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Question: representability of convex sets

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?
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Factorizations

Factorizations

Given a matrix M ∈ Rm×n, can factorize it as M = AB, i.e.,

Rn B−→ Rk A−→ Rm

Ideally, k is small (matrix M is low-rank), so we’re factorizing through a
“small subspace.”

Why is this useful?

Realization theory (e.g., factorization of a Hankel matrix)

Principal component analysis (e.g., factorization of covariance of a
Gaussian process)

And many others... Standard notion in linear algebra.
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Factorizations

More Factorizations...

However, often we need further conditions on M = AB...

Norm conditions on the factors A,B:

Want factors A,B to be “small” in some norm
Well-studied topic in Banach space theory, through the notion of
factorization norms

For instance, the nuclear norm ‖M‖? := min
A,B : M=AB

1

2
(‖A‖2

F + ‖B‖2
F )

Nonnegativity conditions:

Matrix M is (componentwise) nonnegative, and so must be the factors.
This is the nonnegative factorization problem.
Many applications, e.g., in probability (conditional independence) and
machine learning (additive features).
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Factorizations

Nonnegative factorization and hidden variables

Let X ,Y be discrete random variables, with joint distribution

P[X = i ,Y = j ] = Pij .

The nonnegative rank of P is the smallest support of a random variable Z ,
such that X and Y are conditionally independent given Z (i.e., X − Z −Y
is Markov):

P[X = i ,Y = j ] =
∑

s=1,...,k

P[Z = s] · P[X = i |Z = s] · P[Y = j |Z = s].

Relations with information theory, “correlation generation,”
communication complexity, etc.

As we’ll see, also fundamental in optimization . . .
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Factorizations Conic factorizations

Conic factorizations

We’re interested in a different class: conic factorizations [GPT11]

Let M ∈ Rm×n
+ be a nonnegative matrix, and K be a convex cone in Rk .

Then, we want M = AB, where

Rn
+

B−→ K A−→ Rm
+

M maps the nonnegative orthant into the nonnegative orthant.

For K = Rk
+, this is a standard nonnegative factorization.

In general, factorize a linear map through a “small cone”

Important special case: K is the cone of psd matrices...
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Factorizations Positive semidefinite rank

PSD rank of a nonnegative matrix

Let M ∈ Rm×n be a nonnegative matrix.

Definition [GPT11]: The PSD rank of M, denoted rankpsd , is the smallest
r for which there exists r × r PSD matrices {A1, . . . ,Am} and
{B1, . . . ,Bn} such that

Mij = traceAiBj , i = 1, . . . ,m j = 1, . . . , n.

(The maps are then given by x 7→∑
i xiAi , and Y 7→ traceYBj .)

Natural definition, generalization of nonnegative rank.
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Factorizations Positive semidefinite rank

Example (I)

M =




0 1 1
1 0 1
1 1 0


 .

M admits a psd factorization of size 2:

A1 =

[
1 0
0 0

]
A2 =

[
0 0
0 1

]
A3 =

[
1 −1
−1 1

]

B1 =

[
0 0
0 1

]
B2 =

[
1 0
0 0

]
B3 =

[
1 1
1 1

]
.

One can easily check that the matrices Ai and Bj are positive semidefinite,
and that Mij = 〈Ai ,Bj〉. This factorization shows that rankpsd (M) ≤ 2,
and in fact rankpsd (M) = 2.
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Factorizations Positive semidefinite rank

Example (II)

Consider the matrix

M(a, b, c) =



a b c
c a b
b c a


 .

0 1 2 3 4

0

1

2

3

4

b

c

Usual rank of M(a, b, c) is 3, unless a = b = c (then, rank is 1).

One can show that

rankpsd (M(a, b, c)) ≤ 2 ⇐⇒ a2 + b2 + c2 ≤ 2(ab + bc + ac).
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Representations of convex sets

Back to representability...

Existence and efficiency:

When is a convex set representable by conic optimization?

How to quantify the number of additional variables that are needed?

