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Abstract

This paper addresses the problem of glucose control in the presence of sampled measurements.
This topic is important in the study and development of the Artificial Pancreas (AP), which is
a general expression to describe a set of techniques for the control of the glucose behaviour by
means of exogenous insulin administration in diabetic individuals. Differently from most of the
approaches available in the literature, we not only assume the lack of insulin measurements, but
also the availability of the glucose measurements just at sampling times. An observer is designed
for the model-based reconstruction of glucose and insulin trajectories from the glucose samples.
On top of that, a feedback algorithm (based on the estimated state) is designed to continuously
deliver exogenous intra-venous insulin to the patient. Simulations have been performed in-silico
on models of virtual patients identified from real data and in the presence of quantization errors.
The preliminary results highlight the potential of the proposed approach.

Key words: Artificial Pancreas, Glucose control, Observers, Output feedback, Sampled-data
control systems
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1. Introduction

Artificial Pancreas (AP) is a general expression to describe a set of techniques for the control
of the glucose behaviour by means of exogenous insulin administration in diabetic individuals
(see e.g. [1, 2]), usually via subcutaneous or intravenous infusions. Diabetes Mellitus (DM) is a
widespread disease (affecting millions of people worldwide) characterized by the lack of insulin
production or resistance to insulin action. As a consequence, a number of techniques have been
made available in the last few years for the automatic control of glucose levels, which need
to cope with the several non-idealities of the underlying dynamics, among which we recall the
nonlinear and delayed insulin response [3, 4] and the difficulty in obtaining precise and frequent
measurements of the current levels of insulin [5].

A major role in this field is given by the model-based techniques, when the regulator is
synthesized by explicitly exploiting the structure of the model equations. To this aim, small-
scale minimal models are usually preferred since they allow to provide the analytical solution
to the control problem under investigation [6]. Such methods require an internal model of the
system to reconstruct the behavior of the unknown variables and to simulate (in-silico) the effect
of different control strategies.

In this framework, our attention mainly focuses on the DDE minimal model introduced in
[7, 8] and exploited e.g. in [9, 10, 11, 12] in different clinical settings. The use of DDE models
when seeking model-based glucose control laws applicable not only to type-1 (lacking insulin
release), but also to type-2 diabetic patients (the great majority of people suffering from DM, in
which the exogenous insulin administration complements the endogenous insulin production),
is due to the need for modeling the pancreatic Insulin Delivery Rate (IDR), which is known to
show irregular variations [4]. In this context, the results in [9] allow to track plasma glycemia
down to a safe euglycemic level for a Type-2 diabetic patient, while [10] performs a validation
of the DDE model closing the observer-based control loop on a population of virtual patients
modeled by a different maximal model, accepted by the Food and Drug Administration (FDA)
as an alternative to animal trials for the preclinical testing of control strategies in AP.

In this paper, we build on top of the literature reviewed above by considering the prob-
lem of glucose control in the presence of sampled measurements. Differently from most of the
approaches available in the literature, we not only assume the non-availability of the insulin
measurements, but also the availability of the glucose measurements just at sampling times
(this happens also for the so-called Continuous Glucose Monitoring, CGM [13]). An observer,
based on the construction illustrated in [14, 15], is designed for the model-based reconstruction
of glucose and insulin trajectories from the glucose samples. In particular, with respect to the
approach followed in [9], we do not assume the availability of glycemia at all times. On the other
hand, the construction in [14, 15] cannot be applied to DDE models, so we restrict our attention
to the cases in which the apparent delay in the insulin response is negligible (less than 1 minute).
As a consequence, we consider a particular case of the glucose-insulin model developed in [7, 8].

On top of that, a feedback algorithm (based on the estimated state) is designed to continuously
deliver exogenous intra-venous insulin to the patient. We assume that the delivery rate is
changed at the sampling times. In the simulation setting, we consider further non-idealities, by
introducing quantization (modeling the possible lack of accuracy of the instrument as well as
the analog-to-digital and digital-to-analog conversion processes) both in the measurement and
in the control phases, where the goal is to track some desired good trajectories of glucose and
insulin.

