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Abstract

We present a new graph composition that produces a graphG from a given graphH and a fixed graphB calledgear and we
study its polyhedral properties. This composition yields counterexamples to a conjecture on the facial structure ofSTAB(G)
whenG is claw-free.
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1. Introduction

Given a graphG = (V, E) and a vectorw ∈ QV
+

of node weights, thestable set problemis the problem
of finding a set of pairwise nonadjacent nodes(stable
set)of maximum weight.

Thestable set polytope, denoted bySTAB(G), is
the convex hull of the incidence vectors of the sta-
ble sets ofG and it is known to be full-dimensional.
A linear systemAx ≤ b is said to bedefining for
STAB(G) if STAB(G) = {x : Ax ≤ b}. The facet
defining inequalitiesfor STAB(G) are those inequal-
ities that constitute the unique nonredundant defining
linear system ofSTAB(G).

Clearly, finding a defining linear system for
STAB(G) is equivalent to transform the origi-
nal optimization problem into the linear program
max{wT x : Ax ≤ b} and, being the stable set prob-
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lem NP -hard, it is unlikely to find such a system for
general graphs.

Nevertheless the facial structure of the stable set
polytope has been one of the most studied problems
in polyhedral combinatorics. Here is a non-exhaustive
list of results related with the study of facets of
STAB(G): facet producing graphs [17,20,15],t and
h-perfectness [11], characterization ofSTAB(G)
when G is series-parallel [13], oddK4-free [9] or
quasi-line [6].

Besides the description of new classes of facets, it
is of interest to find composition procedures that en-
able to build new families of facets forSTAB(G)
starting from facets of a lower dimensional polytope.
These compositions are usually based on graph com-
positions: for example, sequential lifting is based on
the extension of a graph with an additional node, the
Wolsey’s lifting procedure [21] is based on edge sub-
division, and Chvátal’s compositions of polyhedra [3]
are based on node substitution and clique identifica-
tion.

In this paper, we present a new graph composition,
namedgear composition, which consists of ‘replac-
ing’ an edge of a given graphH with a special graph
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calledgear, to obtain the graphG. We study the poly-
hedral properties of this operation and derive suffi-
cient conditions to generate facet defining inequalities
of STAB(G) starting from facet defining inequali-
ties ofSTAB(H). The gear composition can be iter-
atively applied to generate a very rich family of non-
rank facet defining inequalities, that we namegeared
inequalities.

In the last section, we also show how to use this
composition to build counterexamples to a conjecture
on the facial structure of the stable set polytope of
claw-free graphs.

We denote byG = (VG, EG) any graph with node
set VG and edge setEG. Given a vectorβ ∈ Rm

and a subsetS ⊆ {1, . . . , m}, defineβS ∈ R|S| as
the subvector ofβ restricted on the indices ofS and
β(S) =

∑
i∈S βi. Given a subsetS ⊆ {1, . . . , m},

we denote byxS ∈ Rm the incidence vector ofS.
A linear inequality

∑
j∈VG

πjxj ≤ π0 is said to be
valid for STAB(G) if it holds for all x ∈ STAB(G).
A valid inequality for STAB(G) definesa facet of
STAB(G) if and only if it is satisfied as an equality by
|VG| affinely independent incidence vectors of stable
sets ofG (called roots). It is well-known that each
facet defining inequality that is not a non negative
constraint hasπj ≥ 0 for j ∈ VG andπ0 > 0. For
short, we also denote a linear inequalityπT x ≤ π0 as
(π, π0) and the right hand sideπ0 asrhs.

We denote byδ(v) the set of edges ofG having
v as endnode and byN(v) the set of nodes ofVG

adjacent tov. We define thestability numberα(G) as
the maximum cardinality of a stable set ofG.

Let
∑

j∈VG\{v} πjxj ≤ π0 be a facet defining in-
equality ofSTAB(G\{v}). Then

∑
j∈VG\{v} πjxj +

πvxv ≤ π0 with πv = π0−maxx∈STAB(G\N(v)) πT x
is facet defining forSTAB(G). This procedure,
known assequential lifting[17], can be iterated to
generate facet defining inequalities (lifted inequali-
ties) in a higher dimensional space.

A k-holeCk = (v1, v2, . . . , vk) is a chordless cycle
of lengthk. A 5-wheelW = (h : v1, . . . , v5) consists
of a 5-hole C = (v1, . . . , v5), called rim of W , and
a nodeh (hub of W ) adjacent to every node ofC.
The inequality

∑5
i=1 xvi

+ 2xh ≤ 2 is facet defining
for STAB(W ) and it is called5-wheel inequality. A
gear B is a graph of eight nodes{h1, h2, a, b1, b2,
c, d1, d2} such that(h1 : a, d1, b1, c, h2) and (h2 :
a, d2, b2, c, h1) are 5-wheels (see Fig. 1); moreover,

the edges of these wheels are the only edges ofB.

