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Abstract

We present a new graph composition that produces a gtaflom a given graphH and a fixed graptB calledgear and we
study its polyhedral properties. This composition yieldsiterexamples to a conjecture on the facial structur8’ B B(G)

whend is claw-free.
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1. Introduction

Given a graph = (V, E) and a vectow € QY
of node weights, thetable set probleris the problem
of finding a set of pairwise nonadjacent nodssble
set)of maximum weight.

The stable set polytopedenoted byST AB(G), is
the convex hull of the incidence vectors of the sta-
ble sets ofG and it is known to be full-dimensional.
A linear systemAx < b is said to bedefiningfor
STAB(G) if STAB(G) = {x: Az < b}. Thefacet
defining inequalitieor ST AB(G) are those inequal-
ities that constitute the unique nonredundant defining
linear system oST AB(G).

Clearly, finding a defining linear system for
STAB(G) is equivalent to transform the origi-
nal optimization problem into the linear program
max{w?z : Ar < b} and, being the stable set prob-
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lem N P-hard, it is unlikely to find such a system for
general graphs.

Nevertheless the facial structure of the stable set
polytope has been one of the most studied problems
in polyhedral combinatorics. Here is a non-exhaustive
list of results related with the study of facets of
ST AB(G): facet producing graphs [17,20,1%]and
h-perfectness [11], characterization &' AB(G)
when G is series-parallel [13], odd{,-free [9] or
quasi-line [6].

Besides the description of new classes of facets, it
is of interest to find composition procedures that en-
able to build new families of facets fo7T AB(G)
starting from facets of a lower dimensional polytope.
These compositions are usually based on graph com-
positions: for example, sequential lifting is based on
the extension of a graph with an additional node, the
Wolsey’s lifting procedure [21] is based on edge sub-
division, and Chvatal’'s compositions of polyhedra [3]
are based on node substitution and clique identifica-
tion.

In this paper, we present a new graph composition,
namedgear compositionwhich consists of ‘replac-
ing’ an edge of a given grapH with a special graph
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calledgear, to obtain the grapl’. We study the poly-
hedral properties of this operation and derive suffi-
cient conditions to generate facet defining inequalities
of STAB(G) starting from facet defining inequali-
ties of STAB(H ). The gear composition can be iter-
atively applied to generate a very rich family of non-
rank facet defining inequalities, that we nageared
inequalities

In the last section, we also show how to use this
composition to build counterexamples to a conjecture
on the facial structure of the stable set polytope of
claw-free graphs.

We denote byG = (Vg, E¢) any graph with node
set Vo and edge sef;. Given a vector3 € R™
and a subses C {1,...,m}, definegs € R!°l as
the subvector of; restricted on the indices &f and
B(S) = > ;cqBi- Given a subseb C {1,...,m},
we denote by:® € R™ the incidence vector af.

Alinear inequality) .y, mjz; < 7o is said to be
validfor STAB(G) ifit holds for allz € STAB(G).

A valid inequality for STAB(G) definesa facet of
ST AB(G) ifand only if itis satisfied as an equality by
|V affinely independent incidence vectors of stable
sets of G (calledroots). It is well-known that each
facet defining inequality that is not a non negative
constraint hasr; > 0 for j € Vi andwy > 0. For
short, we also denote a linear inequalityz < m, as
(m,mp) and the right hand side, asrhs.

We denote byd(v) the set of edges off having
v as endnode and bV (v) the set of nodes oV
adjacent taw. We define thestability number(G) as
the maximum cardinality of a stable set@f

Let > ey (o} Ti%; < mo be a facet defining in-
equality of STAB(G\{v}). Theny_ v\ ,y T2+
TpTy < T with Ty = T —MaAXzc STAB(G\N (v)) '
is facet defining forSTAB(G). This procedure,
known assequential lifting[17], can be iterated to
generate facet defining inequalitieliftéd inequali-
tieg in a higher dimensional space.