The paper is structured as follows: In Section 2, we describe the ODE model of the glucose-
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insulin system. In Section 3, we describe an observer reconstructing the continuous glucose-
insulin behaviour from sparse glucose measurements. In Section 4, we construct a control law
for the exogenous insulin rate input in order to track desired glucose trajectories. Section 5
shows some simulations, based on data taken from real patients, in an experimental setting.
Section 6 offers concluding remarks.

2. An ODE model of the glucose-insulin system with sampled measurements

The work in [7, 8] introduces a DDE model of the glucose-insulin system, characterized by a
nonlinear delayed secondary insulin release in response to varying plasma glucose concentration,
quantified in a constant delay τg > 0. The interested reader is referred to [7] for identification
issues and statistical robustness of this model and to [8] for further details on its mathematical
properties and qualitative behavior.
In general, it is well known that the state space of systems with delays in the state equations has

infinite dimension, which leads to difficulties in the system analysis, controller/observer synthesis
and physical implementation. Hence, although the aforementioned model is more accurate, it
introduces complications which are not worthwhile in those cases where the apparent delay in the
pancreatic response is negligible. The behaviour of such individuals can still be well represented
by setting the delay τg = 0, which leads to the following ODE model:

{
dG(t)
dt = −KxgiG(t)I(t) +

Tgh

VG
,

dI(t)
dt = −KxiI(t) +

TiGmax
VI

h
(
G(t)

)
+ u(t),

t ≥ 0 (1)

with initial conditions G(0) = G0, I(0) = I0, where:

• G(t) is the Plasma Glycemia at time t [mM ];

• I(t) is the Plasma Insulinemia at time t [pM ];

• Kxgi is the rate of (insulin-dependent) glucose uptake by tissues per unit of plasma insulin
concentration [min−1pM−1];

• Tgh is the net balance between hepatic glucose output and insulin-independent zero-order
glucose tissue uptake [min−1(mmol/KgBW )];

• VG is the apparent distribution volume for glucose [L/kgBW ];

• Kxi is the apparent first-order disappearance rate constant for insulin [min−1];

• TiGmax is the maximal rate of second-phase insulin release [min−1(pmol/kgBW )];

• VI is the apparent distribution volume for insulin [L/kgBW ];

• h(·) is a nonlinear map modeling the endogenous pancreatic Insulin Delivery Rate (IDR)
as

h(G) =
(G/G∗)γ

1 + (G/G∗)γ
,

where γ (dimensionless) is the progressivity with which the pancreas reacts to circulating
glucose concentrations and G∗ [mM] is the glycemia at which the insulin release reaches
half of its maximal rate;
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• u(t) is the exogenous intra-venous insulin delivery rate at time t, i.e. the control input
[pM/min].

As already said, the previous model is less general than the one with delay (whose qualitative
behavior is described in [8]), since fitting the ODE model on the real data for some patients
showing a non-negligible τg leads to progressively larger estimation errors for respectively larger
values of the delay τg, which is not considered in (1). On the other hand, an ODE model allows to
apply the results in [15] and obtain the state reconstruction when the measurements are available
just at some instants. So, given the sampling sequence {ti}, we define the piecewise-constant
output function as

y(t) = G(ti) t ∈ [ti, ti+1), i = 0, 1, ...

which can be equivalently restated as a delayed output

y(t) = G(t− δ(t)) t ≥ 0 (2)

with the time varying delay δ(t) defined within any two consecutive sampling instants as

δ(t) = t− ti, t ∈ [ti, ti+1), i = 0, 1, ... (3)

where we take t0 = 0. The upper bound on the sampling interval is given by ∆ := max
i

(ti+1 − ti).

3. Observer for the glucose-insulin system with sampled measurements

By collecting the state variables within the state vector x(t) = [x1(t), x2(t)]
T = [G(t), I(t)]T ,

equations (1)–(3) can be rewritten in the compact form


dx(t)
dt = f(x(t)) +Bu(t), t ≥ 0

y(t) = Cx(t− δ(t)),

δ(t) = t− ti, t ∈ [ti, ti+1), i = 0, 1, ...

