive in \prec_i .
 - But then we could extend the augmenting path to k along arc $k \rightarrow l$ coming from consecutive pair (l, k), contradicting that $l \notin S^*$.

▶ I just showed that S^* is at the left of every \prec_i .

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.

► Then
$$y(S^*) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S^*) = \sum_{i \in \mathcal{I}} \lambda_i f(S^*) = f(S^*) \sum_{i \in \mathcal{I}} \lambda_i = f(S^*).$$

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.
- ► Then $y(S^*) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S^*) = \sum_{i \in \mathcal{I}} \lambda_i f(S^*) = f(S^*) \sum_{i \in \mathcal{I}} \lambda_i = f(S^*).$
- ► Thus S* is y-tight, the third complementary slackness condition, and so S* is indeed optimal for SFMin.

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.
- ► Then $y(S^*) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S^*) = \sum_{i \in \mathcal{I}} \lambda_i f(S^*) = f(S^*) \sum_{i \in \mathcal{I}} \lambda_i = f(S^*).$
- ► Thus S* is y-tight, the third complementary slackness condition, and so S* is indeed optimal for SFMin.
- This proof is very much in the same spirit as the Max Flow / Min Cut augmenting path proof.

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.
- ► Then $y(S^*) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S^*) = \sum_{i \in \mathcal{I}} \lambda_i f(S^*) = f(S^*) \sum_{i \in \mathcal{I}} \lambda_i = f(S^*).$
- ► Thus S* is y-tight, the third complementary slackness condition, and so S* is indeed optimal for SFMin.
- This proof is very much in the same spirit as the Max Flow / Min Cut augmenting path proof.
- ▶ The same proof works with a more general definition of arcs: Put $e \rightarrow g \in A$ whenever $g \prec_i e$ for some $i \in \mathcal{I}$.

- ▶ I just showed that S^* is at the left of every \prec_i .
- ▶ Now S^* at the left of \prec_i implies that $v^i(S^*) = f(S^*)$.
- ► Then $y(S^*) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S^*) = \sum_{i \in \mathcal{I}} \lambda_i f(S^*) = f(S^*) \sum_{i \in \mathcal{I}} \lambda_i = f(S^*).$
- ► Thus S* is y-tight, the third complementary slackness condition, and so S* is indeed optimal for SFMin.
- This proof is very much in the same spirit as the Max Flow / Min Cut augmenting path proof.
- ▶ The same proof works with a more general definition of arcs: Put $e \rightarrow g \in A$ whenever $g \prec_i e$ for some $i \in \mathcal{I}$.
- The "only" remaining thing to do is to find some way to arrange augmentations so there is only a polynomial number of them.

The set of arcs changes dynamically as I changes and y changes.

- ► The set of arcs changes dynamically as *I* changes and *y* changes.
- ► The "capacity" of arcs changes dynamically.

- The set of arcs changes dynamically as I changes and y changes.
- ► The "capacity" of arcs changes dynamically.
- One augmenting path could contain several arcs coming from the same ≺_i, implying that computing the augmentation amount is quite complicated.

- The set of arcs changes dynamically as I changes and y changes.
- ► The "capacity" of arcs changes dynamically.
- One augmenting path could contain several arcs coming from the same ≺_i, implying that computing the augmentation amount is quite complicated.
- Augmentation amounts depend on the λ_i, which can be arbitrarily small.

- The set of arcs changes dynamically as I changes and y changes.
- ► The "capacity" of arcs changes dynamically.
- One augmenting path could contain several arcs coming from the same ≺_i, implying that computing the augmentation amount is quite complicated.
- Augmentation amounts depend on the λ_i, which can be arbitrarily small.
- These are some of the reasons why it took many, many years to figure out how to get a combinatorial SFMin algorithm, and why Cunningham's SFMin algorithm was only pseudo-polynomial.

Current state of the art in SFMin

(Taken from S. T. McCormick (2006). Submodular Function Minimization. Chapter 7 in the *Handbook on Discrete Optimization*, Elsevier, K. Aardal, G. Nemhauser, and R. Weismantel, eds, 321–391.; see my webpage for updated version.)

	Cunningham	Schrijver	Iwata,	Iwata Hybrid	Orlin [71], Sec.	Iwata and
	for General	[76, 84],	Fleischer, and	[47], Sec. 3.3.4	3.4.1	Orlin [51], Sec.
	SFM [13],	Schrijver-PR	Fujishige			3.4.2
	Sec. 3.1	[22], Sec. 3.2	[49, 45],			
			Sec. 3.3			
Pseudo-polyn.	$O(Mn^6\log(Mn))$					
running time	EO)					
Weakly polyn.			$O(n^5 \mathrm{EO} \log M)$	$O((n^4 \text{EO} +$		$O((n^4 \text{EO} +$
running time			[49], Sec. 3.3.1	$n^5) \cdot \log M)$		$n^5) \cdot \log(nM))$
				(*)		
Strongly		$O(n^7 \text{EO} + n^8)$	$O(n^7 \mathrm{EO} \log n)$	$O((n^6 \text{EO} +$	$O(n^5 \text{EO} + n^6)$	$O((n^5 \text{EO} +$
polyn. running		[22, 84]	[49], Sec. 3.3.2	$n^7) \cdot \log n$	(*)	$n^6)\log n$
time						
Fully comb.			$O(n^9 \mathrm{EO} \log^2 n)$	$O(n^8 \mathrm{EO} \log^2 n)$		$O((n^7 \text{EO} +$
running time			[45], Sec. 3.3.3	,		$n^{(*)}\log n$ (*)
_						

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck

Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.

- 1. The Carathéodory subroutine ReduceV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.
- 3. The linear algebra of REDUCEV is also a bottleneck in the empirical running time of SFMin algorithms (lwata).

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.
- 3. The linear algebra of REDUCEV is also a bottleneck in the empirical running time of SFMin algorithms (lwata).
- 4. Potentially, replacing ReduceV by something more combinatorial would be a way to get a faster SFMin algorithm.

