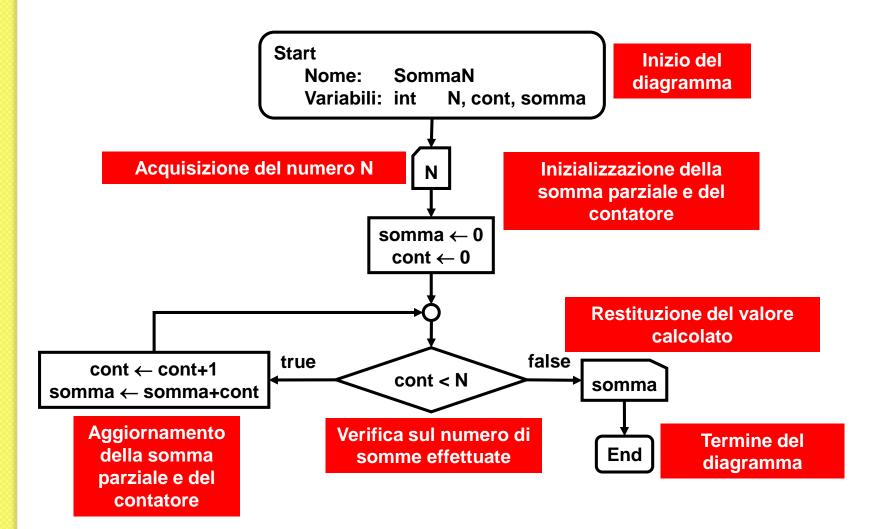
Programmazione e Laboratorio di Programmazione

Lezione III I diagrammi di flusso

Nozione intuitiva di algoritmo

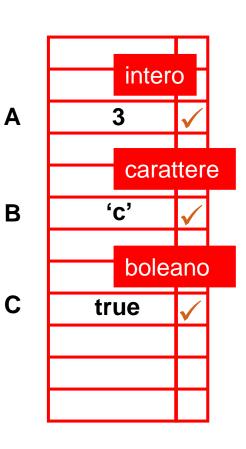

- Nozione intuitiva di algoritmo
 - è una sequenza finita di istruzioni
 - ogni istruzione è una stringa di lunghezza finita costruita a partire da un alfabeto di dimensione finita
 - deve esistere un agente di calcolo C capace di eseguire le istruzioni dell'algoritmo
 - C deve avere capacità di memorizzazione
 - •

I diagrammi di flusso

- Diagrammi di Flusso:
 - un formalismo grafico per la descrizione di algoritmi
 - un particolare simbolo grafico detto blocco è associato ad ogni tipo di operazione
 - i blocchi sono collegati tra loro da archi che definiscono l'ordine di esecuzione delle istruzioni

Esempio

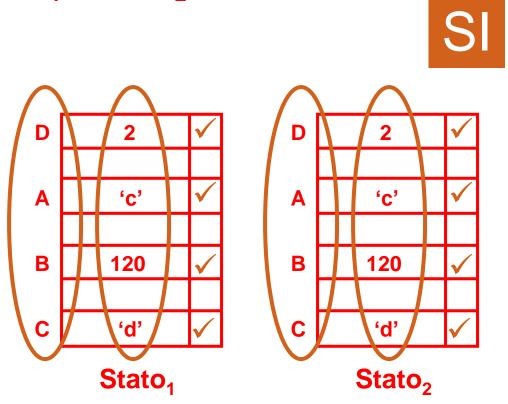
Calcolare la somma dei numeri interi 1≤ i ≤ N

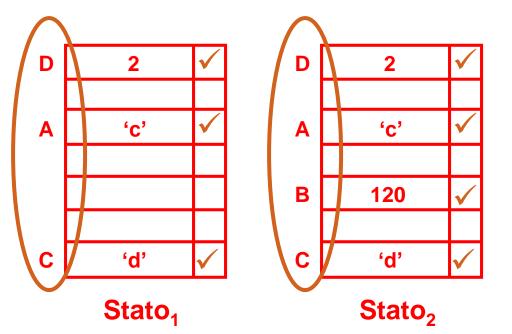


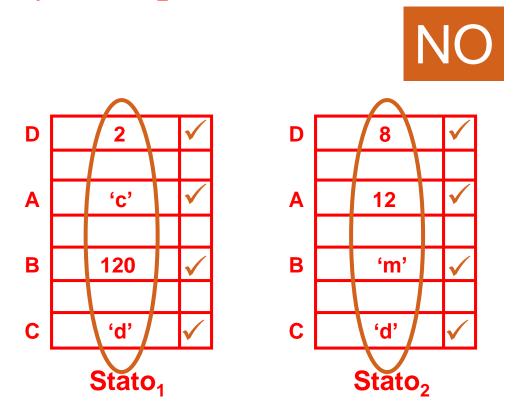
Capacità di memorizzazione

Modello:

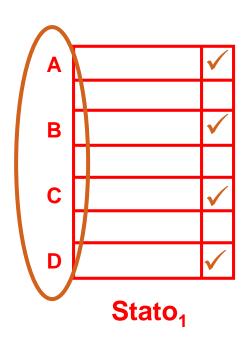
descrizione della realtà limitatamente agli aspetti di interesse

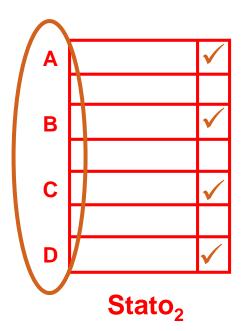

- Modello di memoria:
 - insieme di locazioni
 - ogni locazione può memorizzare un valore di tipo intero, carattere, o booleano
 - una locazione o è correntemente in uso o è disponibile in uso
 - locazioni correntemente in uso sono dette variabili
 - ogni variabile è identificata da un nome e da un tipo (il tipo del valore memorizzabile)

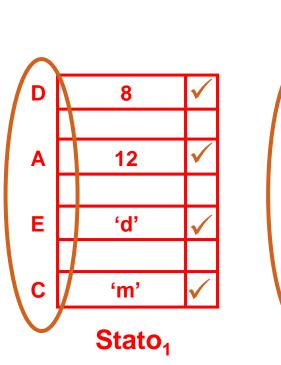

disponibile

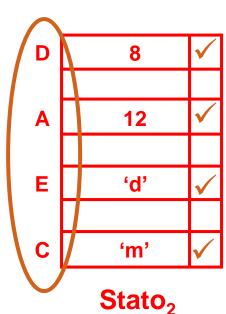

- Molto informalmente:
 - è una "foto" istantanea della memoria
- Molto meno informalmente:
 - è determinato dall'insieme delle triple

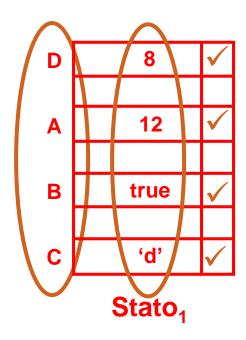
(nome_{var}, tipo_{var}, valore_{var})

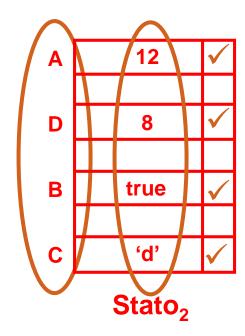


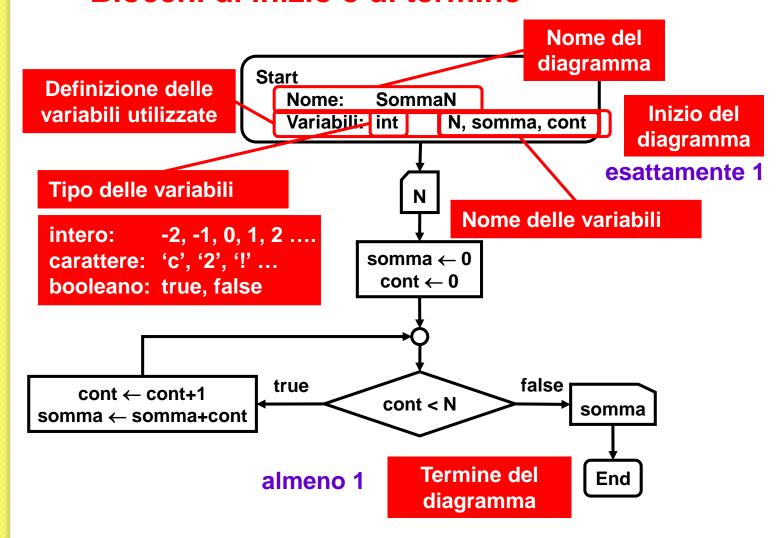



• Stato₁ = Stato₂?