A k-holeCy = (v1,v2,...,v) is a chordless cycle
of lengthk. A 5-wheelW = (h : vq,...,v5) consists
of a 5-hole C' = (vq,...,vs), calledrim of W, and
a nodeh (hub of W) adjacent to every node af.
The inequalityZ?:1 Ty, + 2z, < 2 is facet defining
for STAB(W) and it is calleds-wheel inequalityA
gear B is a graph of eight nodeshy, ho, a, by, ba,
¢, dq, dg} such that(hl s a,dy, by, e hg) and (hg :
a,da,be, c, hy) are 5-wheels (see Fig. 1); moreover,

the edges of these wheels are the only edges.of

Figure 1. The gear with nodéds,;, ha, a, b1, b, c,d1,ds.

2. Gear composition

In this section we introduce the gear composition.
An edgev; v, of a graphH is said to besimplicial if
K1 = N(v1)\ {v2} and K5 = N(vg) \ {v1} are two
nonempty cliques off. Notice that the two cliques
K, and K> might intersect.
Definition 1 Let H = (Vy, Ey) be a graph with a
simplicial edgev;v2 and letB = (V, E) be a gear.
The gear compositiorof H and B produces a new
graph G such that:

Va = Vu \ {v1,v2} UV
Eq = FExy \ (5(111) U 6(’[}2)) UEpUI ULFE,,
whereF; = {d;u, bulu € K;} fori=1,2.

A graphd resulting from the gear composition of two
graphsH and B along the simplicial edge;ve will
be denoted byH, B, v1v2). A sketch of how the gear
composition works is shown in Fig. 2.

Definition 2 LetH = (Vy, Ey) be a graph contain-
ing the simplicial edgenve. The inequality(r, 7o)

is said to beg-extendablawith respect tovy v, if it

is valid for STAB(H), it hasm,, = m,, = A >0
and it is not the clique inequality,, + x,, < 1. If
B = (Vg, Ep) is a gear, the following inequality

S Oommitd Y w2 wn,+an,) < m+2X (1)
% 1€Ve\{hi,h2}

where V' = Vi \ {v1,v2}, is called thegeared in-
equalityassociated with(w, 7o) and will be denoted
as (7, 7).

In the following we show that geared inequalities
are essential in the linear description of the stable set
polytope of geared graphs. We first prove that they are
valid inequalities forST AB(G).



Figure 2. (a) A graphH with a simplicial edgev;vz; (b) The
geared graptG = (H, B,v1v2).

Lemmal If G is a geared graph, then the geared

St =S\ {v2} U{h,da}
St =51\ {v2} U{ha, bo}.

They are stable sets 6f and their incidence vectors
251 and 257 are roots of (1); consequently, they
are roots of(3, By). As 3(St) = B(5%) = By, we
have that3,, = (4,. Symmetrically, we prove that
Bo, = B -

ii) Let 252 be a root of(r, my) such thatv, vy ¢ So.
The existence of such arootis guaranteed by the fact
that(r, 7o) is not the clique inequality,,, +x,, <1.
Consider now the sets

521 =5SU {hl}
S3 = Sy U {a,c}.

They are stable sets 6f and their incidence vectors
252 andzS? are roots of (1), and hence, 08, 3,).
This implies thaf3, + 3. = 35, . ReplacingSi with
SaU {hQ}! we getﬂa"’ﬁc = /Bh2 and therﬁhl = Blw'

inequality (1) is valid forSTAB(G). iii) Let 2% be a root of £, 7o) such tha( K> U{v2}) N

Proof: Let S be a stable set ofs. Since each non
trivial facet defining inequality o6T AB(G) has non
negative coefficients, we can assume thas max-
imal. To prove the lemma we distinguish two cases
depending on the intersection 6f with the subset
{bl, ba, dy, dg} of Vs.