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.
- 3. The linear algebra of REDUCEV is also a bottleneck in the empirical running time of SFMin algorithms (lwata).
- 4. Potentially, replacing ReduceV by something more combinatorial would be a way to get a faster SFMin algorithm.
- ► Challenge: Find a linear algebra-free way to prove that the current y belongs to B(f). This new method should be:

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.
- 3. The linear algebra of REDUCEV is also a bottleneck in the empirical running time of SFMin algorithms (lwata).
- 4. Potentially, replacing $\operatorname{ReduceV}$ by something more combinatorial would be a way to get a faster SFMin algorithm.
- ► Challenge: Find a linear algebra-free way to prove that the current y belongs to B(f). This new method should be:
 - 1. Efficient: Calling REDUCEV costs $O(n^3)$ time, so the new method needs to be at least this fast.

- 1. The Carathéodory subroutine REDUCEV is a bottleneck in the worst-case running time of the fastest SFMin algorithms.
- 2. The linear algebra involved in REDUCEV is ugly and produces highly fractional λ_i in general.
 - \blacktriangleright With integral f(S), it is easy to prove that there is always an integral y^* that solves the dual of SFMin.
- 3. The linear algebra of REDUCEV is also a bottleneck in the empirical running time of SFMin algorithms (lwata).
- 4. Potentially, replacing ReduceV by something more combinatorial would be a way to get a faster SFMin algorithm.
- ► Challenge: Find a linear algebra-free way to prove that the current y belongs to B(f). This new method should be:
 - 1. Efficient: Calling REDUCEV costs $O(n^3)$ time, so the new method needs to be at least this fast.
 - 2. Integral: It should work without using any multiplication or division, i.e., no linear algebra, and it should be able to maintain that y is always integral.

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra

Combinatorial hull and membership Algorithmic ideas for combinatorial hull

▶ Recall that if $y, y' \in B(f)$, then y(E) = y'(E) = f(E).

▶ Recall that if $y, y' \in B(f)$, then y(E) = y'(E) = f(E).

• Thus we can't have $y \ge y'$ with $y \ne y'$.

▶ Recall that if $y, y' \in B(f)$, then y(E) = y'(E) = f(E).

• Thus we can't have $y \ge y'$ with $y \ne y'$.

▶ Use tilde to represent projecting out the first component, so that $\tilde{E} = E - \{1\}$ and $\tilde{y} = (y_2, y_3, \dots, y_n)$.

▶ Recall that if y, $y' \in B(f)$, then y(E) = y'(E) = f(E).

• Thus we can't have $y \ge y'$ with $y \ne y'$.

▶ Use tilde to represent projecting out the first component, so that $\tilde{E} = E - \{1\}$ and $\tilde{y} = (y_2, y_3, \dots, y_n)$.

• Now we can have $\tilde{y} \geq \tilde{y}'$ with $\tilde{y} \neq \tilde{y}'$.

▶ Recall that if $y, y' \in B(f)$, then y(E) = y'(E) = f(E).

• Thus we can't have $y \ge y'$ with $y \ne y'$.

• Use tilde to represent projecting out the first component, so that $\tilde{E} = E - \{1\}$ and $\tilde{y} = (y_2, y_3, \dots, y_n)$.

• Now we can have $\tilde{y} \geq \tilde{y}'$ with $\tilde{y} \neq \tilde{y}'$.

▶ Suppose that we have x, $z \in B(f)$, y(E) = f(E), and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$.
A useful theorem?

▶ Recall that if $y, y' \in B(f)$, then y(E) = y'(E) = f(E).

• Thus we can't have $y \ge y'$ with $y \ne y'$.

• Use tilde to represent projecting out the first component, so that $\tilde{E} = E - \{1\}$ and $\tilde{y} = (y_2, y_3, \dots, y_n)$.

• Now we can have $\tilde{y} \geq \tilde{y}'$ with $\tilde{y} \neq \tilde{y}'$.

- ▶ Suppose that we have x, $z \in B(f)$, y(E) = f(E), and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$.
- Theorem (Fujishige): Then $y \in B(f)$.

• We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ \text{Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$
- Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S \{1\}$.

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ \text{Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$
- Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S \{1\}$.
 - Then y(E) = f(E) implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

 \blacktriangleright These show that $y\in B(f)$ iff y(E)=f(E) and

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

• These show that $y \in B(f)$ iff y(E) = f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \ \forall \ S \subseteq \tilde{E}$$
, and

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

▶ These show that $y \in B(f)$ iff y(E) = f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \ \forall \ S \subseteq \tilde{E}$$
, and

• $\tilde{y}(T) \ge \tilde{f}^{\#}(T) \equiv f(E) - f(T) \ \forall \ T \text{ s.t. } T \subseteq E \ (\text{with } S \equiv E - T, \text{ so that } 1 \in S).$

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

▶ These show that $y \in B(f)$ iff y(E) = f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \; \forall \; S \subseteq \tilde{E}$$
, and

• $\tilde{y}(T) \ge \tilde{f}^{\#}(T) \equiv f(E) - f(T) \ \forall \ T \text{ s.t. } T \subseteq E \ (\text{with } S \equiv E - T, \text{ so that } 1 \in S).$

• I.e., iff y(E) = f(E) and

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

▶ Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

▶ These show that $y \in B(f)$ iff y(E) = f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \ \forall \ S \subseteq \tilde{E}$$
, and

• $\tilde{y}(T) \ge \tilde{f}^{\#}(T) \equiv f(E) - f(T) \ \forall \ T \text{ s.t. } T \subseteq E \ (\text{with } S \equiv E - T, \text{ so that } 1 \in S).$

• I.e., iff
$$y(E) = f(E)$$
 and

• $\tilde{y} \in P(\tilde{f})$ (submodular polyhedron) and

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ {\rm Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

 \blacktriangleright These show that $y\in B(f)$ iff y(E)=f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \ \forall \ S \subseteq \tilde{E}$$
, and

• $\tilde{y}(T) \ge \tilde{f}^{\#}(T) \equiv f(E) - f(T) \ \forall \ T \text{ s.t. } T \subseteq E \ (\text{with } S \equiv E - T, \text{ so that } 1 \in S).$

• I.e., iff
$$y(E) = f(E)$$
 and

- $\tilde{y} \in P(\tilde{f})$ (submodular polyhedron) and
- $\tilde{y} \in P^{\#}(\tilde{f}^{\#})$ (supermodular polyhedron).