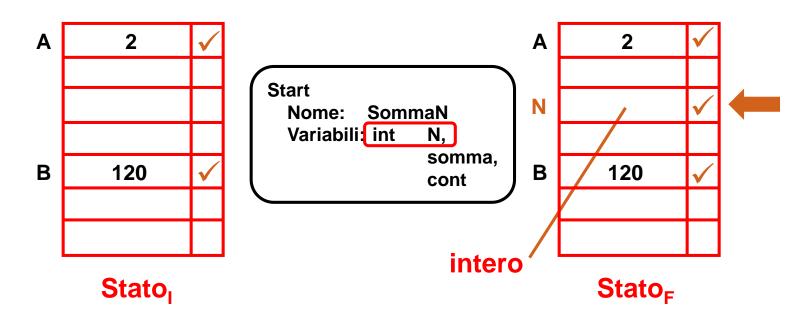

Non lo so




 $Stato_1 = Stato_2$?

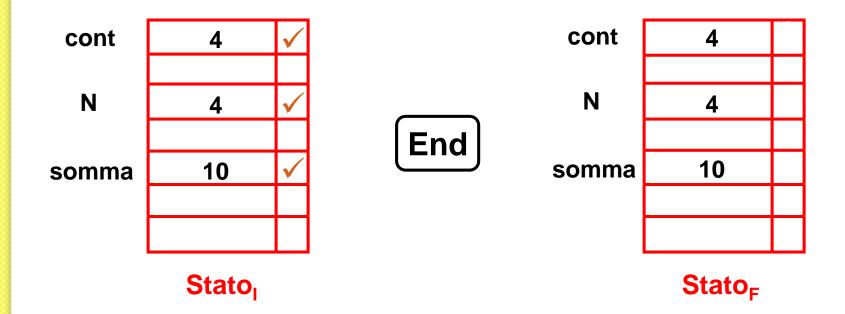


Blocchi di inizio e di termine

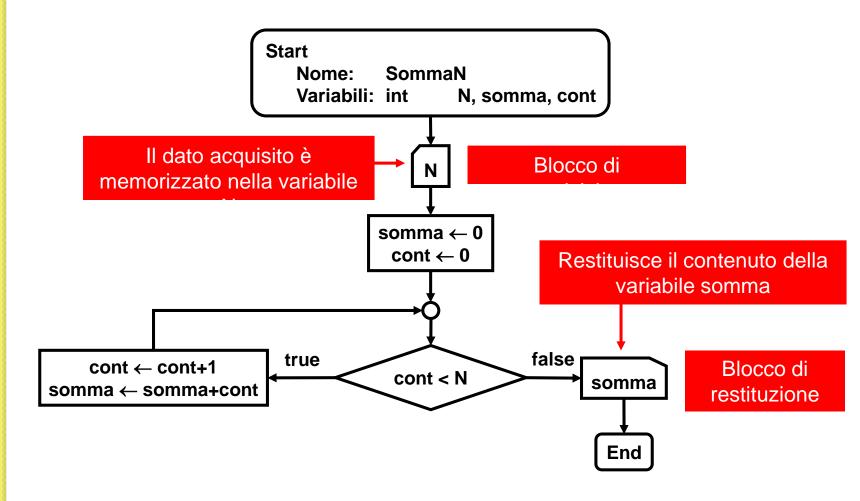


Definizione di una variabile

Blocco di inizio

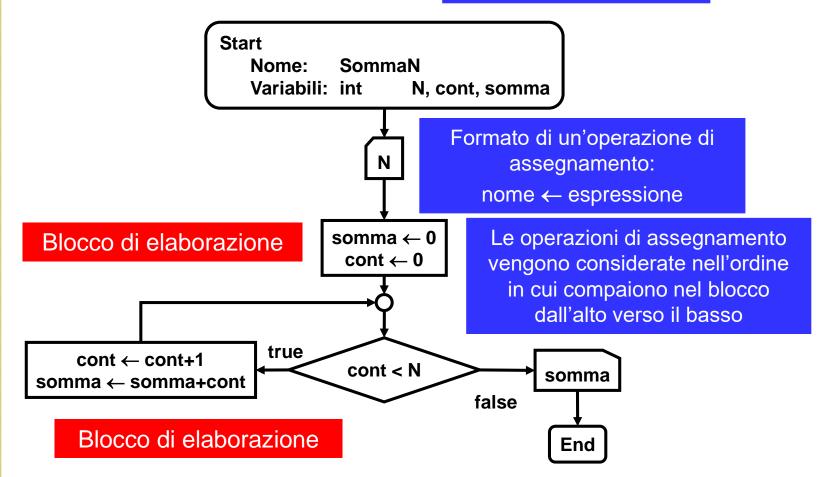

Per ognuna delle variabili elencate nel blocco

- 1. si individua una locazione di memoria disponibile
- 2. si riserva tale locazione
- 3. si associano a tale locazione il nome e il tipo specificati

