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Abstract

Itis a longstanding open problem whether there exists anoofyal size description of the perfect match-
ing polytope. We give a partial answer to this question byimg the following result. The polyhedron
defined by the constraints of the perfect matching polytohpiEkvare active at a given perfect matching
can be obtained as the projection of a compact polyhedrous Titere exists a compact linear program
which is unbounded if and only if the perfect matching is nairmal with respect to a given edge weight.
This result provides a simple reduction of the maximum wepgrfect matching problem to compact
linear programming.
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1. Introduction

A perfect matchingf a graphG = (V, F) is a setM of edges, such that each node(®fis incident
with exactly one edge id/. A central problem in algorithms is to find a perfect matchigof G
with maximal weightc(M) = > ., c. With respect to given edge weightsc QF. This problem was
solved by Edmonds [4, 3] with his blossom algorithm. Td@racteristic vectory™ € {0,1}¥ of a
perfect matching/ is a 0/1 vector which indicates whether an edge F is a member of the matching
or not via the value of its components, i.g) = 1if e € M andx = 0 otherwise. Theconvex hull
of the characteristic vectors of perfect matchingg~af called theperfect matching polytop€(G) of
G. Edmonds showed thdt(G) is described by the following set of linear inequalities.

Y oz = 1 forallueV,

e€d(u)

ze > 0 forallee FE, 1)
> 1z, > 1 foralUcV,|U|odd
ecé(U)

Edmonds’s proof of this fact was algorithmic. Simple nonaaiipmic proofs of this fact were later
given by Lovasz [8] and Schrijver [10]. Padberg and Rao [@jveed that theodd cut inequalities
2865([]) xe > 1 of (1) can beseparated in polynomial timigy describing an algorithm which solves the
minimum weight odd cut problem. Via the equivalence of safian and optimization [7] this implies
that theellipsoid methodor linear programming can be used to optimize a linear foncbver P(G)
in polynomial time. Since the algorithm for computing minim weight odd cuts in graphs is simpler
than Edmonds’s blossom algorithm, their result yieldedvgser proof that the maximum weight perfect
matching problem is polynomially solvable than the origjima@ument of Edmonds.

It is easy to see that eaokd cut inequalityn (1) induces a facet dP(G) if G is a complete graph with
an even number of nodes. Thus an irredundant linear inggé@imulation of P(G) must be exponential
in the size ofG in general. It is a very important question, whether thegenfnatching polytope can be
obtained as arojectionof a polyhedron in a higher space, which is described withhaoonial amount
of variables and inequalities. This would imply that thexésts acompact linear programi.e., a linear
program with polynomially many constraints and variablesthe maximum weight perfect matching
problem. Examples of polytopes stemming from optimizatiooblems which require an exponential
number of inequalities and allow such a polynomial repregem in a higher space are tlsebtour
elimination polytopefor the traveling salesman problem [13] or th@ble set polytopéor ¢-perfect
graphs [15]. Yannakakis [15] provided a partially negatiesult concerning this question by showing
that the perfect matching polytope cannot be obtained agrtijection of a polynomial sizeymmetric
polytope. Barahona [1] presented a polynomial descriptiothhe perfect matching polytope for planar
graphs. Moreover, Barahona [2] showed that the Chinesenaaosproblem, that is the maximuif+join
problem, can be solved by a polynomial number of augmenteyss Each of these steps can be achieved
by solving a minimum mean cycle problem, for which he propoae&ompact linear formulation. This
formulation is based on a result of Seymour [12] describirydone of edge disjoint cycles of a graph.
A constrainta”z < 3 is tight or active at a pointz*, if 2* satisfies the constraint with equality, i.e.,
if a”2* = 3. It follows from linear programing duality that a feasiblelgtion z* of a linear program
max{c’z | Az < b} is an optimal solution, if and only if the linear programax{c’z | A*z < b*}is
bounded, wherel*x < b* is the subsystem odx < b consisting of the active constraintsaat, see [11,
p. 95].

We prove that, given the characteristic vectdf of a perfect matching/, the polyhedron which is
defined by the active constraints of (1) is the projection gbéynomial sized polyhedro® into the



equivalent to thdacial optimality testof a given feasible 0/1 point. Applied to the maximum weight
perfect matching problem, facial optimality is the problef@iven a perfect matchind/, a weight
vectorc € ]R{EAa/nd a subsef C E of the edges of+, decide whethef/ has maximal weight among
all matchingsM with M nJ = M N J. Itis easy to see that our result implies that there exists a
compact linear program which is bounded, if and only if a giweatchingM is facial optimal with
respect to a weight and a subsef C E. As a byproduct of our polyhedral study we get a new proof
that the maximum weight perfect matching problem can beesbia a polynomial number of queries
to compact linear programming problems.