(4)

with

f(x) =

[
f1(x)
f2(x)

]
=

[
−Kxgix1x2 +

Tgh

VG

−Kxix2 +
TiGmax

VI
h(x1)

]
,

δ(t) ∈ [0,∆], B = [0 1]T , C = [1 0].

Generally speaking, the problem of asymptotic state observation consists in finding a causal
system (asymptotic observer), driven by the pair (u(t), y(t)), that produces a vector variable
x̂(t) (observed state) asymptotically converging to the state x(t) (i.e., ∥x(t) − x̂(t)∥ → 0).
Furthermore, an observer is said to be an exponential observer if there exist µ > 0 and α > 0
such that

∥x(t)− x̂(t)∥ ≤ µ e−αt∥x(0)− x̂(0)∥, (5)

for any x(0) and x̂(0) in IRn.
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In order to design such an observer, we preliminarily define the drift-observability map z =
ϕ(x) as

z =

[
z1
z2

]
= ϕ(x) :=

[
Cx

Cf(x)

]
=

[
x1

f1(x)

]
=

[
x1

−Kxgix1x2 +
Tgh

VG

]
(6)

and its Jacobian

Q(x) :=
dϕ(x)

dx
=

[
1 0

−Kxgix2 −Kxgix1

]
, (7)

which is non-singular for x1 ̸= 0.

The observer in [14, 15] takes the following form:

˙̂x(t) = f(x̂(t)) +Bu(t)

+ e−ηδ(t)Q−1(x̂(t))K
{
y(t)− Cx̂(t− δ(t))

}
, (8)

where K =

[
−(λ1 + λ2)

λ1λ2

]
assigns the eigenvalues λ1 < 0, λ2 < 0 of (A − KC) to obtain

convergence to zero of the estimation error x(t)− x̂(t), with

A =

[
0 1
0 0

]
,

and η > 0 being a design parameter, giving more weight to recent measurements with respect
to the older ones.

By recalling x̂(t) = [x̂1(t), x̂2(t)]
T = [Ĝ(t), Î(t)]T , the explicit form of the observer (8), for

t ∈ [ti, ti+1), for i = 0, 1, ... is the following:

dĜ(t)
dt = −KxgiĜ(t)Î(t) +

Tgh

VG

+e−ηδ(t)(λ1 + λ2)(G(ti)− Ĝ(ti)),
dÎ(t)
dt = −KxiÎ(t) +

TiGmax
VI

h
(
Ĝ(t)

)
+ u(t)

+e−ηδ(t)Kxgi(λ1+λ2)Î(t)−λ1λ2

KxgiĜ(t)
(G(ti)− Ĝ(ti))

(9)

Under hypotheses that are known to hold for the glucose-insulin system in (1) (see the technical
assumptions described in [9] for the more general DDE case), it is possible to prove the following
result, establishing the exponential convergence to zero of the observation error.

Theorem 3.1. [15] Consider the system (1)–(3), with δ(t) ∈ [0,∆]. Then, for any assigned
η > 0, there exists K and a positive ∆̄ such that, if ∆ < ∆̄, then the system in (9) is a global
exponential observer for the system in (1)–(3) such that η is the decay rate of the estimation
error (i.e., eq. (5) is verified for some µ > 0 and α = η).

Note that the previous result enables the use of the observer (9), provided that the sampling
interval is upper-bounded by ∆. Otherwise, a chain of sampled observer is required (full details
are given in [15]).
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4. Glucose control algorithm

To develop the glucose control algorithm, we follow an input-output linearization approach [16].
The dynamics of the observability map in (6) is the following:

ż =

[
ż1
ż2

]
=

dϕ(x)

dx
ẋ = Q(x)(f(x) +Bu)

=

[
1 0

−Kxgix2 −Kxgix1

] [
f1(x)

f2(x) + u

]
(10)

=

[
1 0

−Kxgix2 −Kxgix1

] [
z2

−Kxix2 +
TiGmax

VI
h(x1) + u

]
,

from which one gets
ż1 = z2,

ż2 = −Kxgix2

(
−Kxgix1x2 +

Tgh

VG

)
+Kxgix1

(
Kxix2

−TiGmax
VI

h(x1)
)
−Kxgix1u.

