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Abstract

It is a longstanding open problem whether there exists a polynomial size description of the perfect match-
ing polytope. We give a partial answer to this question by proving the following result. The polyhedron
defined by the constraints of the perfect matching polytope which are active at a given perfect matching
can be obtained as the projection of a compact polyhedron. Thus there exists a compact linear program
which is unbounded if and only if the perfect matching is not optimal with respect to a given edge weight.
This result provides a simple reduction of the maximum weight perfect matching problem to compact
linear programming.
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1. Introduction

A perfect matchingof a graphG = (V,E) is a setM of edges, such that each node ofG is incident
with exactly one edge inM . A central problem in algorithms is to find a perfect matchingM of G
with maximal weightc(M) =

∑
e∈M ce with respect to given edge weightsc ∈ QE. This problem was

solved by Edmonds [4, 3] with his blossom algorithm. Thecharacteristic vectorχM ∈ {0, 1}E of a
perfect matchingM is a 0/1 vector which indicates whether an edgee ∈ E is a member of the matching
or not via the value of its components, i.e.,χM

e = 1 if e ∈ M andχM
e = 0 otherwise. Theconvex hull

of the characteristic vectors of perfect matchings ofG is called theperfect matching polytopeP (G) of
G. Edmonds showed thatP (G) is described by the following set of linear inequalities.

∑

e∈δ(u)

xe = 1 for all u ∈ V,

xe ≥ 0 for all e ∈ E,∑

e∈δ(U)

xe ≥ 1 for all U ⊂ V, |U | odd.

(1)

Edmonds’s proof of this fact was algorithmic. Simple non algorithmic proofs of this fact were later
given by Lovász [8] and Schrijver [10]. Padberg and Rao [9] showed that theodd cut inequalities∑

e∈δ(U) xe ≥ 1 of (1) can beseparated in polynomial timeby describing an algorithm which solves the
minimum weight odd cut problem. Via the equivalence of separation and optimization [7] this implies
that theellipsoid methodfor linear programming can be used to optimize a linear function overP (G)
in polynomial time. Since the algorithm for computing minimum weight odd cuts in graphs is simpler
than Edmonds’s blossom algorithm, their result yielded a simpler proof that the maximum weight perfect
matching problem is polynomially solvable than the original argument of Edmonds.

It is easy to see that eachodd cut inequalityin (1) induces a facet ofP (G) if G is a complete graph with
an even number of nodes. Thus an irredundant linear inequality formulation ofP (G) must be exponential
in the size ofG in general. It is a very important question, whether the perfect matching polytope can be
obtained as aprojectionof a polyhedron in a higher space, which is described with a polynomial amount
of variables and inequalities. This would imply that there exists acompact linear program, i.e., a linear
program with polynomially many constraints and variables for the maximum weight perfect matching
problem. Examples of polytopes stemming from optimizationproblems which require an exponential
number of inequalities and allow such a polynomial representation in a higher space are thesubtour
elimination polytopefor the traveling salesman problem [13] or thestable set polytopefor t-perfect
graphs [15]. Yannakakis [15] provided a partially negativeresult concerning this question by showing
that the perfect matching polytope cannot be obtained as theprojection of a polynomial sizesymmetric
polytope. Barahona [1] presented a polynomial descriptionof the perfect matching polytope for planar
graphs. Moreover, Barahona [2] showed that the Chinese postman problem, that is the maximumT -join
problem, can be solved by a polynomial number of augmenting steps. Each of these steps can be achieved
by solving a minimum mean cycle problem, for which he proposed a compact linear formulation. This
formulation is based on a result of Seymour [12] describing the cone of edge disjoint cycles of a graph.
A constraintaT x ≤ β is tight or activeat a pointx∗, if x∗ satisfies the constraint with equality, i.e.,
if aT x∗ = β. It follows from linear programing duality that a feasible solution x∗ of a linear program
max{cT x | Ax ≤ b} is an optimal solution, if and only if the linear programmax{cT x | A∗x ≤ b∗} is
bounded, whereA∗x ≤ b∗ is the subsystem ofAx ≤ b consisting of the active constraints atx∗, see [11,
p. 95].