- We need to show that for all $S \subseteq E$ that $y(S) \leq f(S)$.
- Case 1: Suppose that $1 \notin S$, so that $\tilde{S} = S$.
 - $\blacktriangleright \ \ \text{Then} \ \, y(S)=y(\tilde{S})\leq z(\tilde{S})=z(S)\leq f(S).$

• Case 2: Suppose that $1 \in S$, so that $\tilde{S} = S - \{1\}$.

- Then $y(E) = f(\underline{E})$ implies that $y_1 = f(E) \tilde{y}(\tilde{E})$.
- ► Thus $y(S) = \tilde{y}(\tilde{S}) + y_1 = \tilde{y}(\tilde{S}) + f(E) \tilde{y}(\tilde{E}) = f(E) \tilde{y}(\tilde{E} \tilde{S}) \le f(E) \tilde{x}(\tilde{E} \tilde{S}) = \tilde{x}(\tilde{S}) + f(E) \tilde{x}(\tilde{E}) = x(\tilde{S}) + x_1 = x(S) \le f(S).$

 \blacktriangleright These show that $y\in B(f)$ iff y(E)=f(E) and

•
$$\tilde{y}(S) \leq \tilde{f}(S) \ \forall \ S \subseteq \tilde{E}$$
, and

• $\tilde{y}(T) \ge \tilde{f}^{\#}(T) \equiv f(E) - f(T) \ \forall \ T \text{ s.t. } T \subseteq E \ (\text{with } S \equiv E - T, \text{ so that } 1 \in S).$

• I.e., iff
$$y(E) = f(E)$$
 and

- $\tilde{y} \in P(\tilde{f})$ (submodular polyhedron) and
- $\tilde{y} \in P^{\#}(\tilde{f}^{\#})$ (supermodular polyhedron).
- This projection of B(f) along one component is a g-polymatroid (and all g-polymatroids arise this way).

Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover *B*(*f*)?

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover B(f)?
- YES; Proof:

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover B(f)?
- YES; Proof:
 - Suppose that $y \in B(f)$.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover B(f)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover B(f)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.
 - ▶ We already saw that this means that we can increase components of \tilde{y} to get \tilde{z} with $\tilde{y} \leq \tilde{z}$ and $\tilde{z} \in B(\tilde{f})$.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover *B*(*f*)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.
 - We already saw that this means that we can increase components of \tilde{y} to get \tilde{z} with $\tilde{y} \leq \tilde{z}$ and $\tilde{z} \in B(\tilde{f})$.
 - This also implies that $\tilde{y} \in P^{\#}(\tilde{f})$.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover *B*(*f*)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.
 - We already saw that this means that we can increase components of ỹ to get ž with ỹ ≤ ž and ž ∈ B(f̃).
 - This also implies that $\tilde{y} \in P^{\#}(\tilde{f})$.
 - Similar proof show that this means that we can decrease components of ỹ to get x with x ≤ ỹ and x ∈ B[#](f̃).

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover *B*(*f*)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.
 - We already saw that this means that we can increase components of ỹ to get ž with ỹ ≤ ž and ž ∈ B(f).
 - This also implies that $\tilde{y} \in P^{\#}(\tilde{f})$.
 - Similar proof show that this means that we can decrease components of ỹ to get x with x ≤ ỹ and x ∈ B[#](f).
 - ▶ Now apply induction: $\tilde{z} \in B(\tilde{f})$ (one dimension less) implies that we express \tilde{z} as a combinatorial hull from vertices.

- Suppose, e.g., that x and z are vertices of B(f) coming from linear orders ≺x and ≺z.
 - Thus \prec_x and \prec_z certify that $x, z \in B(f)$ via Greedy.
- ▶ Then y(E) = f(E) and $\tilde{x} \leq \tilde{y} \leq \tilde{z}$ certify that $y \in B(f)$ using no linear algebra.
- ▶ Do these "projected boxes" starting from vertices cover *B*(*f*)?
- YES; Proof:
 - Suppose that $y \in B(f)$.
 - This implies that $\tilde{y} \in P(\tilde{f})$.
 - We already saw that this means that we can increase components of ỹ to get ž with ỹ ≤ ž and ž ∈ B(f).
 - This also implies that $\tilde{y} \in P^{\#}(\tilde{f})$.
 - Similar proof show that this means that we can decrease components of ỹ to get x with x ≤ ỹ and x ∈ B[#](f̃).
 - ▶ Now apply induction: $\tilde{z} \in B(\tilde{f})$ (one dimension less) implies that we express \tilde{z} as a combinatorial hull from vertices.
 - ... and apply induction to $\tilde{x} \in B^{\#}(\tilde{f})$ to get \tilde{x} as a combinatorial hull from vertices.

• Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.

- Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).

- Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).
- **Bad news**: The size of this representation is potentially 2^n :

- Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).
- **Bad news**: The size of this representation is potentially 2^n :
 - Each new dimension doubles the number of points we are using.

- ▶ Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).
- **Bad news**: The size of this representation is potentially 2^n :
 - Each new dimension doubles the number of points we are using.
- This achieves only half of what we challenged ourselves to do:

- Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).
- **Bad news**: The size of this representation is potentially 2^n :
 - Each new dimension doubles the number of points we are using.
- This achieves only half of what we challenged ourselves to do:
 - It does avoid linear algebra, but

- ▶ Good news: This proof shows that we can use this combinatorial hull operation to prove that $y \in B(f)$ without using linear algebra.
- The "depth" of this representation is only O(n).
- **Bad news**: The size of this representation is potentially 2^n :
 - Each new dimension doubles the number of points we are using.
- This achieves only half of what we challenged ourselves to do:
 - It does avoid linear algebra, but
 - It does not appear to be efficient (so far). That is, we don't have a combinatorial hull equivalent to Carathéodory's Theorem.

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra

Combinatorial hull and membership

Algorithmic ideas for combinatorial hull

What is "combinatorial hull"?

► The word "hull" typically means a closure operation.