2. A compact formulation of the active constraints

A polyhedronP is a set of points? = {z € R" | Az < b}, for some matrixA € R”*" and some
vectorb € R™. If P is bounded, ther® is called apolytope If P is defined as® = {(5) € Rutnz |
A(y) < b}, then theprojectionof P into thez-space is the polyhedrofi, (P) = {z € R™ | Jy €
R"2 with () € P}.

A perfect matchingf a graphG = (V, E) is a subset of the edgéd C E such thatm; Nmg =
holds for allm, # my € M. ForU C V, thecutd(U) is the set of edges € E with [enU| = 1. The
cutd(U) is anodd cut if (U] or |V \ U] is odd. Lets andt be nodes of5. An (s,t)-cut of G is a cut
O(U) with [U N {s,t}| = 1.

Throughout, lety™ denote the characteristic vector of the perfect matctihgf the graphG =
(V,E). An odd cut inequality) .5,y ze = 1, for a subset/ C V with [U| odd is active agM if and
only if there exists exactly one edge € M N d(U). Notice that the number of such cuts is exponential.
Eisenbrand et al. [6] applied this observation to derive assion algorithm for the active odd cuts
of a given matching which solely rests on simple min-cut cotapons. Letm = {s,t} be an edge
of the matchingM and consider an odd cdfU) which crosses the matchinyy in exactly this edge
m = {s,t}. Since this cut(U) does not intersect any other matched edg¥) is an (s, t)-cut of the
graphG,,, which is obtained frontz via contracting the edges into single nodes (see Figure Ath®
other hand, eacts, t)-cut of G,,, induces an odd cut(U) of G’ which crossesn and does not cross any
other edge in the matchiny. More formally, letG,, be the graph with node s&t™ consisting of the
singleton setg§s} and{t} and the edges8/ — m and with edge seE™ consisting of{{s}, {¢t}} and all
edges

{{s},{u,v}} where{s,u} € E and{u,v} € M —m,
{{t},{u,v}} where{t,u} € E and{u,v} € M —m,
{{a,b},{u,v}} where{a,u} € Eand{a,b}, {u,v} € M —m.

We associate with* € R” the vectorz*™ € R*" whose components7}; 5, for {4, B} € E™ are

defined as
ZE*%’B}: Z x?&b}.
a€A,beB,
{a,b}€E

Then we can infer the following crucial observation.

Observation 2.1. Let M be a perfect matching of the gragh= (V, E) and letm = {s,t} € M. The
point z* € R¥ satisfies all inequalities ¢ 5y ze = 1 with 6(U) N M = {s,t} if and only if there
exists an(s, t)-flow in G,, of value at least, where the capacities on the edges®Hf are given by the
corresponding edge weights™.
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Figure 1: The black edges of graphrepresent a perfect matchidd. The graphG,,,_;, ¢ is obtained
from G by contracting all the edges aff — m.

of valuel from s to ¢ in the graphGz,,, = (Vp,, Enn).

-1 ifv=s,
VEVm: Y. = Y fr={1  ifu=t, )
ecst (v) e€d (v) 0 otherwise

ecEn, eEbm,

The following constraints link the edge space of the oribgmaph with the flow, by defining capacities
on the edges.

e={A,B}eE,: — E Tapy < f < E Z{a,b}-
{a,b}€E, {a,b}€E, (3)
a€A,beB acA,beB

The polyhedron which is defined by the constraints (2) anci8)) variables is denoted I%;,,. Con-
sider the system defined by the inequalities (2) and (3) fonea € M. This system has the original
variablesr € R¥ and variableg™ € R for eachim € M and is thus defined by a polynomial number
of variables and inequalities. Denote the polyhedron définethis system byP,,.



Proposition 2.1. The projection ofP,; onto thex-variables is the polyhedro6',,; which is defined by
the inequalitiesy”, 5y ze > 1 of (1) which are active ay™.

Proof. If 2* is not a member of’, 44, then there exists an an odd ét/) which crosses// in exactly
one edgen0{s,t} € M and satisfie$_ .5,z < 1. This implies that the minimum weiglts, )-
cut in the graph=,,, which is obtained fronz with edge weights:* by contracting all matching edges
exceptm, has value strictly less than Since the value of afs, ¢)-cut is an upper bound on the feasible
(s, t)-flows, there cannot exist g8, ¢)-flow of valuel in G,,. In other words, there cannot exist a vector
™ such thatz*, f™") satisfies the constraints (2) and (3) far

If 2* is a member o€, then each odd cu{(U) that crosses the matchirdg in exactly one edgen
has value at leadt This means that eadh, ¢)-cut in G,,, has value at leadt By the max-flow min-cut
theorem we can conclude that there existgan)-flow in G,,, of valuel. This flow gives rise to the
vector f* such that(z*, ™) satisfies the constraints (2) for eachc M.