We prove that, given the characteristic vectorχM of a perfect matchingM , the polyhedron which is
defined by the active constraints of (1) is the projection of apolynomial sized polyhedronP into the
edge spaceRE. Thus, there exists a compact linear program for theoptimality testfor the matching
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equivalent to thefacial optimality testof a given feasible 0/1 point. Applied to the maximum weight
perfect matching problem, facial optimality is the problem: Given a perfect matchingM , a weight
vectorc ∈ RE and a subsetJ ⊆ E of the edges ofG, decide whetherM has maximal weight among
all matchingsM̃ with M̃ ∩ J = M ∩ J . It is easy to see that our result implies that there exists a
compact linear program which is bounded, if and only if a given matchingM is facial optimal with
respect to a weightc and a subsetJ ⊆ E. As a byproduct of our polyhedral study we get a new proof
that the maximum weight perfect matching problem can be solved via a polynomial number of queries
to compact linear programming problems.

2. A compact formulation of the active constraints

A polyhedronP is a set of pointsP = {x ∈ Rn | Ax ≤ b}, for some matrixA ∈ Rm×n and some
vectorb ∈ Rm. If P is bounded, thenP is called apolytope. If P is defined asP = {

( x
y

)
∈ Rn1+n2 |

A
( x

y

)
≤ b}, then theprojectionof P into thex-space is the polyhedronΠx(P ) = {x ∈ Rn1 | ∃y ∈

Rn2 with
( x

y

)
∈ P}.

A perfect matchingof a graphG = (V,E) is a subset of the edgesM ⊆ E such thatm1 ∩ m2 = ∅
holds for allm1 6= m2 ∈ M . ForU ⊆ V , thecut δ(U) is the set of edgese ∈ E with |e ∩ U | = 1. The
cut δ(U) is anodd cut, if |U | or |V \ U | is odd. Lets andt be nodes ofG. An (s, t)-cut of G is a cut
δ(U) with |U ∩ {s, t}| = 1.

Throughout, letχM denote the characteristic vector of the perfect matchingM of the graphG =
(V,E). An odd cut inequality

∑
e∈δ(U) xe ≥ 1, for a subsetU ⊆ V with |U | odd is active atχM if and

only if there exists exactly one edgem ∈ M ∩ δ(U). Notice that the number of such cuts is exponential.
Eisenbrand et al. [6] applied this observation to derive a separation algorithm for the active odd cuts
of a given matching which solely rests on simple min-cut computations. Letm = {s, t} be an edge
of the matchingM and consider an odd cutδ(U) which crosses the matchingM in exactly this edge
m = {s, t}. Since this cutδ(U) does not intersect any other matched edge,δ(U) is an(s, t)-cut of the
graphGm, which is obtained fromG via contracting the edges into single nodes (see Figure 1). On the
other hand, each(s, t)-cut ofGm induces an odd cutδ(U) of G which crossesm and does not cross any
other edge in the matchingM . More formally, letGm be the graph with node setV m consisting of the
singleton sets{s} and{t} and the edgesM − m and with edge setEm consisting of{{s}, {t}} and all
edges

{{s}, {u, v}} where{s, u} ∈ E and{u, v} ∈ M − m,
{{t}, {u, v}} where{t, u} ∈ E and{u, v} ∈ M − m,

{{a, b}, {u, v}} where{a, u} ∈ E and{a, b}, {u, v} ∈ M − m.

We associate withx∗ ∈ RE the vectorx∗m ∈ REm

whose componentsx∗m
{A,B} for {A,B} ∈ Em are

defined as

x∗m
{A,B} =

∑

a∈A, b∈B,
{a,b}∈E

x∗
{a,b}.

Then we can infer the following crucial observation.