What is "combinatorial hull"?

- ► The word "hull" typically means a closure operation.
- ▶ Here is the closure operation we want: Given a set of points $P \subseteq \mathbb{R}^n$ satisfying x(E) = c for all $x \in P$, we say that y with y(E) = c is in the combinatorial hull of P if there exists some i with $1 \le i \le n$ and $x, z \in P$ such that $\tilde{x} \le \tilde{y} \le \tilde{z}$ (where the tildes are w.r.t. projecting out component i).
What is "combinatorial hull"?

- ► The word "hull" typically means a closure operation.
- Here is the closure operation we want: Given a set of points P ⊆ ℝⁿ satisfying x(E) = c for all x ∈ P, we say that y with y(E) = c is in the combinatorial hull of P if there exists some i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where the tildes are w.r.t. projecting out component i).
- Then the combinatorial hull of P, combhull(P), is the set of points we obtain by iterating this operation.

What is "combinatorial hull"?

- ► The word "hull" typically means a closure operation.
- Here is the closure operation we want: Given a set of points P ⊆ ℝⁿ satisfying x(E) = c for all x ∈ P, we say that y with y(E) = c is in the combinatorial hull of P if there exists some i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where the tildes are w.r.t. projecting out component i).
- Then the combinatorial hull of P, combhull(P), is the set of points we obtain by iterating this operation.
- ► In these terms we have shown that if V(f) is the set of vertices of B(f), then combhull(V(f)) = B(f), and B(f) = combhull(B(f)).

What is "combinatorial hull"?

- ► The word "hull" typically means a closure operation.
- Here is the closure operation we want: Given a set of points P ⊆ ℝⁿ satisfying x(E) = c for all x ∈ P, we say that y with y(E) = c is in the combinatorial hull of P if there exists some i with 1 ≤ i ≤ n and x, z ∈ P such that x̃ ≤ ỹ ≤ z̃ (where the tildes are w.r.t. projecting out component i).
- ► Then the combinatorial hull of P, combhull(P), is the set of points we obtain by iterating this operation.
- ► In these terms we have shown that if V(f) is the set of vertices of B(f), then combhull(V(f)) = B(f), and B(f) = combhull(B(f)).
- ▶ What we have not shown is, starting from V(f), how many iterations of the combinatorial hull operation are necessary to get to an arbitrary point of B(f).

▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.
 - Our naive proof would give a combinatorial hull representation using four vertices.

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.
 - Our naive proof would give a combinatorial hull representation using four vertices.
 - But a brute force proof shows that we can always get a combinatorial hull representation using at most three vertices.

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.
 - Our naive proof would give a combinatorial hull representation using four vertices.
 - But a brute force proof shows that we can always get a combinatorial hull representation using at most three vertices.
- So maybe this naive proof is not being clever enough, and maybe we could get a more clever proof that (efficiently, algorithmically) produces a representation with only a polynomial number of vertices?

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.
 - Our naive proof would give a combinatorial hull representation using four vertices.
 - But a brute force proof shows that we can always get a combinatorial hull representation using at most three vertices.
- So maybe this naive proof is not being clever enough, and maybe we could get a more clever proof that (efficiently, algorithmically) produces a representation with only a polynomial number of vertices?
- Spoiler alert: I'm not going to give you such an algorithm.

- ▶ When n = 2, B(f) is one-dimensional with at most two vertices, and it is easy to see that any $y \in B(f)$ is in the combinatorial hull of the two vertices.
- When n = 3, B(f) is two-dimensional.
 - Our naive proof would give a combinatorial hull representation using four vertices.
 - But a brute force proof shows that we can always get a combinatorial hull representation using at most three vertices.
- So maybe this naive proof is not being clever enough, and maybe we could get a more clever proof that (efficiently, algorithmically) produces a representation with only a polynomial number of vertices?
- Spoiler alert: I'm not going to give you such an algorithm.
- Hopefulness: But I will give you some tools you might use to construct such an algorithm.

Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - ▶ We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.
 - But to prove optimality, we need more: we also have the subset S of elements reachable from S⁻, and we want to verify that y(S) = f(S) (part of complementary slackness).

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.
 - ▶ But to prove optimality, we need more: we also have the subset S of elements reachable from S⁻, and we want to verify that y(S) = f(S) (part of complementary slackness).
 - ► "Reachable" implies that S is consecutive at the beginning of every ≺_i.

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.
 - ▶ But to prove optimality, we need more: we also have the subset S of elements reachable from S⁻, and we want to verify that y(S) = f(S) (part of complementary slackness).
 - ► "Reachable" implies that S is consecutive at the beginning of every ≺_i.
 - Then Greedy implies that $v^i(S) = f(S)$ for all $i \in \mathcal{I}$.

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.
 - But to prove optimality, we need more: we also have the subset S of elements reachable from S^- , and we want to verify that y(S) = f(S) (part of complementary slackness).
 - ► "Reachable" implies that S is consecutive at the beginning of every ≺_i.
 - Then Greedy implies that $v^i(S) = f(S)$ for all $i \in \mathcal{I}$.
 - ▶ Then linear algebra says that $y(S) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S) = \sum_{i \in \mathcal{I}} \lambda_i f(S) = f(S) \sum_{i \in \mathcal{I}} \lambda_i = f(S)$, and so *S* is indeed *y*-tight.

- Imagine the last step of some SFMin algorithm where we are verifying that our current y is optimal.
 - We are using the old-style representation $y = \sum_{i \in \mathcal{I}} \lambda_i v^i$, which proves that $y \in B(f)$.
 - ▶ But to prove optimality, we need more: we also have the subset S of elements reachable from S⁻, and we want to verify that y(S) = f(S) (part of complementary slackness).
 - ► "Reachable" implies that S is consecutive at the beginning of every ≺_i.
 - Then Greedy implies that $v^i(S) = f(S)$ for all $i \in \mathcal{I}$.
 - ▶ Then linear algebra says that $y(S) = \sum_{i \in \mathcal{I}} \lambda_i v^i(S) = \sum_{i \in \mathcal{I}} \lambda_i f(S) = f(S) \sum_{i \in \mathcal{I}} \lambda_i = f(S)$, and so *S* is indeed *y*-tight.
- Can we also do this for combinatorial hull?

▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).
 - If $1 \in S$: (same proof with everything complemented).

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).
 - If $1 \in S$: (same proof with everything complemented).
 - This is the direction that we need for SFMin optimality.

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).
 - If $1 \in S$: (same proof with everything complemented).
 - This is the direction that we need for SFMin optimality.
- Slightly harder direction: If S is tight for y, is it necessarily also tight for x and z?

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).
 - If $1 \in S$: (same proof with everything complemented).
 - This is the direction that we need for SFMin optimality.
- ► Slightly harder direction: If S is tight for y, is it necessarily also tight for x and z?
 - ▶ NO! A simple counterexample shows that we can have, e.g., S tight for y and z but not tight for x.

- ▶ Easy direction: Proof that S tight for x and z implies that S is also tight for y.
 - If 1 ∉ S: f(S) = x(S) = x̃(S) ≤ ỹ(S) ≤ z̃(S) = z(S) = f(S), so we get equality everywhere, and so ỹ(S) = y(S) = f(S).
 - If $1 \in S$: (same proof with everything complemented).
 - This is the direction that we need for SFMin optimality.
- ► Slightly harder direction: If S is tight for y, is it necessarily also tight for x and z?
 - ▶ NO! A simple counterexample shows that we can have, e.g., S tight for y and z but not tight for x.
 - But if we have that $\tilde{x}_e < \tilde{y}_e < \tilde{z}_e$ for all $e \in \tilde{E}$ with $x_e < z_e$ (i.e., if y is strictly interior wherever possible), then it's fairly easy to show that S tight for y implies that it is also tight for x and z.

▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either

• Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either

1. Prove that $y \in P$, or

▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either

- 1. Prove that $y \in P$, or
- 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).
- ▶ It is easy to reduce general membership for general B(f) and y to membership for a related submodular $B(\hat{f})$ and 0, where $\hat{f}(E) = \hat{f}(\emptyset) = 0$

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).
- ▶ It is easy to reduce general membership for general B(f) and y to membership for a related submodular $B(\hat{f})$ and 0, where $\hat{f}(E) = \hat{f}(\emptyset) = 0$

• Define
$$\hat{f}(S) = f(S) - y(S)$$
.

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).
- ▶ It is easy to reduce general membership for general B(f) and y to membership for a related submodular $B(\hat{f})$ and 0, where $\hat{f}(E) = \hat{f}(\emptyset) = 0$
 - Define $\hat{f}(S) = f(S) y(S)$.
 - Clearly $\hat{f}(E) = \hat{f}(\emptyset) = 0.$

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).
- ▶ It is easy to reduce general membership for general B(f) and y to membership for a related submodular $B(\hat{f})$ and 0, where $\hat{f}(E) = \hat{f}(\emptyset) = 0$
 - Define $\hat{f}(S) = f(S) y(S)$.
 - Clearly $\hat{f}(E) = \hat{f}(\emptyset) = 0.$
 - Since y(S) is modular, $\hat{f}(S)$ is submodular.

- ▶ Given a polyhedron P and point $y \in \mathbb{R}^n$, the membership problem is to either
 - 1. Prove that $y \in P$, or
 - 2. Find a valid inequality (facet?) $\alpha^T x \leq b$ for P violated by y, i.e., $\alpha^T y > b$.
- Given an instance B(f), y of membership, we are hoping for a polynomial algorithm that proves either that $y \in B(f)$ (via constructing a combinatorial hull representation), or some S such that y(S) > f(S).
- ▶ It is easy to reduce general membership for general B(f) and y to membership for a related submodular $B(\hat{f})$ and 0, where $\hat{f}(E) = \hat{f}(\emptyset) = 0$
 - Define $\hat{f}(S) = f(S) y(S)$.
 - Clearly $\hat{f}(E) = \hat{f}(\emptyset) = 0.$
 - Since y(S) is modular, $\hat{f}(S)$ is submodular.
 - ▶ Now S proves that $y \notin B(f)$ iff y(S) > f(S) iff $0 > f(S) - y(S) = \hat{f}(S)$, and so $y \in B(f)$ iff $0 \in B(\hat{f})$.

Membership and SFMin

▶ Even better, if we can solve this membership problem w.r.t. $B(\hat{f})$ and 0, then Fujishige and Iwata (2001) show that $O(n^2)$ calls to this subroutine suffice to solve SFMin.

Membership and SFMin

- Even better, if we can solve this membership problem w.r.t. $B(\hat{f})$ and 0, then Fujishige and Iwata (2001) show that $O(n^2)$ calls to this subroutine suffice to solve SFMin.
 - If we had a membership subroutine that didn't use linear algebra, then we'd have a linear algebra-free SFMin algorithm.

Membership and SFMin

- Even better, if we can solve this membership problem w.r.t. $B(\hat{f})$ and 0, then Fujishige and Iwata (2001) show that $O(n^2)$ calls to this subroutine suffice to solve SFMin.
 - If we had a membership subroutine that didn't use linear algebra, then we'd have a linear algebra-free SFMin algorithm.
- Thus a polynomial combinatorial algorithm that uses combinatorial hull to solve membership of 0 in $B(\hat{f})$ is a worthwhile target.
Membership and SFMin

- Even better, if we can solve this membership problem w.r.t. $B(\hat{f})$ and 0, then Fujishige and Iwata (2001) show that $O(n^2)$ calls to this subroutine suffice to solve SFMin.
 - If we had a membership subroutine that didn't use linear algebra, then we'd have a linear algebra-free SFMin algorithm.
- Thus a polynomial combinatorial algorithm that uses combinatorial hull to solve membership of 0 in $B(\hat{f})$ is a worthwhile target.
- ▶ With this reduction to membership for 0, what we are trying to do is to construct points x, $z \in B(\hat{f})$ via combinatorial hull such that $\tilde{x} \leq 0$ and $\tilde{z} \geq 0$.