(11)

By imposing ż2 := v, we get the linearizing feedback as

u = Kxix2 −
TiGmax

VI
h(x1)−

v +Kxgix2(−Kxgix1x2 +
Tgh

VG
)

Kxgix1
(12)

which is computable for positive values of the glycemia x1, consistently with the fact that in
those cases the Jacobian matrix Q(x) in (7) is non-singular.
We now need to choose v in order to achieve a desirable behavior. Consider a reference signal

for the glucose given by

yref (t) = Gref (t) = Gd + (Gb −Gd)e
−λt,

with λ > 0, which aims at driving the basal glycemia Gb of a subject to a desired value Gd.
By setting

zref =

[
z1,ref
z2,ref

]
:=

[
yref
ẏref

]
,

one easily obtains

żref (t) =

[
ż1,ref (t)
ż2,ref (t)

]
=

[
z2,ref (t)
ż2,ref (t)

]
=

[
−λ(Gb −Gd)e

−λt

λ2(Gb −Gd)e
−λt

]
.

We define the error e := z − zref , whose dynamics is

ė =

[
ż1 − ż1,ref
ż2 − ż2,ref

]
=

[
z2 − z2,ref
v − ż2,ref

]
= Ae+B(v − ż2,ref ).

Since the pair (A,B) is reachable, it suffices to impose

v = He+ ż2,ref (13)
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to obtain the convergence to zero of the linearized error dynamics, where H =

[
−λ3λ4

(λ3 + λ4)

]T
assigns the eigenvalues λ3 < 0, λ4 < 0 of matrix (A+BH).

Note that the control law given in Eq. (12)–(13) is a continuous state-feedback control law,
depending on the continuous states x1, x2, which are not available in our case, since we only
know their estimates x̂1, x̂2 from (9). In the linear case, the separation principle would guarantee
the convergence of the output y(t) = G(t) to its reference value yref (t) = Gref (t). Unfortunately,
this is not guaranteed in the non-linear case, in general. However, inspired by the procedure
and results followed in [9] (which proves local convergence results), we restate the control law
in (12)–(13) in terms of a feedback from the reconstructed state, which leads to the following
continuous control law

u = max

{
0, Kxix̂2 −

TiGmax

VI
h(x̂1)+ (14)

−
H(ẑ − zref ) + ż2,ref +Kxgix̂2(−Kxgix̂1x̂2 +

Tgh

VG
)

Kxgix̂1

}

where ẑ :=

[
x̂1

f1(x̂)

]
, and x̂ =

[
x̂1
x̂2

]
=

[
Ĝ

Î

]
is the observer output in (9). Note that in (14) we

explicitly prevent the possibility of a negative exogenous insulin rate.

5. Simulation Results

In this section, the performance of the algorithm developed in the previous section is evaluated
in an experimental setting. We consider the data coming from 3 healthy subjects, whose glucose
and insulin data are a subset of the data collected in [7]. Such patients underwent an Intra-
Venous Glucose Tolerance Test (IVGTT), which is a perturbation experiment consisting in
administering intra-venously a glucose bolus after an overnight fasting period and then sampling
plasma glucose and serum insulin concentration during the following 3 hours, with varying
sampling time. Glucose and insulin measurements from this experiment are used to identify the
parameters of the DDE model in [7], [8], by imposing τg = 0 in the identification procedure.
In fact, as already mentioned at the beginning of Section 2, we focus on the subjects for which
the delay in the glucose action on pancreatic IDR is negligible, since the sample-based observer
illustrated in Section 3 follows the approach in [15] and, unfortunately, there are no theoretical
results on such a method applied to systems with state delays.