Figure 1. The gear with nodesh1, h2, a, b1, b2, c, d1, d2.

2. Gear composition

In this section we introduce the gear composition.
An edgev1v2 of a graphH is said to besimplicial if
K1 = N(v1) \ {v2} andK2 = N(v2) \ {v1} are two
nonempty cliques ofH . Notice that the two cliques
K1 andK2 might intersect.
Definition 1 Let H = (VH , EH) be a graph with a
simplicial edgev1v2 and letB = (VB , EB) be a gear.
The gear compositionof H and B produces a new
graphG such that:

VG = VH \ {v1, v2} ∪ VB

EG = EH \ (δ(v1) ∪ δ(v2)) ∪ EB ∪ F1 ∪ F2,

whereFi = {diu, biu|u ∈ Ki} for i = 1, 2.

A graphG resulting from the gear composition of two
graphsH andB along the simplicial edgev1v2 will
be denoted by(H, B, v1v2). A sketch of how the gear
composition works is shown in Fig. 2.
Definition 2 LetH = (VH , EH) be a graph contain-
ing the simplicial edgev1v2. The inequality(π, π0)
is said to beg-extendablewith respect tov1v2 if it
is valid for STAB(H), it has πv1

= πv2
= λ > 0

and it is not the clique inequalityxv1
+ xv2

≤ 1. If
B = (VB , EB) is a gear, the following inequality
∑

i∈V ′

πixi+λ
∑

i∈VB\{h1,h2}

xi+2λ(xh1
+xh2

) ≤ π0+2λ (1)

whereV ′ = VH \ {v1, v2}, is called thegeared in-
equalityassociated with(π, π0) and will be denoted
as (π̄, π̄0).

In the following we show that geared inequalities
are essential in the linear description of the stable set
polytope of geared graphs. We first prove that they are
valid inequalities forSTAB(G).
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(a)

(b)

Figure 2. (a) A graphH with a simplicial edgev1v2; (b) The
geared graphG = (H, B, v1v2).

Lemma 1 If G is a geared graph, then the geared
inequality (1) is valid forSTAB(G).
Proof: Let S be a stable set ofG. Since each non
trivial facet defining inequality ofSTAB(G) has non
negative coefficients, we can assume thatS is max-
imal. To prove the lemma we distinguish two cases
depending on the intersection ofS with the subset
{b1, b2, d1, d2} of VB .

If |S ∩ {b1, b2, d1, d2}| ≥ 1, then we can suppose
without loss of generality thatb1 ∈ S. Then(S\VB)∪
{v1} is a stable set ofH and thereforeπ(S \ VB) =
π̄(S \ VB) ≤ π0 − λ. Moreover, it is not difficult to
check thatπ̄(S ∩ VB) ≤ 3λ and thus,̄π(S \ VB) +
π̄(S ∩ VB) ≤ π0 − λ + 3λ = π0 + 2λ.

If |S ∩ {b1, b2, d1, d2}| = 0 thenS \ VB is a stable
set inH . By the maximality ofS, exactly one among
the sets{h1}, {h2}, and{a, c}, is contained inS, thus
implying thatπ̄(S ∩ VB) = 2λ. Hence,π̄(S \ VB) +
π̄(S ∩ VB) ≤ π0 + 2λ and the thesis follows. 2

Theorem 1 Let (π, π0) be a g-extendable inequality.
If (π, π0) is facet defining forSTAB(H), then the
associated geared inequality (1) is facet defining for
STAB(G).
Proof: SupposeβT x ≤ β0 is facet defining for
STAB(G) and contains all the roots of (1): we show
below that such inequality is equivalent to (1).

We start with the following three observations.
i) Let xS1 be a root of(π, π0) such thatv2 ∈ S1.

Consider the sets:

S1
1 = S1 \ {v2} ∪ {h1, d2}

S2
1 = S1 \ {v2} ∪ {h1, b2}.

They are stable sets ofG and their incidence vectors
xS1

1 and xS2

1 are roots of (1); consequently, they
are roots of(β, β0). As β(S1

1 ) = β(S2
1) = β0, we

have thatβb2 = βd2
. Symmetrically, we prove that

βb1 = βd1
.

ii) Let xS2 be a root of(π, π0) such thatv1, v2 /∈ S2.
The existence of such a root is guaranteed by the fact
that(π, π0) is not the clique inequalityxv1

+xv2
≤1.

Consider now the sets

S1
2 = S2 ∪ {h1}

S2
2 = S2 ∪ {a, c}.

