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Question: representability of convex sets

Existence and efficiency:
@ When is a convex set representable by conic optimization?
@ How to quantify the number of additional variables that are needed?

Given a convex set C, is it possible to repre-

sent it as
C=mn(KnNL)

where K is a cone, L is an affine subspace,

and 7 is a linear map? / /
-,
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Factorizations

Factorizations

Given a matrix M € R™*" can factorize it as M = AB, i.e.,
R" By Rk AL g

Ideally, k is small (matrix M is low-rank), so we're factorizing through a
“small subspace.”
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Factorizations

Factorizations

Given a matrix M € R™*" can factorize it as M = AB, i.e.,
R" £5 RK Ay R
Ideally, k is small (matrix M is low-rank), so we're factorizing through a

“small subspace.”

Why is this useful?
o Realization theory (e.g., factorization of a Hankel matrix)

@ Principal component analysis (e.g., factorization of covariance of a
Gaussian process)

And many others... Standard notion in linear algebra.
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Factorizations

More Factorizations...

However, often we need further conditions on M = AB...

@ Norm conditions on the factors A, B:

e Want factors A, B to be “small” in some norm

e Well-studied topic in Banach space theory, through the notion of
factorization norms

e For instance, the nuclear norm ||M||, := asm g 2(||AH,: + ||B||%)
Positive semidefinite rank

Cargese 2014 4 /32



Factorizations

More Factorizations...

However, often we need further conditions on M = AB...

@ Norm conditions on the factors A, B:

e Want factors A, B to be “small” in some norm
e Well-studied topic in Banach space theory, through the notion of
factorization norms

1
For inst the nucl Ml == min ~(J|A|z + | BI?
e For instance, the nuclear norm ||M||, asm g 2(|| Iz + IBll%)

o Nonnegativity conditions:

o Matrix M is (componentwise) nonnegative, and so must be the factors.

e This is the nonnegative factorization problem.

e Many applications, e.g., in probability (conditional independence) and
machine learning (additive features).
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Factorizations

Nonnegative factorization and hidden variables

Let X, Y be discrete random variables, with joint distribution
PIX=1iY=j1=P;
The nonnegative rank of P is the smallest support of a random variable Z,

such that X and Y are conditionally independent given Z (i.e., X —Z—Y
is Markov):

PX=iY=jl= Y P[Z=s-PX=iZ=s] P[Y=j|Z=5].
s=1,...,k

@ Relations with information theory, “correlation generation,”
communication complexity, etc.
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Factorizations

Nonnegative factorization and hidden variables

Let X, Y be discrete random variables, with joint distribution
PIX=1iY=j1=P;

The nonnegative rank of P is the smallest support of a random variable Z,
such that X and Y are conditionally independent given Z (i.e., X —Z—Y
is Markov):

PX=iY=jl= Y P[Z=s-PX=iZ=s] P[Y=j|Z=5].
s=1,...,k

@ Relations with information theory, “correlation generation,”
communication complexity, etc.

As we'll see, also fundamental in optimization ...
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Factorizations Conic factorizations

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]

Let M € RT™" be a nonnegative matrix, and KC be a convex cone in Rk,
Then, we want M = AB, where
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Factorizations Conic factorizations

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]

Let M € RT™" be a nonnegative matrix, and KC be a convex cone in Rk,
Then, we want M = AB, where

@ M maps the nonnegative orthant into the nonnegative orthant.
e For K = RX, this is a standard nonnegative factorization.

@ In general, factorize a linear map through a “small cone”
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Factorizations Conic factorizations

Conic factorizations

We're interested in a different class: conic factorizations [GPT11]

Let M € RT™" be a nonnegative matrix, and KC be a convex cone in Rk,
Then, we want M = AB, where

@ M maps the nonnegative orthant into the nonnegative orthant.
e For K = RX, this is a standard nonnegative factorization.