After the preliminary identification, since the considered subjects are not diabetic (but some
of them show a picture of pre-diabetic condition), we follow the conceptual procedure in [9] and
consider a perturbation of the parameters that simulates a natural progression of the disease
towards diabetes. In particular, we reduced the insulin resistance (up to values Kxgi < 104)
as well as the pancreatic glucose sensitivity TiGmax, and then recomputed consistently (via
the algebraic steady-state conditions obtained from the model in Eq. (1)) some of the other
parameters, in particular the basal values of glycemia Gb and insulinemia Ib, which constitute
the equilibria of (1) in absence of exogenous insulin administration (u = 0). The values of the
parameters for the three individuals are summarized in Table 1. In the spirit of personalized
medicine, the parameters of each model are exploited for the design of the artificial pancreas
(the observer-based control law) tailored to the particular subject.
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Parameter Patient 1 Patient 2 Patient 3

Gb 8.89 8.67 8.56

Ib 28.29 23.70 6.90

Kxgi 7.60 · 10−5 9.86 · 10−5 5.50 · 10−5

Tgh 0.0025 0.0026 0.0026

VG 0.13 0.13 0.10

Kxi 0.10 0.06 0.25

TiGmax 1.45 0.74 0.89

VI 0.25 0.25 0.25

γ 2.28 2.55 1.55

G∗ 9 9 9

Table 1: Numerical values of the model parameters (in the respective units of measurement) for
the 3 patients considered.

On top of the assumptions considered so far, we build a more realistic simulation setup by
imposing a quantization error both in the sampling and in the actuation, accounting for the
processes of analog-to-digital and digital-to-analog conversion in digital devices. We consider a
quantization step of 0.1 mM for the glycemia measurements and 20pM/min for the exogenous
Insulin Delivery Rate (IDR). As a consequence, the observer-based controller is initialized with
quantization errors.
Regarding the sampling time of the glucose measurements, we impose a constant sampling

time ti+1 − ti = ∆, for all i. So we can write more simply ti = i · ∆, with ∆ = 5 [min]. This
choice is consistent with many devices currently on the market [17]. We assume that each control
sample is held for the same interval.
Simulations have been carried out by designing the AP for each of the three subjects by

properly exploiting the correct model parameters. The observer gain K in (8) and the control
gain H in (14) are set to obtain the same closed-loop eigenvalues for all patients: λ1 = −0.5,
λ2 = −1, λ3 = −0.4, λ4 = −0.8. The parameter η in (9) is set equal to 5, the target glycemia
is equal to Gd = 5 mM, with decay rate λ = 1/30.
The results are shown in Figures 1–2 in terms of glucose-insulin behavior and IDR input. It

is readily seen that, starting from the individual basal glycemia levels, the target value Gd is
approached in the three subjects within the considered time horizon of 3 hours.

6. Conclusion

In this paper, we addressed the problem of glucose control with incomplete information. Starting
from a minimal ODE model, well representing the dynamic behavior of the glucose-insulin
system in the individuals showing a negligible delay in the pancreatic response, we first designed
a sample-based observer reconstructing the full glucose-insulin behavior from sparse glucose
measurements. Then, we closed the loop by designing a control law (based on the reconstructed
state) with the goal of tracking a desired behavior of glycemia. Preliminary simulations have
been performed in silico on virtual patients whose parameters have been identified from real
data, in a realistic setting with additional non-idealities given by quantization errors. The results
show that the approach can constitute a promising tool in the context of the development of the
artificial pancreas. Future research effort will be devoted to possible extensions of the observer-
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Figure 1: Time course of glucose concentration (top panel) and insulin concentration (bottom
panel) for the 3 virtual patients considered. The dash-dotted lines represent the basal values of
glycemia and insulinemia, while the solid lines are obtained by closing the loop with an Artificial
Pancreas.
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Figure 2: Applied control input in terms of Exogenous Insulin Delivery Rate (IDR) for the 3
virtual patients considered.



12.

based sampled data glucose control to formally take into account the more general cases of state
delays and quantized inputs and outputs.
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