They are stable sets ofG and their incidence vectors
xS1

2 andxS2

2 are roots of (1), and hence, of(β, β0).
This implies thatβa+βc = βh1

. ReplacingS1
2 with

S2∪{h2}, we getβa+βc =βh2
and thenβh1

=βh2
.

iii) Let xS′

be a root of (π, π0) such that(K2∪{v2})∩
S′ = ∅. This root always exists because (π, π0) is
not the clique inequality defined byK2∪{v2} (since
by hypothesisπv1

= πv2
= λ > 0). Thenv1 ∈ S′,

since otherwiseS′ ∪ {v2} would be a stable set
violating (π, π0). Let S3 = S′ \ {v1}: we have that
π(S3) = π0−λ, as(π, π0) is g-extendable. Finally,
consider the following stable sets whose incidence
vectors are roots of (1):

S1
3 = S3 ∪ {d1, d2, c}

S2
3 = S3 ∪ {b1, b2, a}

S3
3 = S3 ∪ {b2, h1}.

Fromβ(S1
3)=β(S2

3 ) and (i) it follows thatβa =βc,
and so, by (ii),βh1

= 2βa. Fromβ(S2
3 ) = β(S3

3 )
it follows that βb1 + βa = βh1

, that isβb1 = βa.
ReplacingS3

3 with S3 ∪{b1, h2}, we getβb2 = βa.
So, by (i)-(iii), we have thatβv = βd1

for each
v ∈ VB \ {h1, h2} andβh1

= βh2
= 2βd1

.
Let M be a matrix whose rows are|VH | incidence

vectors of stable sets ofH which are linearly inde-
pendent roots of(π, π0), i.e.,

Mπ = π01. (2)

Any stable set̃S of H can be transformed into a stable
set S of G as follows: setS = S̃ \ {v1, v2} ∪ SB,
whereSB is a stable set ofB such thatdi ∈ SB if
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and only if vi ∈ S̃ for i = 1, 2. It is not difficult to
verify that if xS̃ defines a root of(π, π0) thenSB can
be chosen so thatxS defines a root of (1) such that
β(S ∩ {h1, h2, a, c}) = 2βd1

. By replacingVH with
V ′ = VH \ {v1, v2} ∪ {d1, d2}, we haveMβV ′ =
(β0 − 2βd1

)1 and by (2),

βV ′ = (β0 − 2βd1
)M−11 =

β0 − 2βd1

π0
π.

In particular, we have

βd1
=

β0 − 2βd1

π0
πv1

=
β0 − 2βd1

π0
λ. (3)

Thenβd1
> 0 and, without loss of generality, we can

fix βd1
= πv1

= λ; consequently, we have that

β0 = π0 + 2λ,

βv = πv for eachv ∈ VH \ {v1, v2},

βv = λ for eachv ∈ VB \ {h1, h2},

βh1
= βh2

= 2λ,

and the theorem follows. 2

The following example shows a geared graph ob-
tained by two applications of the gear composition to
a 5-hole and the corresponding geared inequalities.

Example 1 Consider the5-holeC5 =(v1
1, v

1
2, u, v2

2, v
2
1)

and the geared5-holeH1 = (C5, B
1, v1

1v
1
2) in Fig. 3.

Two simplicial edges are emphasized as thick lines.

u

v1

1
v2

1

v2

2
v1

2

h1

1

a1

u

b1
1

h1

2

b1
2

d1

1

d1

2

v2

1

v2

2

c1

Figure 3. A5-hole and a geared5-hole

As the5-hole inequalityx(VC5
) ≤ 2 is facet defin-

ing for STAB(C5) and g-extendable, we have, by
Theorem 1, that

x(VH1
\ {h1

1, h
1
2}) + 2xh1

1

+ 2xh1

2

≤ 4 (4)

is facet defining forSTAB(H1).

Observe that the gear composition can be applied
iteratively provided that the graph involved in the op-
eration at thei-th step has a simplicial edge. For in-
stance, the graphH1 in the Example 1 containsv2

1v2
2

and thus it can be composed with another gearB2 to
obtain the graphG = (H1, B

2, v2
1v

2
2) shown in Fig. 4.

A further application of Theorem 1 yields the follow-
ing “double” geared facet defining inequality

x(VG \ T ) + 2x(T ) ≤ 6, (5)

whereT = {h1
1, h

1
2, h

2
1, h

2
2}.

h1

1

c1 a1

u

b1
1

h1

2

b1
2

d1

1

b2
1

b2
2

a2

d2

2

d2

1

h2

2

c2

h2

1

d1

2

Figure 4. A double geared graph

Notice that other geared inequalities appear in the
linear description ofSTAB(G). In fact, the following
inequalities:

x(VH1
\ A) ≤ 3 (6)

where A ∈ {{d1
2, a

1}, {d1
1, a

1}, {b1
2, c

1}, {b1
1, c

1},
{a1, c1}}, are rank facet defining forSTAB(H1)
and they are also g-extendable with respect tov2

1v
2
2 .