@ In general, factorize a linear map through a “small cone”

Important special case: K is the cone of psd matrices...
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PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rankpsq, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and

{Bi,...,Bn} such that

Mj; = trace A;B;, i=1....m j=1...,n
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PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rankpsq, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and
{Bi,...,Bn} such that

Mj; = trace A;B;, i=1....m j=1...,n

(The maps are then given by x — >, x;A;, and Y — traceYB;.)
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PSD rank of a nonnegative matrix

Let M € R™*" be a nonnegative matrix.
Definition [GPT11]: The PSD rank of M, denoted rankpsq, is the smallest
r for which there exists r x r PSD matrices {A1,...,An} and
{Bi,...,Bn} such that

Mj; = trace A;B;, i=1....m j=1...,n

(The maps are then given by x — >, x;A;, and Y — traceYB;.)

Natural definition, generalization of nonnegative rank.
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Posiive semidefinite ank
Example (1)

<

Il
— = O
_ O
O = =
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Posiive semidefinite ank
Example (1)

<

Il
— = O
_ O
O = =

M admits a psd factorization of size 2:

10 00 1 -1
w-loo) [0 ] A= 4 7)
00 10 11
a-[o 7] m=loo] »-[11]

One can easily check that the matrices A; and B; are positive semidefinite,

and that Mj; = (A;, Bj). This factorization shows that rankpsq (M) < 2,
and in fact rankpsg (M) = 2.
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Posiive semidefinite ank
Example (I1)

Consider the matrix ;
a b c /

M(a,b,c)= |c a b [

b ¢ a il

@ Usual rank of M(a, b, c) is 3, unless a = b = c (then, rank is 1).

@ One can show that

rankpsa (M(a, b,c)) <2 <= a®+ b?+ c? < 2(ab+ bc + ac).
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Back to representability...

Existence and efficiency:
@ When is a convex set representable by conic optimization?
@ How to quantify the number of additional variables that are needed?

Given a convex set C, is it possible to repre-

sent it as
C=mn(KnNL)

where K is a cone, L is an affine subspace,

and 7 is a linear map? / /
-,
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Representations of convex sets

Question: representability of convex sets

“Complicated” objects are sometimes easily described as “projections” of
“simpler” ones.

A general theme: algebraic varieties, unitaries/contractions, graphical
models, . ..
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Extended formulations
Extended formulations

These representations are usually called extended formulations.
Particularly relevant in combinatorial optimization (e.g., TSP).

Seminal work by Yannakakis (1991). He gave a beautiful characterization
(for LP) in terms of nonnegative factorizations, and used it to disprove the
existence of “symmetric” LPs for the TSP polytope.

Nice recent survey by Conforti-Cornuéjols-Zambelli (2010).

Our goal: to understand this phenomenon for convex optimization (SDP),
not just LP.
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Representations of convex sets Extended formulations

“Extended formulations” in semidefinite programming

Many convex sets can be modeled by SDP and LMIs. Among others:

Sums of eigenvalues of symmetric matrices
Convex envelope of univariate polynomials
Multivariate polynomials that are sums of squares
Unit ball of matrix operator and nuclear norms

Geometric and harmonic means

(Some) orbitopes — convex hulls of group orbits
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Representations of convex sets Extended formulations

How to produce extended formulations?

o Clever, non-obvious constructions
o E.g., the KYP (Kalman-Yakubovich-Popov) lemma, LMI solution of
interpolation problems (e.g., AAK, Ball-Gohberg-Rodman), ...
o Work of Nesterov/Nemirovski, Boyd/Vandenberghe, Scherer,
Gahinet/Apkarian, Ben-Tal/Nemirovski, Sanyal/Sottile/Sturmfels, etc.

@ Systematic "lifting” techniques

Reformulation/linearization (Sherali-Adams, Lovasz-Schrijver)

Sum of squares (or moments), Positivstellensatz, (Lasserre, Putinar, P.)
Determinantal representations (Helton/Vinnikov, Nie)

Hyperbolic polynomials (Guler, Renegar)

Much research in this area. More recently, efforts towards understanding
the general case (not just specific constructions).
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el
Polytopes

What happens in the case of polytopes?

P={xecR": fTx <1}

(WLOG, compact with 0 € int P).