Given a convex set C , is it possible to repre-
sent it as

C = π(K ∩ L)

where K is a cone, L is an affine subspace,
and π is a linear map?
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Representations of convex sets

Question: representability of convex sets

“Complicated” objects are sometimes easily described as “projections” of
“simpler” ones.

A general theme: algebraic varieties, unitaries/contractions, graphical
models, . . .
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Representations of convex sets Extended formulations

Extended formulations

These representations are usually called extended formulations.
Particularly relevant in combinatorial optimization (e.g., TSP).

Seminal work by Yannakakis (1991). He gave a beautiful characterization
(for LP) in terms of nonnegative factorizations, and used it to disprove the
existence of “symmetric” LPs for the TSP polytope.
Nice recent survey by Conforti-Cornuéjols-Zambelli (2010).

Our goal: to understand this phenomenon for convex optimization (SDP),
not just LP.
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Representations of convex sets Extended formulations

“Extended formulations” in semidefinite programming

Many convex sets can be modeled by SDP and LMIs. Among others:

Sums of eigenvalues of symmetric matrices

Convex envelope of univariate polynomials

Multivariate polynomials that are sums of squares

Unit ball of matrix operator and nuclear norms

Geometric and harmonic means

(Some) orbitopes – convex hulls of group orbits
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Representations of convex sets Extended formulations

How to produce extended formulations?

Clever, non-obvious constructions

E.g., the KYP (Kalman-Yakubovich-Popov) lemma, LMI solution of
interpolation problems (e.g., AAK, Ball-Gohberg-Rodman), . . .
Work of Nesterov/Nemirovski, Boyd/Vandenberghe, Scherer,
Gahinet/Apkarian, Ben-Tal/Nemirovski, Sanyal/Sottile/Sturmfels, etc.

Systematic “lifting” techniques

Reformulation/linearization (Sherali-Adams, Lovasz-Schrijver)
Sum of squares (or moments), Positivstellensatz, (Lasserre, Putinar, P.)
Determinantal representations (Helton/Vinnikov, Nie)
Hyperbolic polynomials (Guler, Renegar)

Much research in this area. More recently, efforts towards understanding
the general case (not just specific constructions).

Parrilo (MIT) Positive semidefinite rank Cargese 2014 14 / 32



Representations of convex sets Slack operators

Polytopes

What happens in the case of polytopes?

P = {x ∈ Rn : f Ti x ≤ 1}

(WLOG, compact with 0 ∈ intP).

Polytopes have a finite number of facets fi and vertices vj .
Define a nonnegative matrix, called the slack matrix of the polytope:

[SP ]ij = 1− f Ti vj , i = 1, . . . , |F | j = 1, . . . , |V |

Parrilo (MIT) Positive semidefinite rank Cargese 2014 15 / 32



Representations of convex sets Slack operators

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3, and is

SH =




0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0



.

“Trivial” representation requires 6 facets. Can we do better?
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Representations of convex sets Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

Sij = 〈ai , bj〉, i = 1, . . . , v , j = 1, . . . , f

where ai , bi are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope
is equal to the nonnegative rank of its slack matrix.
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Representations of convex sets Factorizations and representability

Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

SH =




0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0



.

Nonnegative rank is 5.
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Representations of convex sets Factorizations and representability

Beyond LPs and nonnegative factorizations

LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis’ theorem to the full convex
case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones

slack matrix slack operators
vertices extreme points of C
facets extreme points of polar C ◦

nonnegative factorizations conic factorizations
Sij = 〈ai , bj〉, ai ≥ 0, bj ≥ 0 Sij = 〈ai , bj〉, ai ∈ K , bj ∈ K ∗
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Representations of convex sets Factorizations and representability

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.

(Example: the stable set or independent set polytope of a graph. For perfect

graphs, efficient SDP representations exist, but no known subexponential LP.)

Thm: ([GPT 11]) Positive semidefinite rank of slack matrix exactly
characterizes the complexity of SDP-representability.