Observation 2.1. LetM be a perfect matching of the graphG = (V,E) and letm = {s, t} ∈ M . The
point x∗ ∈ RE satisfies all inequalities

∑
e∈δ(U) xe ≥ 1 with δ(U) ∩ M = {s, t} if and only if there

exists an(s, t)-flow in Gm of value at least1, where the capacities on the edges ofGm are given by the
corresponding edge weightsx∗m.
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Gm={s,t}

Figure 1: The black edges of graphG represent a perfect matchingM . The graphGm={s,t} is obtained
from G by contracting all the edges ofM − m.

of value1 from s to t in the graphGm = (Vm, Em).

v ∈ Vm :
∑

e∈δ+(v)
e∈Em

fm
e −

∑

e∈δ−(v)
e∈Em

fm
e =





−1 if v = s,

1 if v = t,

0 otherwise.

(2)

The following constraints link the edge space of the original graph with the flow, by defining capacities
on the edges.

e = {A,B} ∈ Em : −
∑

{a,b}∈E,
a∈A, b∈B

x{a,b} ≤ fm
e ≤

∑

{a,b}∈E,
a∈A, b∈B

x{a,b}.
(3)

The polyhedron which is defined by the constraints (2) and (3)and variables is denoted byPm. Con-
sider the system defined by the inequalities (2) and (3) for each m ∈ M . This system has the original
variablesx ∈ RE and variablesfm ∈ REm for eachm ∈ M and is thus defined by a polynomial number
of variables and inequalities. Denote the polyhedron defined by this system byPM .
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Proposition 2.1. The projection ofPM onto thex-variables is the polyhedronCodd which is defined by
the inequalities

∑
e∈δ(U) xe ≥ 1 of (1) which are active atχM .

Proof. If x∗ is not a member ofCodd, then there exists an an odd cutδ(U) which crossesM in exactly
one edgem0{s, t} ∈ M and satisfies

∑
e∈δ(U) x∗

e < 1. This implies that the minimum weight(s, t)-
cut in the graphGm which is obtained fromG with edge weightsx∗ by contracting all matching edges
exceptm, has value strictly less than1. Since the value of an(s, t)-cut is an upper bound on the feasible
(s, t)-flows, there cannot exist an(s, t)-flow of value1 in Gm. In other words, there cannot exist a vector
fm∗

such that(x∗, fm∗

) satisfies the constraints (2) and (3) form.
If x∗ is a member ofCM

odd, then each odd cutδ(U) that crosses the matchingM in exactly one edgem
has value at least1. This means that each(s, t)-cut inGm has value at least1. By the max-flow min-cut
theorem we can conclude that there exists an(s, t)-flow in Gm of value1. This flow gives rise to the
vectorf∗ such that(x∗, fm∗

) satisfies the constraints (2) for eachm ∈ M .

3. Computing maximum weight perfect matchings

In this section we will apply the previous result to derive analgorithm for the maximum weight perfect
matching problem which is based on compact linear programming. Such a result was already obtained
by Barahona [2] who reduced the maximum weight matching problem to a sequence of minimum mean
cycle problems. Barahona showed that the minimum mean cycleproblem has a compact linear pro-
gramming formulation. In contrast to this, our approach works directly on the constraints of the perfect
matching polytope which are active at a given perfect matching.

The idea is to use the compact formulation of the active constraints ofχM to test whether a matching
M is optimal with respect to a given objective function under the fixation of certain variables to 0 or 1. A
feasible point̄x ∈ {0, 1}n of a 0/1 polytopeP ⊆ [0, 1]n is facial optimalwith respect to a linear function
cT x and a subsetJ ⊆ {1, . . . , n}, if the pointx̄ is an optimal solution to the linear programming problem
max{cT x | x ∈ P, xj = x̄j, j ∈ J}. Eisenbrand et al. [6] have shown that a polynomial algorithm for
testing this facial optimality property yields a polynomial algorithm for the 0/1 optimization problem.
Facial optimality for perfect matching is the following.