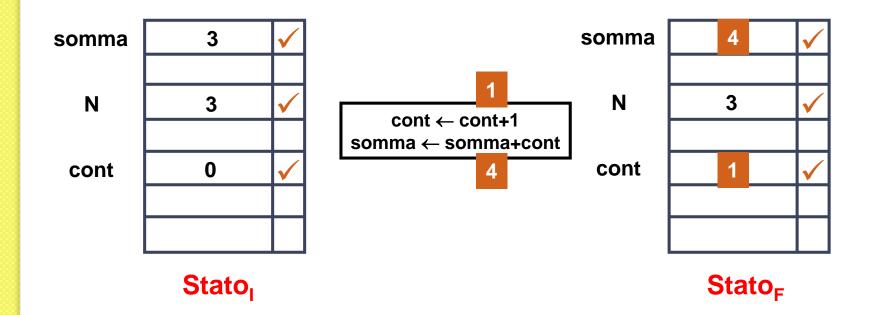


Blocco di termine:

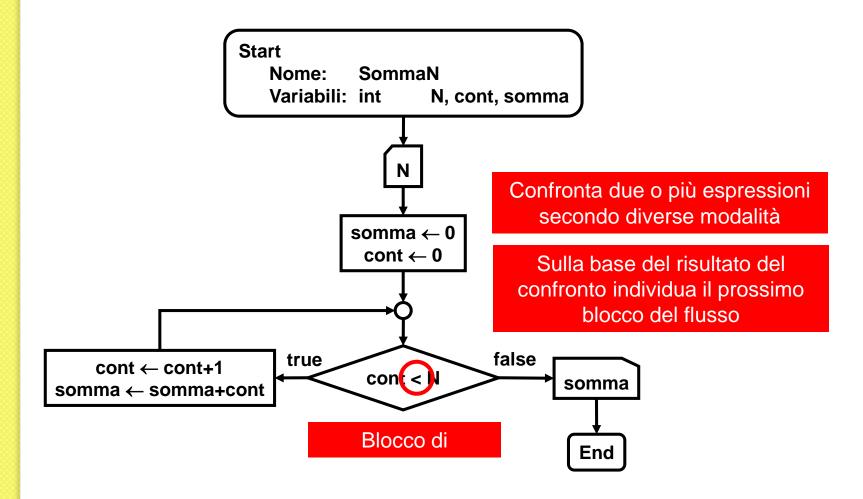
si rilascia la memoria allocata ad ognuna delle variabili elencate nel blocco "Start"



Blocchi di acquisizione e di restituzione dati


Blocco di elaborazione

Contiene una sequenza di operazioni di assegnamento



Operazioni di assegnamento

- nome ← espressione
 - 1. Si valuta il valore di espressione nello stato attuale della memoria
 - 2. Si aggiorna con tale valore il contenuto della variabile identificata da nome

Blocco di decisione

Riassumendo

• Blocco di inizio

int
bool
char

Start
Nome:
Nome:
nome del diagramma
tipo₁ nome₁
tipo₂ nome₂
.....

- Blocco di termine
- Blocco di acquisizione
- Blocco di restituzione
- Blocco di elaborazione

End

nome₁, nome₂, ...

nome₁, nome₂, ...

 $nome_1 \leftarrow espressione_1$ $nome_2 \leftarrow espressione_2$

Riassumendo

Blocco di decisione

Condizioni di validità

- Esiste un solo blocco di inizio e almeno un blocco di termine;
- il blocco di inizio ha un solo arco uscente e non ha archi entranti;
- ogni blocco di uscita ha un solo arco entrante e non ha archi uscenti;
- ciascun blocco di elaborazione, di acquisizione, e di restituzione ha un solo arco entrante e un solo arco uscente;
- ciascun blocco di decisione ha un solo arco entrante e due uscenti;
- ciascun arco entra in un blocco o si innesta su un altro arco;
- ciascun blocco è raggiungibile dal blocco iniziale;
- da qualsiasi blocco è possibile raggiungere almeno uno dei blocchi di termine.