Polytopes have a finite number of facets f; and vertices v;.
Define a nonnegative matrix, called the slack matrix of the polytope:

— T - P —
[Splij=1—f"v, i=1,...,|F j=1,...,|V]|
Positive semidefinite rank Cargese 2014 15 / 32



Representations of convex sets [S]EI TSI

Example: hexagon (I)

Consider a regular hexagon in the plane.

It has 6 vertices, and 6 facets. Its slack matrix has rank 3, and is

001221
1001 2 2
Sy = 21 001 2
2 21001
122100
012210

“Trivial” representation requires 6 facets. Can we do better?
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Representations of convex sets Factorizations and representability

Cone factorizations and representability

“Geometric” LP formulations exactly correspond to “algebraic”
factorizations of the slack matrix.

For polytopes, this amounts to a nonnegative factorization of the slack
matrix:

51_']':<3,',bj>7 I':]_,...,V, J:]'”f

where a;, b; are nonnegative vectors.

Theorem (Yannakakis 1991): The minimal lifting dimension of a polytope
is equal to the nonnegative rank of its slack matrix.
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Factorizations and representabily
Example: hexagon (II)

Regular hexagon in the plane.

Its slack matrix is

Sy =

O, NN - O
HF NN PR OO
NNRERE OO
N PR OO DN
= O O~ NN
OO~ NN

Nonnegative rank is 5.
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Factorizations and representability
Beyond LPs and nonnegative factorizations
LPs are nice, but what about broader representability questions?

In [GPT11], a generalization of Yannakakis' theorem to the full convex
case. General theme:

“Geometric” extended formulations exactly correspond to “algebraic”
factorizations of a slack operator.

polytopes/LP convex sets/convex cones

slack matrix slack operators
vertices extreme points of C
facets

extreme points of polar C°
nonnegative factorizations conic factorizations

Sij:<ai7bj>7 ai>0,b;>0 SU:(a;,bj>, ai€ K,bj € K*
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Representations of convex sets Factorizations and representability

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.

(Example: the stable set or independent set polytope of a graph. For perfect
graphs, efficient SDP representations exist, but no known subexponential LP.)
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Representations of convex sets Factorizations and representability

Polytopes, semidefinite programming, and factorizations

Even for polytopes, SDP representations can be interesting.

(Example: the stable set or independent set polytope of a graph. For perfect
graphs, efficient SDP representations exist, but no known subexponential LP.)

Thm: ([GPT 11]) Positive semidefinite rank of slack matrix exactly
characterizes the complexity of SDP-representability.

PSD factorizations of slack matrix <= SDP extended formulations
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Representations of convex sets Factorizations and representability

SDP representation of hexagon

A regular hexagon in the plane.

Projection onto (x, y) of a 5-dimensional spectrahedron:

X y t
(1+r)/2 s/2 r
s/2 (1-r)/2 —s

r -5 1

~+ < X

Representation has nice symmetry properties (equivariance).
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Positive semidefinite rank

Towards understanding psd rank

Generally difficult, since it's semialgebraic (inequalities matter), and
symmetry group is “small”.

@ Basic properties

@ Other interpretations (e.g., information-theoretic)

@ Dependence on field and topology of factorizations

@ Special cases and extensions

Parrilo (MIT) Positive semidefinite rank Cargese 2014
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Positive semidefinite rank Basic properties

Basic inequalities

@ For any nonnegative matrix M

1 1
5\/1 + 8rank(M) — = < rankpsg(M) < rank(M).

5_

o Gap between rank; (M) and rankpss(M) can be arbitrarily large:

.2 . .
T Y i~ =i 1
M=o =(( 5 1) (5 #))
has rankpsq(M) = 2, but rank;. (M) = §2(log n).

Arbitrarily large gaps between all pairs of ranks (rank, rank; and rankpsg).
For slack matrices of polytopes, arbitrarily large gaps between rank and
rank, and rank and rankpsg.
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Basic properties
Real and rational PSD rank can be different

If the matrix M has rational entries, sometimes it is natural to consider
only factors A;, B; that are rational.
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Basic properties
Real and rational PSD rank can be different

If the matrix M has rational entries, sometimes it is natural to consider
only factors A;, B; that are rational.