PSD factorizations of slack matrix ⇐⇒ SDP extended formulations
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Representations of convex sets Factorizations and representability

SDP representation of hexagon

A regular hexagon in the plane.

Projection onto (x , y) of a 5-dimensional spectrahedron:




1 x y t
x (1 + r)/2 s/2 r
y s/2 (1− r)/2 −s
t r −s 1


 � 0

Representation has nice symmetry properties (equivariance).
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Positive semidefinite rank

Towards understanding psd rank

Generally difficult, since it’s semialgebraic (inequalities matter), and
symmetry group is “small”.

Basic properties

Other interpretations (e.g., information-theoretic)

Dependence on field and topology of factorizations

Special cases and extensions
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Positive semidefinite rank Basic properties

Basic inequalities

For any nonnegative matrix M

1

2

√
1 + 8 rank(M)− 1

2
≤ rankpsd(M) ≤ rank+(M).

Gap between rank+(M) and rankpsd(M) can be arbitrarily large:

Mij = (i − j)2 =

〈(
i2 −i
−i 1

)
,

(
1 j
j j2

)〉

has rankpsd(M) = 2, but rank+(M) = Ω(log n).

Arbitrarily large gaps between all pairs of ranks (rank, rank+ and rankpsd).
For slack matrices of polytopes, arbitrarily large gaps between rank and
rank+, and rank and rankpsd.
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Positive semidefinite rank Basic properties

Real and rational PSD rank can be different

If the matrix M has rational entries, sometimes it is natural to consider
only factors Ai ,Bi that are rational.

In general we have

rankpsd (M) ≤ rankpsd Q(M).

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson).

Same question for nonnegative rank is open (since Cohen-Rothblum 93).
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Positive semidefinite rank Basic properties

Computing and bounding PSD rank

Computing PSD rank seems to be quite hard, both in theory and practice.
Are there situations where it is easy?

k = 1 easy, since rankpsd (M) = 1 if and only if rank(M) = 1.

k = 2 also easy, since it is reducible to semidefinite programming
(e.g., via S-lemma).

What about for fixed psd rank (even k = 3)? Analogue of
Arora-Ge-Kannan-Moitra polynomiality result for nonnegative rank?

What about bounds? And before psd, what about nonnegative rank?
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Positive semidefinite rank Basic properties

Bounding nonnegative rank

Want techniques to lower bound the nonnegative rank of a matrix.

In applications, these bounds may yield:

Minimal size of latent variables

Complexity lower bounds on extended representations

Many known bounds (e.g. rank, combinatorial, information-theoretic,
etc.).

New “self-scaled bounds” via SOS (Fawzi-P., arXiv:1404.3240), that
extend to other “product cone” ranks (e.g., NN tensor rank, CP-rank,
etc). We describe these next...
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Lower bound
I Main observation: Assume

M = X1 + · · ·+ Xr (1)

nonnegative factorization of M where Xi ≥ 0 and rank-one.
Then Xi ≤ M (componentwise) for all i = 1, . . . , r .

I Define

A(M) =
{

X ∈ Rp×q : X rank-one and 0 ≤ X ≤ M
}

Each Xi from Equation (1) belongs to A(M).

Proposition
Assume L : Rp×q → R linear function such that L(X ) ≤ 1 for all X ∈ A(M).
Then L(M) ≤ rank+(M).

Proof.

L(M) = L(X1) + · · ·+ L(Xr ) ≤ 1 + · · ·+ 1 = r = rank+(M).
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Lower bound

I Look for the linear function L which gives the best lower bound (call the
resulting quantity τ(M)):

τ(M) := max
L

L(M)

s.t. L : Rp×q → R linear
L ≤ 1 on A(M)

I From previous proposition, τ(M) satisfies:

τ(M) ≤ rank+(M)

I Computing τ(M) is a convex optimization problem (but feasible set may
be complicated to represent)
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Duality

τ(M) := max
L linear

L(M) s.t. L ≤ 1 on A(M)

= min t s.t. M ∈ t conv(A(M))

I τ(M) is Minkowski gauge function of conv(A(M)), evaluated at M.