Operatori

Operatori aritmetici

• +: int x int \rightarrow int

somma tra interi

 \blacksquare -: int x int \rightarrow int

differenza tra interi

* : int x int → int

prodotto tra interi

• /: int x int \rightarrow int

divisione intera

• %: int x int \rightarrow int

resto della divisione intera

Operatori logici

not : bool → bool

negazione

and : bool x bool → bool

and logico

• or : bool x bool \rightarrow bool

or logico

Operatori

Operatori di confronto tra interi

= : int x int → bool test di uguaglianza

 \blacksquare > : int x int \rightarrow bool strettamente maggiore

• <: int x int \rightarrow bool strettamente minore

• \leq : int x int \rightarrow bool minore uguale

Ordinamento lessicografico

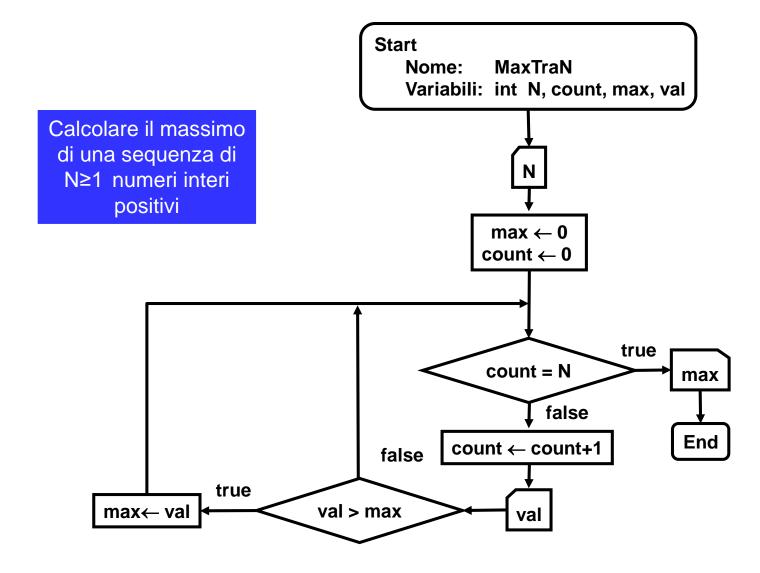
Tabella dei codici ASCII

Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	l 	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex
(nul)	0	0000	0x00	ī	(sp)	32	0040	0x20	ı	0	64	0100	0x40	Τ		96	0140	0x60
(soh)	1	0001	0x01	T	.!	33	0041	0x21	ı	A	65	0101	0x41	Τ	а	97	0141	0x61
(stx)	2	0002	0x02	L	**	34	0042	0x22	l	В	66	0102	0x42	1	b	98	0142	0x62
(etx)	3	0003	0x03	L	#	35	0043	0x23	l	С	67	0103	0x43	1	c	99	0143	0x63
(eot)	4	0004	0x04	L	Ş	36	0044	0x24	l	D	68	0104	0x44	1	d	100	0144	0x64
(enq)	5	0005	0x05	T	*	37	0045	0x25	l	E	69	0105	0x45	1	e	101	0145	0x65
(ack)	6	0006	0x06	T	٤	38	0046	0x26	l	F			0x46			102	0146	0x66
(bel)			0x07	T	1		0047		l	G			0x47		_		0147	
(bs)		0010		Т	(0050		l	H			0x48				0150	
(ht)		0011		•)		0051		l	I			0x49	•			0151	
(n1)			0x0a	I	*			0x2a	l	J			0x4a		_		0152	
(Vt)		0013		I	+		0053		ı	K			0x4b		k		0153	
(np)		0014		T	1		0054			L			0x4c		1		0154	
(cr)			0x0d	1	-		0055			M			0x4d		m		0155	
(30)		0016		•	•		0056			N			0x4e		n		0156	
(si)		0017		•			0057			0		0117			0		0157	
(dle)		0020		•	0		0060		٠.	P			0x50		-		0160	
(dc1)			0x11	-			0061		•	ō			0x51		_		0161	
(dc2)		0022		•	2		0062		٠.	R		0122			r		0162	
(dc3)		0023		•	3		0063			-			0x53				0163	
(dc4)			0x14	•			0064			T			0x54				0164	
(nak)		0025	0x15	•			0065		٠.	U			0x55 0x56	•			0165	
(syn)			0x10	•	6 7		0067		 	V W			0x50	-			0166 0167	
(etb)		0030			8		0070		 -	X			0x57				0170	
(can) (em)		0030		•	9		0070		 -	Y			0x59	•			0170	
(sub)			0x1a	•				0x3a	l I	Z			0x5a		_		0172	
(esc)		0032		•	;		0072		l L	ſ			0x5b	•			0173	
(fs)		0033			`		0074		l L	1			0x5c		ì		0174	
(gs)			0x1d	•				0x3d	•	ì			0x5d	-			0175	
(gs) (rs)		0036			>			0x3e	•	7			0x5e				0176	
(us)			0x1f	•				0x3f					0x5f					
(us)	0.1	000 1	OVII	1	1	0.0	3011	OVOT	I	_	55	0101	OVOI	1	(act	121	0111	OXII