Membership and SFMin

- Even better, if we can solve this membership problem w.r.t. $B(\hat{f})$ and 0, then Fujishige and Iwata (2001) show that $O(n^2)$ calls to this subroutine suffice to solve SFMin.
 - If we had a membership subroutine that didn't use linear algebra, then we'd have a linear algebra-free SFMin algorithm.
- Thus a polynomial combinatorial algorithm that uses combinatorial hull to solve membership of 0 in $B(\hat{f})$ is a worthwhile target.
- ▶ With this reduction to membership for 0, what we are trying to do is to construct points x, $z \in B(\hat{f})$ via combinatorial hull such that $\tilde{x} \leq 0$ and $\tilde{z} \geq 0$.
- ▶ The problem is symmetric between x and z: If we can succeed in constructing a point $z \in B(\hat{f})$ with $\tilde{z} \ge 0$ (or prove that no such z exists), then we could run the same algorithm with signs reversed to get some $x \in B(\hat{f})$ with $\tilde{x} \le 0$ (or prove that no such x exists).

We would start an algorithm with a Greedy vertex v coming from linear order ≺.

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.
- ► Slightly trickier: Suppose now that S is a *terminal* subset of ≺.

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.
- ► Slightly trickier: Suppose now that S is a terminal subset of ≺.
 - Since v solves max_{y∈B(f)} y(E − S), and since y(E) is constant on B(f), we have that v must solve min_{y∈B(f)} y(S).

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.
- ► Slightly trickier: Suppose now that S is a terminal subset of ≺.
 - Since v solves max_{y∈B(f)} y(E − S), and since y(E) is constant on B(f), we have that v must solve min_{y∈B(f)} y(S).
- ▶ Application to membership of 0 in $B(\hat{f})$: Suppose that $\prec = (1, 2, 3, ..., n).$

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.
- ► Slightly trickier: Suppose now that S is a terminal subset of ≺.
 - Since v solves max_{y∈B(f)} y(E − S), and since y(E) is constant on B(f), we have that v must solve min_{y∈B(f)} y(S).
- ▶ Application to membership of 0 in $B(\hat{f})$: Suppose that $\prec = (1, 2, 3, ..., n).$
 - If $v_1 < 0$, then $y({1}) \le \hat{f}({1}) = v_1$ certifies that $0 \notin B(\hat{f})$.

- We would start an algorithm with a Greedy vertex v coming from linear order ≺.
- ► Recall that Greedy has the property that if S is an *initial* subset of ≺, then v(S) = f(S).
 - ▶ Since $y(S) \le f(S)$ for all $y \in B(f)$, clearly v solves $\max_{y \in B(f)} y(S)$.

► Slightly trickier: Suppose now that S is a *terminal* subset of ≺.

- Since v solves max_{y∈B(f)} y(E − S), and since y(E) is constant on B(f), we have that v must solve min_{y∈B(f)} y(S).
- ▶ Application to membership of 0 in $B(\hat{f})$: Suppose that $\prec = (1, 2, 3, ..., n).$
 - If $v_1 < 0$, then $y({1}) \le \hat{f}({1}) = v_1$ certifies that $0 \notin B(\hat{f})$.
 - ▶ If $v_n > 0$, then $-y_n = y(E) y_n = y(E \{n\}) \le \hat{f}(E \{n\}) = v(E \{n\}) = v(E) v_n = -v_n$ certifies that $0 \notin B(\hat{f})$.

Optimizing submodular functions

The Greedy Algorithm Edges of B(f)

SFMin algorithms

An algorithmic framework Algorithm-izing the dual LPs

Combinatorial Hull

Carathéodory is a bottleneck Avoiding linear algebra Combinatorial hull and membership Algorithmic ideas for combinatorial hull

▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.

- ▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.
- Previous slide showed that we can assume that $v_1 \ge 0$ and $v_n \le 0$.

- ▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.
- Previous slide showed that we can assume that $v_1 \ge 0$ and $v_n \le 0$.
- More generally, we can assume that for any initial subset S of $\prec,\,v(S)\geq 0$ (same proof), and \ldots

- ▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.
- Previous slide showed that we can assume that $v_1 \ge 0$ and $v_n \le 0$.
- More generally, we can assume that for any initial subset S of $\prec,\,v(S)\geq 0$ (same proof), and \ldots
- ▶ ... for any terminal subset S of \prec we can assume that $v(S) \leq 0$ (same proof).

- ▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.
- Previous slide showed that we can assume that $v_1 \ge 0$ and $v_n \le 0$.
- More generally, we can assume that for any initial subset S of $\prec,\,v(S)\geq 0$ (same proof), and \ldots
- ... for any terminal subset S of \prec we can assume that $v(S) \leq 0$ (same proof).
- ► So now let's try to find combinatorial hull moves that will modify v into the x we need.

- ▶ Let's start with v coming from \prec , and we'll concentrate on trying to find an $\tilde{x} \leq 0$.
- Previous slide showed that we can assume that $v_1 \ge 0$ and $v_n \le 0$.
- More generally, we can assume that for any initial subset S of $\prec,\,v(S)\geq 0$ (same proof), and \ldots
- ... for any terminal subset S of \prec we can assume that $v(S) \leq 0$ (same proof).
- ► So now let's try to find combinatorial hull moves that will modify v into the x we need.
 - All we need to do is to "re-distribute" the negativity in the terminal elements of v to make every individual component non-positive (not just the terminal partial sums).

• Suppose that $v_n < 0$ but that $v_{n-1} > 0$.

- Suppose that $v_n < 0$ but that $v_{n-1} > 0$.
- ► Consider v' generated by $\prec' = (1, 2, ..., n 2, n, n 1).$

- Suppose that $v_n < 0$ but that $v_{n-1} > 0$.
- ► Consider v' generated by $\prec' = (1, 2, ..., n 2, n, n 1).$
- ▶ We saw that $v'_n \ge v_n$ and $v'_{n-1} \le v_{n-1}$, but that $v'_i = v_i$ for all i < n-1.

- Suppose that $v_n < 0$ but that $v_{n-1} > 0$.
- ► Consider v' generated by $\prec' = (1, 2, ..., n 2, n, n 1).$
- ▶ We saw that $v'_n \ge v_n$ and $v'_{n-1} \le v_{n-1}$, but that $v'_i = v_i$ for all i < n-1.
- As we move v in the v' − v direction, v_n increases towards 0, and v_{n−1} decreases towards 0.