3. Computing maximum weight perfect matchings

In this section we will apply the previous result to deriveadgorithm for the maximum weight perfect
matching problem which is based on compact linear programgm$uch a result was already obtained
by Barahona [2] who reduced the maximum weight matchinglprolio a sequence of minimum mean
cycle problems. Barahona showed that the minimum mean @yolelem has a compact linear pro-
gramming formulation. In contrast to this, our approachksatirectly on the constraints of the perfect
matching polytope which are active at a given perfect matghi

The idea is to use the compact formulation of the active caimés ofy to test whether a matching
M is optimal with respect to a given objective function undher fixation of certain variablestoO or 1. A
feasible pointt € {0,1}" of a 0/1 polytopeP C [0, 1]™ is facial optimalwith respect to a linear function
c'zand asubsef C {1,...,n}, if the pointz is an optimal solution to the linear programming problem
max{c’z | x € P, xj = Zj, j € J}. Eisenbrand et al. [6] have shown that a polynomial algorithr
testing this facial optimality property yields a polynoinégorithm for the 0/1 optimization problem.
Facial optimality for perfect matching is the following.

Problem 1. Given a graphG = (V, E), a matchingM of G an edge weightv € R and an edge
setJ C E. Decide whether the matching has maximum weight among all matchingsof G' with
MnNnJ=MndJ.

As we reminded in Section 1, given a polyhedBn= {x € R" | Az < b}, a vectorz* € P is an
optimal solution to the linear programming problemx{c’z | € P} if and only if z* is an optimal
solution to the linear programming problemex{c’z | A*z < b*}, whereA*z < b* is the subset of
the constraints ofiz < b which are active at*.

We now describe a compact linear program which is boundeddfamly if the answer to Problem 1
is “No”. The linear program is defined asax ¢’ = under the constraints (2), (3) and

. =xM foreache € J,
D ees(w) Te =1 foreachv €V, 4)
xz. >0 foreache ¢ M.

A polynomial time algorithm for the maximum weight perfecatohing problem which is based on
linear programming now follows with the equivalence of &aptimality testing and 0/1 optimization.
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Concluding remarks
T-joins
It is easy to see that the construction of Section 2 carriestovtheT-join polyhedron We briefly sketch
how this can be done. L&t C V be a subset of the nodes Gfwith |T'| even. AT-join J is a multiset
of the edges of7 such thato;(u)| is odd ifu € T"and even otherwise.

The T-join polyhedron is the set of points that can be expressed esnvex combination of the
characteristic vectors of a finite setBfjoins. Here, the characteristic vector of'goin x” records the

number of times that a particular edges contained inJ with the component’/. Edmonds and Johnson
[5] showed that th@-join polyhedron is described by the system

YeesqnyTe = 1 forallU €V, |UNT|odd
z. > 0 e€ekFk.

()

To represent the active constraintsydf, one considers only those cutd/) of (5) which cross exactly
one edgen = {s,t} of J with x/ = 1 and no other edge of. For each such edge = {s,t}, one then
models a flow of valud in the grathNm obtained fromG by contracting each set of nodes defining a
connected component @ — m (see [6]). Since it is possible to formulate a general matgiproblem
as a simple perfedi-matching problem via a polynomial reduction proposed bteT{l4], one has
a pseudopolynomial algorithm for the maximum weight geheratching problem which is based on
compact linear programming. At this point we would like toess that this compact linear formulation
is achieved without Seymour’s description of the cycle cdr#g.

A compact formulation of P(G) ?

It is not clear whether this idea to represent the activetcaimss of a perfect matching in a higher space
can be extended to a compact representation of the commetecpmatching polytope. The number
N (M) of odd cut inequalities for a graphi with » nodes which are active gt is

NG = ) S (")

i=1

= 0(@2"?).

On the other hand, the number of facét&:) of the matching polytope of a complete graph with an
even number of vertices is equal to the number of odd subset§lof. ., n} of size at most /2. This
can be bounded from below by the number of subsefd of. . , n} of size at most./2 — 1, which is

n/2—1 n
Fo - Q(z (k))
= Q2.

This means that one would need an exponential number ofiésnuf active constraints to cover all
the facets of the perfect matching polytope of a completplgweth an even number of vertices.

Open problems

This compact formulation for the active cone of a given parfeatching could be given, since the parity



could be to find out, whether this primal view can be helpfufitml compact linear formulations of
active cones of polyhedra for other classes of combindtpr@blems. Interesting candidates might be
the stable-set polyhedron of a claw-free graph or the oddgrolyhedron, which is the blocker of the
T-join polyhedron.
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