I “Self-scaled”: the atoms A(M) depend on the matrix M
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Example: diagonal matrices

M =

[
a1 0
0 a2

]

A(M) =

{
X ∈ R2×2 : rank X ≤ 1 and 0 ≤ X ≤

[
a1 0
0 a2

]}

=

{[
x 0
0 0

]
with 0 ≤ x ≤ a1

}
∪
{[

0 0
0 y

]
with 0 ≤ y ≤ a2

}
.

(2)

a1

a2
M

conv A(M)
2a1

2a2
2 conv A(M)

0
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Computing the lower bound

τ(M) = max
L linear

L(M) s.t. L ≤ 1 on A(M)

I To compute τ(M), we need efficient description of

C =
{

L linear : L(X ) ≤ 1 ∀X ∈ A(M)
}
.

I We construct a tractable SOS relaxation Csos ⊆ C:

Csos =
{

L linear : identity below holds for some αij ≥ 0, βijkl ,SOS(X )
}
.

1− L(X ) = SOS(X )︸ ︷︷ ︸
≥0

+
∑

1≤i≤p
1≤j≤q

αijXij(Mij − Xij)

︸ ︷︷ ︸
≥0 if 0 ≤ X ≤ M

+
∑

1≤i<k≤p
1≤j<l≤q

βijkl(XijXkl − XilXkj)

︸ ︷︷ ︸
=0 if X is rank-one
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SOS relaxation

I Define:

τ sos(M) := max
L

L(M)

s.t. L linear and has SOS representation

I Quantity τ sos(M) can be computed using semidefinite programming.
Satisfies:

τ sos(M) ≤ τ(M) ≤ rank+(M)
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Structural properties of τ and τ sos

I Invariant under scaling:

τ(D1MD2) = τ(M)

for any D1,D2 diagonal matrices with positive diagonal elements.

I Block-diagonal matrices: τ(blockdiag(M1,M2)) = τ(M1) + τ(M2)

I Subadditivity: τ(M + N) ≤ τ(M) + τ(N)

I Product: τ(MN) ≤ min(τ(M), τ(N))

I Monotonicity: If P submatrix of M then τ(P) ≤ τ(M).
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Comparison with combinatorial bounds

I Combinatorial bounds on rank+(M) are bounds that only depend on
sparsity pattern of M. Can be expressed in terms of the rectangle
graph GM of M:

ω(GM)︸ ︷︷ ︸
fooling set bound

≤ ϑ(GM) ≤ χfrac(GM) ≤ χ(GM)︸ ︷︷ ︸
rect. cover number

≤ rank+(M)

I The quantities τ(M) and τ sos(M) can be shown to be non-combinatorial
counterparts of fractional rectangle cover number and of ϑ(GM):

Theorem

τ(M) ≥ χfrac(GM) τ sos(M) ≥ ϑ(GM)
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General “atomic cone ranks”
I General framework: K convex cone and V is some set

M =
r∑

i=1

Xi where Xi ∈ K ∩ V

Define rankK ,V (M) to be the size of the smallest such decomposition.

A(M) = {X : 0 �K X �K M}

τ(M) = max L(M) : L ≤ 1 on A(M).

Then τ(M) ≤ rankK ,V (M).

I Examples:

I Completely positive matrices: M =
r∑

i=1

uiuT
i where ui ≥ 0.

I Quadrature formulae:
∫

Ω

p(x)dx =
r∑

i=1

wip(xi) wi ≥ 0.
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Positive semidefinite rank Bounds and extensions

Lower bounding PSD rank?

Bounds on PSD rank are of high interest, since combinatorial methods
(based on sparsity patterns) don’t quite work.

But, a few unexpected difficulties...

In the PSD case, the underlying norm is non-atomic, and the
corresponding “obvious” inequalities do not hold...