If S N{by,ba,dy,d2}| > 1, then we can suppose
without loss of generality thd € S. Then(S\Vg)U
{v1} is a stable set off and thereforer(S\ Vp) =
7(S\ VB) < my — A. Moreover, it is not difficult to
check thatt(S N Vg) < 3X and thus7(S \ Vg) +
ﬁ'(SﬂVB) <mo—A+3\=my+ 2\

If |SN{b1,b2,d1,d2}| = 0thenS\ Vg is a stable
set in H. By the maximality ofS, exactly one among
the setqdh;}, {h2}, and{a, c}, is contained irt, thus
implying that7(S N Vg) = 2. Hence, 7 (S \ Vi) +
7(SNVp) < m + 2X and the thesis follows. O

Theorem 1 Let (w, my) be a g-extendable inequality.
If (w,m) is facet defining forSTAB(H), then the
associated geared inequality (1) is facet defining for
STAB(G).
Proof: Supposes’z < pf, is facet defining for
ST AB(G) and contains all the roots of (1): we show
below that such inequality is equivalent to (1).
We start with the following three observations.
i) Let 1t be a root of(r, my) such thatv, € S;.
Consider the sets:

S’ = (). This root always exists because, fr) is

not the clique inequality defined dy,U{v2} (since

by hypothesisr,, = m,, = A > 0). Thenv; € 5,
since otherwiseS’ U {v2} would be a stable set
violating (m, 7). Let S5 = 5"\ {v1}: we have that
7(S3) = mo— A, as(w, mp) is g-extendable. Finally,
consider the following stable sets whose incidence
vectors are roots of (1):

Sé = S3U {dl,dg,c}
Sg = Sg U {bl,bg,a}
S3 = S3U {ba, h1}.

From3(S1)=p(53) and (i) it follows thats, = 3.,

and so, by (ii),6n, = 20, FromB(S3) = A(S3)

it follows that 8y, + 8o = Bh,, that is Gy, = Ba.

ReplacingS; with S3 U {b1, ha}, we getsy, = Sa.
So, by (i)-(iii), we have that3, = (4, for each
v € Vg \ {hl,hg} andﬁhl = ﬁhz = Qﬁdl.

Let M be a matrix whose rows at&}| incidence
vectors of stable sets dff which are linearly inde-
pendent roots ofr, o), i.e.,

Mn = mgl. (2)

Any stable sef of H can be transformed into a stable
setS of G as follows: setS = S\ {v1,v2} U Sp,
where Sp is a stable set oB such thatd; € Sp if



and only ifv; € S for i = 1,2. It is not difficult to
verify that if z° defines a root ofr, 7o) thenSp can
be chosen so that® defines a root of (1) such that
B(S N {h1,ha,a,c}) =284, . By replacingVy with
V' = Vg \ {’Ul,’l}g} U {dl,dg}, we haveM By, =
(Bo — 284,)1 and by (2),

_ — 204,
Byr = (Bo — 260 M 11 = =20
o
In particular, we have
-2 -2
By = Bo — 2f3a, - Bo — 204, N 3)
) o

Theng,, > 0 and, without loss of generality, we can
fix 84, = my, = A; consequently, we have that

Bo = o + 2,

B, =, for eachv € Vg \ {v1, 02},
By = A for eachv € Vg \ {h1, ha},
Bry = Bny = 2A,

and the theorem follows. |
The following example shows a geared graph ob-

tained by two applications of the gear composition to

a 5-hole and the corresponding geared inequalities.

Example 1 Consider thé-holeCs = (v, vi, u, v3 v?)
and the gearet-hole H; = (Cs, B, v{v}) in Fig. 3.
Two simplicial edges are emphasized as thick lines.

Figure 3. A5-hole and a geared-hole

As the5-hole inequalityx (Ve ) < 2 is facet defin-
ing for STAB(Cs) and g-extendable, we have, by
Theorem 1, that

e (Vi \ {1, ha}) + 221 + 21 < 4
is facet defining folST AB(H,).