- Suppose that $v_n < 0$ but that $v_{n-1} > 0$.
- ► Consider v' generated by $\prec' = (1, 2, ..., n 2, n, n 1).$
- ▶ We saw that $v'_n \ge v_n$ and $v'_{n-1} \le v_{n-1}$, but that $v'_i = v_i$ for all i < n-1.
- As we move v in the v' v direction, v_n increases towards 0, and v_{n-1} decreases towards 0.
- ► This movement is along the edge which is the convex hull of v and v' (this sounds bad), but since v' - v has all signs non-positive (after projecting out coordinate n), this is also a valid combinatorial hull operation (which sounds good).

1. We could stop if v_n hits 0 before v_{n-1} .

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - ► Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n − 1 components of v non-positive).

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - ► Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n − 1 components of v non-positive).
- 3. We could stop if we move all the way from v to v' and neither one of v_n nor v_{n-1} hits 0.

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n 1 components of v non-positive).
- 3. We could stop if we move all the way from v to v' and neither one of v_n nor v_{n-1} hits 0.
 - Now we have effectively replaced v by v'.

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n 1 components of v non-positive).
- 3. We could stop if we move all the way from v to v' and neither one of v_n nor v_{n-1} hits 0.
 - Now we have effectively replaced v by v'.
 - We ended with $v'_{n-1} > 0$.

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n 1 components of v non-positive).
- 3. We could stop if we move all the way from v to v' and neither one of v_n nor v_{n-1} hits 0.
 - Now we have effectively replaced v by v'.
 - We ended with $v'_{n-1} > 0$.
 - ▶ This violates that $y_{n-1} \ge \hat{f}^{\#}(\{n-1\}) = v'_{n-1}$, proving that $0 \notin B(\hat{f})$.

- 1. We could stop if v_n hits 0 before v_{n-1} .
 - But then the terminal partial sum of n and n-1 is positive, so we get a proof that 0 ∉ B(f̂).
- 2. We could stop if v_{n-1} hits 0 before v_n .
 - Now we have the last two components of v non-positive, so we could "continue the algorithm" (towards our ideal of having the last n 1 components of v non-positive).
- 3. We could stop if we move all the way from v to v' and neither one of v_n nor v_{n-1} hits 0.
 - Now we have effectively replaced v by v'.
 - We ended with $v'_{n-1} > 0$.
 - ▶ This violates that $y_{n-1} \ge \hat{f}^{\#}(\{n-1\}) = v'_{n-1}$, proving that $0 \notin B(\hat{f})$.
- In all three case we make real progress.

Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

▶ The same proof shows that $v'_n \ge v_n$, and $v'_{n-2} \le v_{n-2}$, $v'_{n-1} \le v_{n-1}$.

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

- ▶ The same proof shows that $v'_n \ge v_n$, and $v'_{n-2} \le v_{n-2}$, $v'_{n-1} \le v_{n-1}$.
- ▶ Again if we move v in the v' − v direction, v_n increases towards 0, v_{n-1} decreases from 0, and v_{n-2} decreases towards 0.

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

- ▶ The same proof shows that $v'_n \ge v_n$, and $v'_{n-2} \le v_{n-2}$, $v'_{n-1} \le v_{n-1}$.
- ► Again if we move v in the v' v direction, v_n increases towards 0, v_{n-1} decreases from 0, and v_{n-2} decreases towards 0.
- ► This move is not along an edge, and is a convex hull move (which again sounds bad), but since v' - v has all signs non-positive (after projecting out coordinate n), this is also a combinatorial hull operation (which sounds good).
More complicated

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

- ▶ The same proof shows that $v'_n \ge v_n$, and $v'_{n-2} \le v_{n-2}$, $v'_{n-1} \le v_{n-1}$.
- ► Again if we move v in the v' v direction, v_n increases towards 0, v_{n-1} decreases from 0, and v_{n-2} decreases towards 0.
- ► This move is not along an edge, and is a convex hull move (which again sounds bad), but since v' - v has all signs non-positive (after projecting out coordinate n), this is also a combinatorial hull operation (which sounds good).
 - ▶ This looks non-integral: Suppose that v = (..., 3, 0, -4) and v' = (..., -2, -1, 2). Then we'd move to $(..., 0, -\frac{3}{5}, -\frac{2}{5})$, which is not integral (bad) ...

More complicated

- Suppose instead that $v_n < 0$, but $v_{n-1} = 0$ and $v_{n-2} > 0$.
- Consider now the block change

$$v' = (1 \ 2 \ \dots n - 3 \ n \ n - 2 \ n - 1)$$

- ▶ The same proof shows that $v'_n \ge v_n$, and $v'_{n-2} \le v_{n-2}$, $v'_{n-1} \le v_{n-1}$.
- ► Again if we move v in the v' v direction, v_n increases towards 0, v_{n-1} decreases from 0, and v_{n-2} decreases towards 0.
- ► This move is not along an edge, and is a convex hull move (which again sounds bad), but since v' - v has all signs non-positive (after projecting out coordinate n), this is also a combinatorial hull operation (which sounds good).
 - ▶ This looks non-integral: Suppose that v = (..., 3, 0, -4) and v' = (..., -2, -1, 2). Then we'd move to $(..., 0, -\frac{3}{5}, -\frac{2}{5})$, which is not integral (bad) ...
 - ► ... but we could move to (...,0,-1,0), which is integral (good).

1. We could stop if v_n hits 0 before v_{n-2} .

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v^\prime and neither v_n nor v_{n-2} hits 0.

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v^\prime and neither v_n nor v_{n-2} hits 0.
 - Now we have effectively replaced v by v'.

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v' and neither v_n nor v_{n-2} hits 0.
 - Now we have effectively replaced v by v'.
 - $\blacktriangleright \ \ \text{We ended with } v_n'<0, \ v_{n-1}'\leq 0, \ \text{and} \ v_{n-2}'>0.$

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v' and neither v_n nor v_{n-2} hits 0.
 - Now we have effectively replaced v by v'.
 - $\blacktriangleright \ \ \text{We ended with} \ v_n'<0, \ v_{n-1}'\leq 0, \ \text{and} \ v_{n-2}'>0.$
 - If v'_{n-1} + v'_{n-2} > 0 then we violate that the partial sum of the last two terms of v' must be non-positive.