Operatori

Operatori di confronto tra caratteri

```
■ = : char x char → bool test di uguaglianza
```


```
    - < : char x char → bool precede lessicograficamente</li>
```

```
■ ≤ : char x char → bool uguale o precede lessicograficamente
```

> : char x char → bool segue lessicograficamente

■ ≥ : char x char → bool uguale o segue lessicograficamente

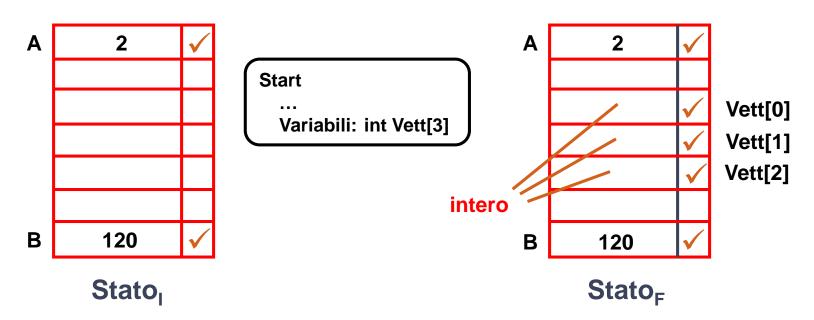
Un semplice esempio

Vettore (monodimensionale) di n elementi:

definisce una corrispondenza biunivoca tra un multiinsieme omogeneo di n elementi e l'insieme di interi {0, 1, ..., n-1}

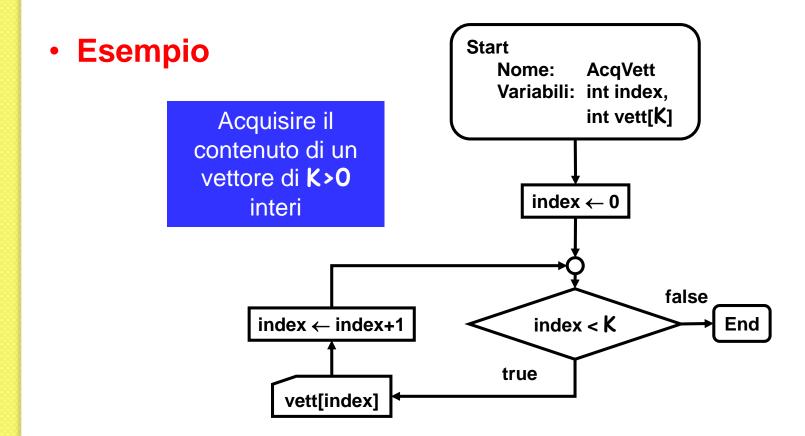
Esempio:

Vettore di 5 interi


0	5
1	-4
2	32
3	-4
4	27

costante intera

Definizione


tipo_{Vettore} nome_{Vettore} [dim_{Vettore}.

Effetto

Accesso all'elemento di un vettore

 $0 \le espressione a valore intero \le dim_{Vettore}-1$ $nome_{Vettore} [indice]$

Start Esempio Nome: **MaxVett** Variabili: int index, int vett[K] Calcolare il massimo elemento di un $max \leftarrow vett[0]$ index \leftarrow 1 vettore di K>0 interi true $index \leftarrow index+1$ index = Kmax **End** false vett[index] > max true $max \leftarrow vett[index]$

Matrice di n x m elementi:

definisce una corrispondenza biunivoca tra un multiinsieme omogeneo di n x m elementi e l'insieme di coppie di interi {(0,0), (0,1),, (n-1, m-1)}

Esempio:

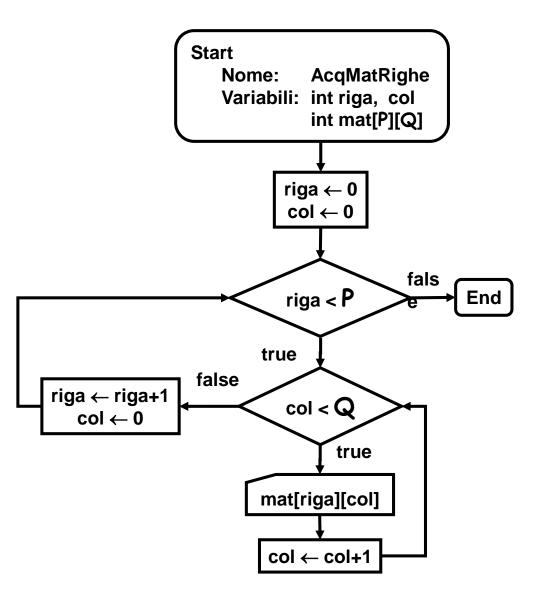
Matrice di 5 x 2 interi

(0,0)	8	4	(0,1)
(1,0)	7	-1	(1,1)
(2,0)	15	12	(2,1)
(3,0)	4	-9	(3,1)
(4,0)	7	4	(4,1)

Definizione

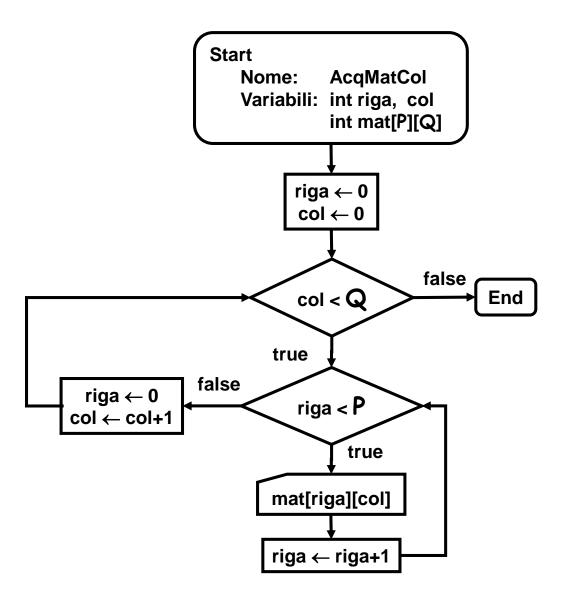
costanti intere tipo_{Matrice} nome_{Matrice} [dim_{Righe}] [dim_{Colonne}]

Accesso all'elemento di una matrice


0 ≤ espressione a valore intero ≤ dim_{Colonne}-1

nome_{Matrice} [indice_{Riga}][indice_{Colonna}]

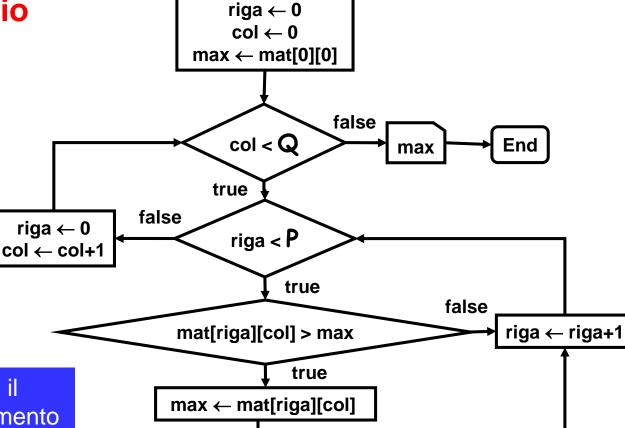
 $0 \le espressione a valore intero \le dim_{Righe}-1$


Esempio

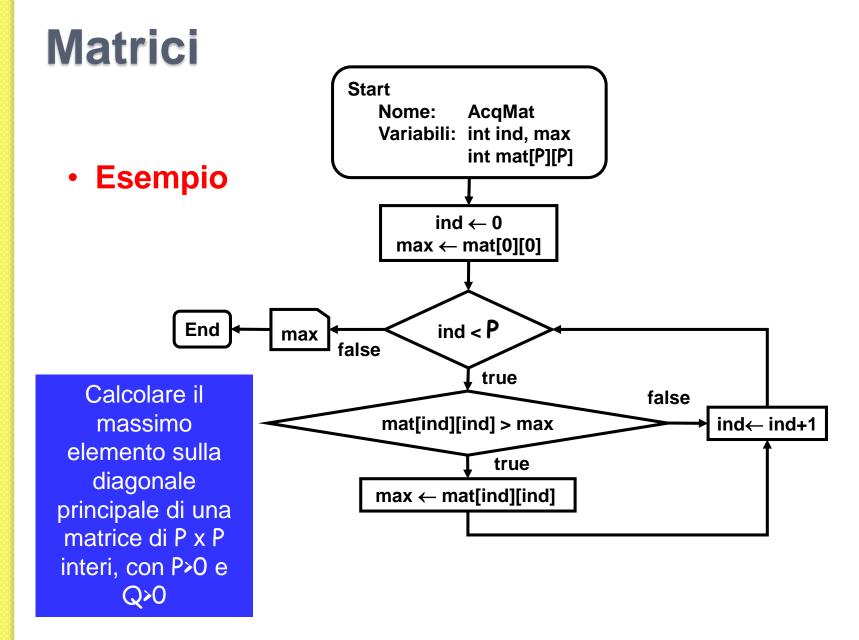
Acquisire il contenuto di una matrice di P x Q interi (per righe), con P>0 e Q>0