In general we have
rankpsq (M) < rankpsd o(M).

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson).
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Basic properties
Real and rational PSD rank can be different

If the matrix M has rational entries, sometimes it is natural to consider
only factors A;, B; that are rational.

In general we have
rankpsq (M) < rankpsd o(M).

and inequality can be strict. Explicit examples (Fawzi-Gouveia-Robinson).

Same question for nonnegative rank is open (since Cohen-Rothblum 93).
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Basic properties
Computing and bounding PSD rank

Computing PSD rank seems to be quite hard, both in theory and practice.
Are there situations where it is easy?

@ k =1 easy, since rankpsq (M) = 1 if and only if rank(M) = 1.

@ k = 2 also easy, since it is reducible to semidefinite programming
(e.g., via S-lemma).
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Basic properties
Computing and bounding PSD rank

Computing PSD rank seems to be quite hard, both in theory and practice.
Are there situations where it is easy?

@ k =1 easy, since rankpsq (M) = 1 if and only if rank(M) = 1.

@ k = 2 also easy, since it is reducible to semidefinite programming
(e.g., via S-lemma).

What about for fixed psd rank (even k = 3)? Analogue of
Arora-Ge-Kannan-Moitra polynomiality result for nonnegative rank?
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Basic properties
Computing and bounding PSD rank

Computing PSD rank seems to be quite hard, both in theory and practice.
Are there situations where it is easy?

@ k =1 easy, since rankpsq (M) = 1 if and only if rank(M) = 1.

@ k = 2 also easy, since it is reducible to semidefinite programming
(e.g., via S-lemma).

What about for fixed psd rank (even k = 3)? Analogue of
Arora-Ge-Kannan-Moitra polynomiality result for nonnegative rank?

What about bounds? And before psd, what about nonnegative rank?
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Positive semidefinite rank Basic properties

Bounding nonnegative rank

Want techniques to lower bound the nonnegative rank of a matrix.

In applications, these bounds may yield:

@ Minimal size of latent variables

@ Complexity lower bounds on extended representations

Many known bounds (e.g. rank, combinatorial, information-theoretic,
etc.).
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Basic properties
Bounding nonnegative rank

Want techniques to lower bound the nonnegative rank of a matrix.

In applications, these bounds may yield:

@ Minimal size of latent variables

@ Complexity lower bounds on extended representations

Many known bounds (e.g. rank, combinatorial, information-theoretic,
etc.).

New “self-scaled bounds” via SOS (Fawzi-P., arXiv:1404.3240), that

extend to other “product cone” ranks (e.g., NN tensor rank, CP-rank,
etc). We describe these next...
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Lower bound

» Main observation: Assume

nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i =1,...,r.
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Lower bound

» Main observation: Assume

nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i =1,...,r.

» Define
AM) = {X € RP*9 . Xrank-oneand 0 < X < M}

Each X; from Equation (1) belongs to A(M).
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Lower bound

» Main observation: Assume

nonnegative factorization of M where X; > 0 and rank-one.
Then X; < M (componentwise) forall i =1,...,r.

» Define
AM) = {X € RP*9 . Xrank-oneand 0 < X < M}

Each X; from Equation (1) belongs to A(M).

Proposition
Assume L : RP*9 — R linear function such that L(X) < 1 for all X € A(M).
Then L(M) < ranky (M).

Proof.

LIM) = L(X1)+---+ L(X) <1+---4+1=r=rank,(M).
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Lower bound

» Look for the linear function L which gives the best lower bound (call the
resulting quantity 7(M)):

(M) = max L(M)

s.t. L:RP*9 — R linear
L<1on A(M)

» From previous proposition, 7(M) satisfies:

T(M) < rank. (M)

» Computing 7(M) is a convex optimization problem (but feasible set may
be complicated to represent)
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Duality

T(M):= max L(M) st L<1onA(M)

L linear

= min t st M e tconv(A(M))
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Duality

T(M):= max L(M) st L<1onA(M)

L linear
= min t st M e tconv(A(M))

» 7(M) is Minkowski gauge function of conv(.A(M)), evaluated at M.