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v' and neither v_n nor v_{n-2} hits 0.
 - Now we have effectively replaced v by v'.
 - $\blacktriangleright \ \ \text{We ended with } v_n'<0, \ v_{n-1}'\leq 0, \ \text{and} \ v_{n-2}'>0.$
 - If v'_{n-1} + v'_{n-2} > 0 then we violate that the partial sum of the last two terms of v' must be non-positive.
 - ▶ If instead $v'_{n-1} + v'_{n-2} \le 0$ then we can do a step as before where we move v'_{n-1} up and v'_{n-2} down.

- 1. We could stop if v_n hits 0 before v_{n-2} .
 - Now we could do a step as before with $v_{n-2} > 0$, $v_{n-1} < 0$.
- 2. We could stop if v_{n-2} hits 0 before v_n .
 - ► Now we have the last three components of v non-positive, so we could "continue the algorithm".
- 3. We could stop if we move all the way from v to v' and neither v_n nor v_{n-2} hits 0.
 - Now we have effectively replaced v by v'.
 - $\blacktriangleright \ \ \text{We ended with } v_n'<0, \ v_{n-1}'\leq 0, \ \text{and} \ v_{n-2}'>0.$
 - If v'_{n-1} + v'_{n-2} > 0 then we violate that the partial sum of the last two terms of v' must be non-positive.
 - ▶ If instead $v'_{n-1} + v'_{n-2} \le 0$ then we can do a step as before where we move v'_{n-1} up and v'_{n-2} down.
- Again we make real progress in all cases.

▶ Suppose that
$$\prec = (1 \ 2 \ 3 \ 4 \ 5)$$
 and $v = (1, 4, 3, 0, -8)$.

▶ Suppose that $\prec = (1 \ 2 \ 3 \ 4 \ 5)$ and v = (1, 4, 3, 0, -8).

▶ We'd set $\prec_1 = (1 \ 2 \ 5 \ 3 \ 4)$, with, say, $v^1 = (1, 4, -1, -2, -2)$.

- ▶ Suppose that $\prec = (1 \ 2 \ 3 \ 4 \ 5)$ and v = (1, 4, 3, 0, -8).
- ▶ We'd set $\prec_1 = (1 \ 2 \ 5 \ 3 \ 4)$, with, say, $v^1 = (1, 4, -1, -2, -2)$.
- This would lead to, say, v' = (1, 4, 0, -1, -4).

- ▶ Suppose that $\prec = (1 \ 2 \ 3 \ 4 \ 5)$ and v = (1, 4, 3, 0, -8).
- ▶ We'd set $\prec_1 = (1 \ 2 \ 5 \ 3 \ 4)$, with, say, $v^1 = (1, 4, -1, -2, -2)$.
- This would lead to, say, v' = (1, 4, 0, -1, -4).
- ▶ Now we'd set $\prec_2 = (1 \ 4 \ 2 \ 3 \ 5)$, with, say, $v^2 = (1, -1, 1, 7, -8).$

- ▶ Suppose that $\prec = (1 \ 2 \ 3 \ 4 \ 5)$ and v = (1, 4, 3, 0, -8).
- ▶ We'd set $\prec_1 = (1 \ 2 \ 5 \ 3 \ 4)$, with, say, $v^1 = (1, 4, -1, -2, -2)$.
- This would lead to, say, v' = (1, 4, 0, -1, -4).

▶ Now we'd set
$$\prec_2 = (1 \ 4 \ 2 \ 3 \ 5)$$
, with, say,
 $v^2 = (1, -1, 1, 7, -8).$

▶ We were expecting that after projecting out 4, we'd have that $v_2^2 \le v_2'$ and $v_3^2 \le v_3'$, but this is false.

- ▶ Suppose that $\prec = (1 \ 2 \ 3 \ 4 \ 5)$ and v = (1, 4, 3, 0, -8).
- ▶ We'd set $\prec_1 = (1 \ 2 \ 5 \ 3 \ 4)$, with, say, $v^1 = (1, 4, -1, -2, -2)$.
- This would lead to, say, v' = (1, 4, 0, -1, -4).

▶ Now we'd set
$$\prec_2 = (1 \ 4 \ 2 \ 3 \ 5)$$
, with, say,
 $v^2 = (1, -1, 1, 7, -8).$

- We were expecting that after projecting out 4, we'd have that $v_2^2 \le v_2'$ and $v_3^2 \le v_3'$, but this is false.
- ► This is the problem with combinatorial hull: Unlike convex hull, you cannot arbitrarily pile on an operation that works in one place (e.g., v² - v is a good direction w.r.t. v) and necessarily have it work in another place (e.g., v² doesn't have the right signs w.r.t. v').

1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:
 - Good: It proves that $y \in B(f)$ with no linear algebra.

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:
 - Good: It proves that $y \in B(f)$ with no linear algebra.
 - Good: There are some promising algorithmic ideas.

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:
 - Good: It proves that $y \in B(f)$ with no linear algebra.
 - Good: There are some promising algorithmic ideas.
 - ► Good: These algorithmic ideas preserve integrality.

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:
 - Good: It proves that $y \in B(f)$ with no linear algebra.
 - Good: There are some promising algorithmic ideas.
 - Good: These algorithmic ideas preserve integrality.
 - Bad: These algorithmic ideas don't yet seem strong enough to make combinatorial hull work.

- 1. Finding a more combinatorial replacement for $\operatorname{ReduceV}$ is important.
- 2. Combinatorial hull has some good points and some bad points:
 - Good: It proves that $y \in B(f)$ with no linear algebra.
 - Good: There are some promising algorithmic ideas.
 - Good: These algorithmic ideas preserve integrality.
 - Bad: These algorithmic ideas don't yet seem strong enough to make combinatorial hull work.
- 3. But we don't have an alternative to combinatorial hull in hand either . . .