(4)

Observe that the gear composition can be applied
iteratively provided that the graph involved in the op-
eration at the-th step has a simplicial edge. For in-
stance, the grapH; in the Example 1 contains v3
and thus it can be composed with another ggaro
obtain the graplés = (H1, B2, v?v3) shown in Fig. 4.

A further application of Theorem 1 yields the follow-
ing “double” geared facet defining inequality

x(Ve\T) +22(T) <6,
whereT = {h}, hi, h? h3}.

(®)

Figure 4. A double geared graph

Notice that other geared inequalities appear in the
linear description ofT AB(G). In fact, the following
inequalities:

Vi, \A) <3 (6)

where A € {{d},a'},{d}, at}, {03, ), {bd, ],
{a',c'}}, are rank facet defining foST AB(H;)
and they are also g-extendable with respectitos.
Hence, by Theorem 1, each of the inequalities (6)
generates a geared inequality which is facet defining
for ST AB(G) and different from (5).

Simmetrically, other geared inequalities are gen-
erated by performing gear compositions in a differ-
ent order: first buildH, = (Cs, B?,v#v2), and then
G = (H,, B',v}v}) as the gear composition df,
and B'. As above, the first gear composition gener-
ates five rank inequalities (similar to (6)) which are
facet defining forlST AB(H,) and g-extendable while
the second gear composition generates their associated
geared inequalities. All the inequalities mentioned so
far are different and, by Theorem 1, they are all facet
defining for ST AB(G). It follows that two applica-
tions of the gear composition to &hole have pro-
duced 11 geared inequalities which are facet defining
for the stable set polytope df. O



The situation illustrated above may be generalized
to the case whei; containsk gears: in this case,
any subset of gears may be possibly involved in a
facet defining inequality, thus producing an exponen-

tial number of geared inequalities. To see this we need

a preliminary result:

Theorem 2 Let (7, mo) be a g-extendable inequality.
If (w,m) is facet defining forSTAB(H), then the
inequality

Z ML + Ty Z%Sﬂ'o-l-ﬂ'vl

i€Va\{v1,v2} i€Ve\{a,c}

is facet defining foSTAB(G).

Proof: Consider the graplé:’ obtained fromH by
subdividing the edge = v; vy with two nodesh; and
hs and renaming; asd;, i = 1,2. Clearly G’ is a
subgraph of7 and, by a result of Wolsey [21] on edge
subdivisions, the following inequality

>

i€Va\{vi,v2}

is facet defining forSTAB(G’). This inequality
can be lifted to yield a facet defining inequality of
ST AB(G) by observing thabt; andb, can be lifted
with coefficientr,,, and thena and ¢ can be lifted
with coefficient zero. This completes the proof. O

We now show an example where a linear number
of gear compositions yields an exponential num-
ber of facet defining geared inequalities. Consider
the graphH as a(2k + 1)-hole (v1,v2,.. v%ﬂ)
and the following setF' = {e; = vo;vi41 : @ =

, k} of disjoint simplicial edges off. Let F/ =

{eil,eiz,...,eih,} C F suchthati; < is < -+ <
in, < k and letG g, denote the graph obtained from
H by iteratively applying the gear composition on
the edgee;, for j = 1,2,..., h (notice that, since the
edges inF are disjoint, the edges i’ \ F’ remain
simplicial in Gr/). Denote byT" the set of hubs’ pairs
belonging to theh gears ofGp/. As (V) < k is
facet defining forST AB(H) and g-extendable with
respect to each edge df, by iteratively applying
Theorem 1, we have that the geared inequality

Z xv+22x7j§k+2h

UEVGF,\T veT

is facet defining forST AB(G ). Moreover, this in-
equality may be extended to a facet defining inequality
for STAB(GF) by applying Theorem 2 to the— h

(7)

TiTq + T, E Ty < o + Moy
i€{d1,h1,h2,d2}

edges ofF" \ F’. Since this procedure can be applied
to any subsef” of F, we have that an exponential
number of geared inequalities appear in the linear de-
cription of STAB(GF).