» “Self-scaled’: the atoms A(M) depend on the matrix M
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Example: diagonal matrices

_|a 0
v-13 )

A(M):{XERZXZ Crank X <1and 0 < X < [%‘ 302]}
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Example: diagonal matrices

_|a 0
v-13 )

A(M):{XERZXQ Crank X <1and 0 < X < [%‘ 302]}

x 0 itho < x < U 0 0 tho<y< @
00 wi _x_a1} 0y wi <y<a.,.
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Example: diagonal matrices

_|a 0
v-13 )

A(M) {XGR2X2 : rankX<1andO<X<[a1 0]}

0 a

(5 % winocrcalul[l I wmosycal.

M
A= ——— = — - = = h J
|
l
f |
0 ! ay
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Example: diagonal matrices

_|a 0
=15 e
A(M):{XERZXQ Crank X <1and 0 < X < [%‘ 302]}
x 0 00 @)
_{[O O] W|th0§x§a1}u{[0 y} W|thO§y§ag}.
2(12-

2 conv A(M)

a2 p= — — — — — — — —

0 | i 20,
conv A(M)
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Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of

C:{Llinear L LX) < 1 VXeA(M)}.
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Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of
C= {L linear : L(X)<1 VXe A(M)}.

» We construct a tractable SOS relaxation C%°° C C:

C%% = {L linear : identity below holds for some «j; > 0, Bj, SOS(X)}.

1—L(X)= SOS(X) + Z i Xi(My — Xj) + Z Bikt (Xii Xo — X Xij)
1<i<p 1<i<k<p
1<j<q 1<j<I<q
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Computing the lower bound

T(M)= max L(M) st L<1onAM)

L linear
» To compute 7(M), we need efficient description of

C:{Llinear L LX) < 1 VXEA(M)}.

» We construct a tractable SOS relaxation C%°° C C:

C%% = {L linear : identity below holds for some «;; > 0, Sjjw, SOS(X)}.

1—L(X)= SOS(X) + Z i Xi(My — Xj) + Z Bia (Xii X — XuXij)
———

0 1<i<p 1<i<k<p
2 1<j<q 1<j<I<q
>0if0< X <M =0 if X is rank-one
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SOS relaxation

» Define:
T(M) = max L(M)
s.t. Llinear and has SOS representation

» Quantity 75°(M) can be computed using semidefinite programming.
Satisfies:
75%(M) < 7(M) < rank, (M)
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Structural properties of 7 and 75

» Invariant under scaling:
T(D1 MDQ) = T(M)

for any Dy, D> diagonal matrices with positive diagonal elements.

v

Block-diagonal matrices: r(blockdiag(M;, Mz)) = 7(M) + 7(Ms)

v

Subadditivity: 7(M + N) < 7(M) + (N)

v

Product: 7(MN) < min(7(M), 7(N))

» Monotonicity: If P submatrix of M then 7(P) < 7(M).
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Comparison with combinatorial bounds

» Combinatorial bounds on rank. (M) are bounds that only depend on
sparsity pattern of M. Can be expressed in terms of the rectangle
graph Gy of M:

w(Gu) < VI(Gum) < xrac(GM) < x(Gu) < rank (M)
N—— N—_——
fooling set bound rect. cover number

» The quantities 7(M) and 75°°(M) can be shown to be non-combinatorial
counterparts of fractional rectangle cover number and of ¥(Guy):

Theorem

(M) > Xtrac(Gu) ~ 7°°5(M) > 9(Gm)
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General “atomic cone ranks”

» General framework: K convex cone and V is some set

,
M=> "X where XieKnV
i=1
Define ranky,v(M) to be the size of the smallest such decomposition.
AM) ={X : 0= X 2k M}
7(M) =maxL(M) : L <1on A(M).
Then 7(M) < rankg, v (M).
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General “atomic cone ranks”

» General framework: K convex cone and V is some set

,
M=> "X where XieKnV

i=1
Define ranky,v(M) to be the size of the smallest such decomposition.
AM) ={X : 0= X 2k M}

(M) = max L(M) : L <1onAM).