“Noncommutative” trace positivity, quite complicated structure...

Nice links between rankpsd and quantum communication complexity,
mirroring the situation between rank+ and classical communication
complexity (e.g., Fiorini et al. (2011), Jain et al. (2011), Zhang (2012)).
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Positive semidefinite rank Bounds and extensions

Orbitopes and equivariant lifts

Special class of convex bodies: regular orbitopes

C = {conv(g · x0) : g ∈ G},

where G is a compact group.

Many important examples: hypercubes, hyperspheres, Grassmannians,
Birkhoff polytope, parity polytope, cut polytope, etc..

(More about this in tomorrow’s talk.)
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Positive semidefinite rank Bounds and extensions

Symmetric PSD factorizations

Given a symmetric M ∈ Rn×n, do there exist Ai � 0 such that

Mij = 〈Ai ,Aj〉 i , j = 1, . . . , n.

Equivalently, is M the Gram matrix of a set of psd matrices?

Dual to trace positivity of noncommutative polynomials (e.g., Klep,
Burgdorf, etc.)

Of interest in quantum information (e.g., Piovesan-Laurent)

Many open questions; related to outstanding conjectures of Connes
and Tsirelson
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Positive semidefinite rank Bounds and extensions

Many questions

Many open aspects of positive semidefinite rank:

Computation of lower/upper bounds?

Approximate factorizations?

Topology of space of factorizations?

For polytopes, separations between rank+ and rankpsd for slack
matrices?

Are current constructions (e.g., SOS) far from optimal?
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END

Summary

Interesting, new class of factorization problems

Interplay of algebraic and geometric aspects

Many open questions, lots to do!
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This book provides a self-contained, accessible introduction to the mathematical 
advances and challenges resulting from the use of semidefinite programming in 
polynomial optimization. This quickly evolving research area with contributions from the 
diverse fields of convex geometry, algebraic geometry, and optimization is known as 
convex algebraic geometry.

Each chapter addresses a fundamental aspect of convex algebraic geometry. The book 
begins with an introduction to nonnegative polynomials and sums of squares and their 
connections to semidefinite programming and quickly advances to several areas at the 
forefront of current research. These include

•   semidefinite representability of convex sets,
•   duality theory from the point of view of algebraic geometry, and 
•   nontraditional topics such as sums of squares of complex forms and 

noncommutative sums of squares polynomials.

Suitable for a class or seminar, with exercises aimed at teaching the topics to 
beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point 

of entry into the subject for readers from multiple communities such 
as engineering, mathematics, and computer science. A guide to the 
necessary background material is available in the appendix. 

This book can serve as a textbook for graduate-level courses 
presenting the basic mathematics behind convex algebraic geometry 
and semidefinite optimization. Readers conducting research in these 
areas will discover open problems and potential research directions. 

Grigoriy Blekherman is an assistant professor at Georgia Institute 
of Technology and a 2012 recipient of the Sloan Research Fellowship. 
His research interests lie at the intersection of convex and algebraic 
geometry.

Pablo A. Parrilo is a professor of Electrical Engineering and Computer 
Science at the Massachusetts Institute of Technology. He has received 
the SIAG/CST Prize and the IEEE Antonio Ruberti Young Researcher 
Prize. His research interests include mathematical optimization, 
systems and control theory, and computational methods for 
engineering applications.

Rekha R. Thomas is the Robert R. and Elaine F. Phelps Endowed 
Professor of Mathematics at the University of Washington in Seattle. 
Her research interests are in optimization and computational algebra.
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If you want to know more:

H. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank,
arXiv:1407.4095.

J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations,
Mathematics of Operations Research, 38:2, 2013. arXiv:1111.3164.
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Thanks for your attention!
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END

Example: hexagon (III)

A nonnegative factorization:

SH =




1 0 1 0 0

1 0 0 0 1

0 0 0 1 2

0 1 0 0 1

0 1 1 0 0

0 0 2 1 0







0 0 0 1 2 1

1 2 1 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1




.
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