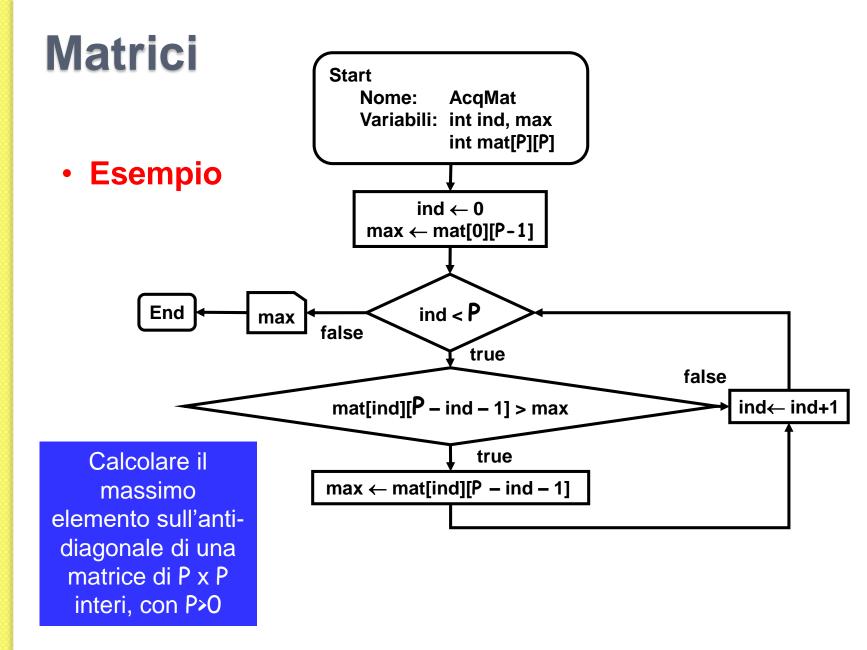
Esempio

Acquisire il contenuto di una matrice di P x Q interi (per colonne), con P>0 e Q>0


Nome: AcqMat

Start


Variabili: int riga, col, max


int mat[P][Q]

Esempio

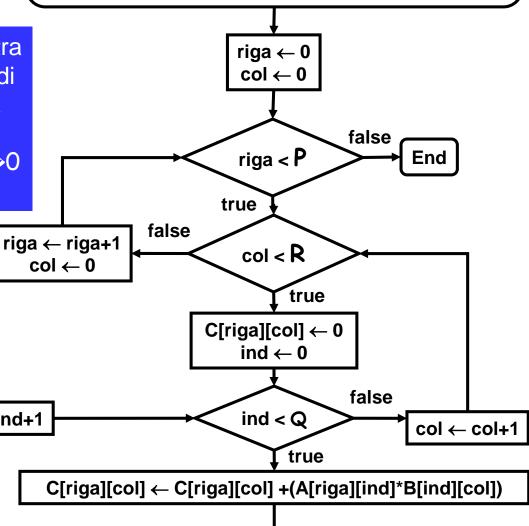
Calcolare il massimo elemento di una matrice di P x Q interi, con P>0 e Q>0

Prodotto tra matrici:

siano date una matrice A di dimensione m x n ed una seconda matrice B di dimensioni n x p. Viene definito prodotto matriciale di A per B (A x B) la matrice C, di dimensioni m x p, i cui termini c_{i,i} sono calcolati come segue:

$$\mathbf{c}_{i,j} = \sum_{r=1}^{n} \mathbf{a}_{i,r} * \mathbf{b}_{r,j}$$

ProdMat Nome: Variabili: int riga, col, ind


Start

Esempio

int A[P][Q], int B [Q][R], int C [P][R],

ind ← ind+1

Calcolare il prodotto tra due matrici di interi, di dimensioni P x Q la prima, Q x R la seconda, con P>0, Q>0 e R>0