Then 7(M) < rankg, v (M).
» Examples:

.

> Completely positive matrices: M = > uu/  where u; > 0.
=

» Quadrature formulae:

/p(x)dx = i wip(x;) w; >0.
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Bounds and extensions
Lower bounding PSD rank?

Bounds on PSD rank are of high interest, since combinatorial methods
(based on sparsity patterns) don't quite work.

But, a few unexpected difficulties...
@ In the PSD case, the underlying norm is non-atomic, and the
corresponding “obvious” inequalities do not hold...

o “Noncommutative” trace positivity, quite complicated structure...

Nice links between rank,sg and quantum communication complexity,
mirroring the situation between rank; and classical communication
complexity (e.g., Fiorini et al. (2011), Jain et al. (2011), Zhang (2012)).
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Positive semidefinite rank Bounds and extensions

Orbitopes and equivariant lifts

Special class of convex bodies: regular orbitopes

C ={conv(g-x) : g € G},

where G is a compact group.

Many important examples: hypercubes, hyperspheres, Grassmannians,
Birkhoff polytope, parity polytope, cut polytope, etc..

(More about this in tomorrow’s talk.)

Parrilo (MIT) Positive semidefinite rank
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Positive semidefinite rank Bounds and extensions

Symmetric PSD factorizations

Given a symmetric M € R™", do there exist A; > 0 such that
M,'j:<A,',Aj> i,jzl,...,n.

Equivalently, is M the Gram matrix of a set of psd matrices?
e Dual to trace positivity of noncommutative polynomials (e.g., Klep,
Burgdorf, etc.)
@ Of interest in quantum information (e.g., Piovesan-Laurent)

@ Many open questions; related to outstanding conjectures of Connes
and Tsirelson
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Positive semidefinite rank Bounds and extensions

Many questions

Many open aspects of positive semidefinite rank:
e Computation of lower/upper bounds?
@ Approximate factorizations?
@ Topology of space of factorizations?
°

For polytopes, separations between rank and rank,sy for slack
matrices?

Are current constructions (e.g., SOS) far from optimal?
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Summary

SEMIDEFINITE OPTIMIZATION
and CONVEX ALGEBRAIC GEOMETRY

@ Interesting, new class of factorization problems

@ Interplay of algebraic and geometric aspects

@ Many open questions, lots to do! Grigory Bleknerman

Pablo A. Parrilo
Rekha R. Thomas

-
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SEMIDEFINITE OPTIMIZATION
and CONVEX ALGEBRAIC GEOMETRY

@ Interesting, new class of factorization problems

@ Interplay of algebraic and geometric aspects

@ Many open questions, lots to do! Grigory Bleknerman

Pablo A. Parrilo
Rekha R. Thomas

If you want to know more:

@ H. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank,
arXiv:1407.4095.

@ J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations,
Mathematics of Operations Research, 38:2, 2013. arXiv:1111.3164.

@ SIAM book and NSF FRG project “SDP and convex algebraic geometry” website
www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas)
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Summary

SEMIDEFINITE OPTIMIZATION
and CONVEX ALGEBRAIC GEOMETRY

@ Interesting, new class of factorization problems

@ Interplay of algebraic and geometric aspects
@ Many open questions, lots to do! Grigory Blekherman
Pablo A. Parrilo

Rekha R. Thomas

If you want to know more:
@ H. Fawzi, J. Gouveia, P.A. Parrilo, R. Robinson, R. Thomas, Positive semidefinite rank,
arXiv:1407.4095.

@ J. Gouveia, P.A. Parrilo, R. Thomas, Lifts of convex sets and cone factorizations,
Mathematics of Operations Research, 38:2, 2013. arXiv:1111.3164.

@ SIAM book and NSF FRG project “SDP and convex algebraic geometry” website
www.math.washington.edu/~thomas/frg/frg.html (Helton/P./Nie/Sturmfels/Thomas)

Thanks for your attention!
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Example: hexagon (II1)

A nonnegative factorization:

Sy =

1 0
10

0
0
0
0

[ =)

Parrilo (MIT)
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