Problem 1. Given a graphG = (V,E), a matchingM of G an edge weightw ∈ RE and an edge
setJ ⊆ E. Decide whether the matchingM has maximum weight among all matchings̃M of G with
M̃ ∩ J = M ∩ J .

As we reminded in Section 1, given a polyhedronP = {x ∈ Rn | Ax ≤ b}, a vectorx∗ ∈ P is an
optimal solution to the linear programming problemmax{cT x | x ∈ P} if and only if x∗ is an optimal
solution to the linear programming problemmax{cT x | A∗x ≤ b∗}, whereA∗x ≤ b∗ is the subset of
the constraints ofAx ≤ b which are active atx∗.

We now describe a compact linear program which is bounded if and only if the answer to Problem 1
is “No”. The linear program is defined asmax cT x under the constraints (2), (3) and

xe = χM
e for eache ∈ J,∑

e∈δ(v) xe = 1 for eachv ∈ V,

xe ≥ 0 for eache /∈ M.

(4)

A polynomial time algorithm for the maximum weight perfect matching problem which is based on
linear programming now follows with the equivalence of facial optimality testing and 0/1 optimization.

Corollary 3.1. There exists a polynomial time algorithm for the maximum weighted perfect matching
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Concluding remarks

T -joins

It is easy to see that the construction of Section 2 carries over to theT -join polyhedron. We briefly sketch
how this can be done. LetT ⊆ V be a subset of the nodes ofG with |T | even. AT -join J is a multiset
of the edges ofG such that|δJ(u)| is odd ifu ∈ T and even otherwise.

The T -join polyhedron is the set of points that can be expressed asa convex combination of the
characteristic vectors of a finite set ofT -joins. Here, the characteristic vector of aT -join χJ records the
number of times that a particular edgee is contained inJ with the componentχJ

e . Edmonds and Johnson
[5] showed that theT -join polyhedron is described by the system

∑
e∈δ(U) xe ≥ 1 for all U ⊆ V, |U ∩ T | odd,

xe ≥ 0 e ∈ E.
(5)

To represent the active constraints ofχJ , one considers only those cutsδ(U) of (5) which cross exactly
one edgem = {s, t} of J with χJ

e = 1 and no other edge ofJ . For each such edgem = {s, t}, one then
models a flow of value1 in the graphG̃m obtained fromG by contracting each set of nodes defining a
connected component inG − m (see [6]). Since it is possible to formulate a general matching problem
as a simple perfectb-matching problem via a polynomial reduction proposed by Tutte [14], one has
a pseudopolynomial algorithm for the maximum weight general matching problem which is based on
compact linear programming. At this point we would like to stress that this compact linear formulation
is achieved without Seymour’s description of the cycle cone[12].

A compact formulation of P (G) ?

It is not clear whether this idea to represent the active constraints of a perfect matching in a higher space
can be extended to a compact representation of the complete perfect matching polytope. The number
N(M) of odd cut inequalities for a graphG with n nodes which are active atχM is

N(M) = (n/2)

⌊n/2⌋∑

i=1

(
n/2

k

)

= O(2n/2).

On the other hand, the number of facetsF (n) of the matching polytope of a complete graph with an
even numbern of vertices is equal to the number of odd subsets of{1, . . . , n} of size at mostn/2. This
can be bounded from below by the number of subsets of{1, . . . , n} of size at mostn/2 − 1, which is

F (n) = Ω




n/2−1∑

k=0

(
n

k

)


= Ω(2n).

This means that one would need an exponential number of families of active constraints to cover all
the facets of the perfect matching polytope of a complete graph with an even number of vertices.

Open problems

This compact formulation for the active cone of a given perfect matching could be given, since the parity
condition of the tight cuts can be ensured by considering each crossing edge individually. In this way it
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could be to find out, whether this primal view can be helpful tofind compact linear formulations of
active cones of polyhedra for other classes of combinatorial problems. Interesting candidates might be
the stable-set polyhedron of a claw-free graph or the odd-cut polyhedron, which is the blocker of the
T -join polyhedron.
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