3. Geared rank inequalities

In this section we show how to use the gear compo-
sition to build a new class of inequalities thmeturally
extend the inequalities supported by the line graph of
hypomatchable graphs$].

It is well-known that the stable set polytope
STAB(L(G)) of a line graphL(G) is equivalent to
the matching polytopeM (G) of G. Since the only
nontrivial inequalities describing\(G) are rank
inequalities [4], we have that the same holds for
STAB(L(G)).

However these inequalities are not sufficient to de-
scribe STAB(G) as long asG is not a line graph
and the structure 08T AB(G) becomes quite com-
plex even for those graphs that are natural general-
izations of line graphs as thdaw-free graphsi.e.,
graphs such that the neighborhood of each node has
no stable set of size three. For claw-free graphs, as
for the line graphs, the optimization problem over the
stable set polytope is polynomial time solvable [14]
and, by a well-known result of Grotschel, Lovasz and
Schrijver (see [11]), the same holds for the separation
problem. Thus, it is expected th&t" AB(G) has a
nice linear description wheit is claw-free. But up
to now no explicit set of facet defining inequalities is
known despite many research efforts [8,10,12,16,18]
and several disproved conjectures [10].

A complete linear description a$T AB(G) was
given by Eisenbrand et al. [6] for a subclass of claw-
free graphs: the quasi-line graphs (a graph is quasi-line
if the neighborhood of each node can be partitioned
into two cliques). These graphs generalize the line
graphs and their stable set polytope is completeley
described by thelique family inequalitie$16] which
are a generalization of tHedmonds’ inequalitief2].

It remains open the problem of finding the linear
description of STAB(G) when G is claw-free and
not quasi-line. It is well-known [7] that any claw-free
graphG which is not quasi-line and hagG) > 4,
contains at least ond-wheel and no odd antihole
Cap+1 With p > 3. Recently, Stauffer [19] conjectured

that:



Conjecture 1 The stable set polytope of a claw-free
graph G which is not quasi-line and has(G) > 4

is described by: non-negativity inequalities, rank in-
equalities and (liftedp-wheel inequalities.

To build counterexamples to the above conjecture it
suffices to observe that each geared inequality is
e supported by a grapi that is not quasi-line (since

it contains &-wheel)and moreover, is a
e non-rank valid inequality folST AB(G) with rhs

greater than 2.

Thus, any geared inequality that is facet defining for
STAB(G), when G is claw-free witha(G) > 4,

is a counterexample to Conjecture 1 becatséds
not quasi-line and the rhs of the geared inequality is
greater than the rhs of a (lifted)}wheel inequality
which is2. Instances of such inequalities are provided
in Example 1.

We define recursively the familyr of geared rank
inequalitiesas the family of geared inequalities asso-
ciated with inequalities that: either are rank inequali-
ties or belong t@j . By repeated applications of Def-
inition 2, we have that the coefficients of geared rank
inequalities are all’s apart from some pairs of gears’
hubs which have coefficier?; moreover, their rhs is
greater thare.

Geared rank inequalities play a role in the study of
STAB(G) whenG is claw-free. The results of this

paper imply that the geared rank inequalities have to _ ). 49 o
f[14] G. Minty, On maximal independent sets of vertices iniela

be necessarily added to the defining linear system o
ST AB(G). Moreover, the recent decomposition the-
orem for claw-free graphs of Chudnovsky and Sey-
mour [1] made us quite confident that geared rank in-
equalities are also sufficient to give a linear descrip-
tion of ST AB(G) whenG is claw-free, not quasi-line

and has stability number greater than 3. This led us to

conjecture that

Conjecture 2 The stable set polytope of a claw-free
graph G which is not quasi-line and has(G) > 4 is
described by:

non-negativity inequalities

rank inequalities

(lifted) 5-wheel inequalities

(lifted) geared rank inequalities.
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