Hence, by Theorem 1, each of the inequalities (6)
generates a geared inequality which is facet defining
for STAB(G) and different from (5).

Simmetrically, other geared inequalities are gen-
erated by performing gear compositions in a differ-
ent order: first buildH2 = (C5, B

2, v2
1v

2
2), and then

G = (H2, B
1, v1

1v1
2) as the gear composition ofH2

andB1. As above, the first gear composition gener-
ates five rank inequalities (similar to (6)) which are
facet defining forSTAB(H2) and g-extendable while
the second gear composition generates their associated
geared inequalities. All the inequalities mentioned so
far are different and, by Theorem 1, they are all facet
defining forSTAB(G). It follows that two applica-
tions of the gear composition to a5-hole have pro-
duced 11 geared inequalities which are facet defining
for the stable set polytope ofG. 2
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The situation illustrated above may be generalized
to the case whenG containsk gears: in this case,
any subset of gears may be possibly involved in a
facet defining inequality, thus producing an exponen-
tial number of geared inequalities. To see this we need
a preliminary result:
Theorem 2 Let (π, π0) be a g-extendable inequality.
If (π, π0) is facet defining forSTAB(H), then the
inequality

∑

i∈VG\{v1,v2}

πixi + πv1

∑

i∈VB\{a,c}

xi ≤ π0 + πv1
(7)

is facet defining forSTAB(G).
Proof: Consider the graphG′ obtained fromH by
subdividing the edgee = v1v2 with two nodesh1 and
h2 and renamingvi as di, i = 1, 2. Clearly G′ is a
subgraph ofG and, by a result of Wolsey [21] on edge
subdivisions, the following inequality

∑

i∈VG\{v1,v2}

πixi + πv1

∑

i∈{d1,h1,h2,d2}

xi ≤ π0 + πv1

is facet defining forSTAB(G′). This inequality
can be lifted to yield a facet defining inequality of
STAB(G) by observing thatb1 andb2 can be lifted
with coefficientπv1

, and thena and c can be lifted
with coefficient zero. This completes the proof.2

We now show an example where a linear number
of gear compositions yields an exponential num-
ber of facet defining geared inequalities. Consider
the graphH as a(2k + 1)-hole (v1, v2, . . . , v2k+1)
and the following setF = {ei = v2iv2i+1 : i =
1, . . . , k} of disjoint simplicial edges ofH . Let F ′ =
{ei1 , ei2 , . . . , eih

} ⊆ F such thati1 < i2 < · · · <
ih ≤ k and letGF ′ denote the graph obtained from
H by iteratively applying the gear composition on
the edgeeij

for j = 1, 2, . . . , h (notice that, since the
edges inF are disjoint, the edges inF \ F ′ remain
simplicial inGF ′ ). Denote byT the set of hubs’ pairs
belonging to theh gears ofGF ′ . As x(VH) ≤ k is
facet defining forSTAB(H) and g-extendable with
respect to each edge ofF , by iteratively applying
Theorem 1, we have that the geared inequality

∑

v∈VG
F ′

\T

xv + 2
∑

v∈T

xv ≤ k + 2h

is facet defining forSTAB(GF ′). Moreover, this in-
equality may be extended to a facet defining inequality
for STAB(GF ) by applying Theorem 2 to thek − h

edges ofF \ F ′. Since this procedure can be applied
to any subsetF ′ of F , we have that an exponential
number of geared inequalities appear in the linear de-
cription of STAB(GF ).

3. Geared rank inequalities

In this section we show how to use the gear compo-
sition to build a new class of inequalities thatnaturally
extend the inequalities supported by the line graph of
hypomatchable graphs[5].

It is well-known that the stable set polytope
STAB(L(G)) of a line graphL(G) is equivalent to
the matching polytopeM(G) of G. Since the only
nontrivial inequalities describingM(G) are rank
inequalities [4], we have that the same holds for
STAB(L(G)).

However these inequalities are not sufficient to de-
scribeSTAB(G) as long asG is not a line graph
and the structure ofSTAB(G) becomes quite com-
plex even for those graphs that are natural general-
izations of line graphs as theclaw-free graphs, i.e.,
graphs such that the neighborhood of each node has
no stable set of size three. For claw-free graphs, as
for the line graphs, the optimization problem over the
stable set polytope is polynomial time solvable [14]
and, by a well-known result of Grötschel, Lovász and
Schrijver (see [11]), the same holds for the separation
problem. Thus, it is expected thatSTAB(G) has a
nice linear description whenG is claw-free. But up
to now no explicit set of facet defining inequalities is
known despite many research efforts [8,10,12,16,18]
and several disproved conjectures [10].

A complete linear description ofSTAB(G) was
given by Eisenbrand et al. [6] for a subclass of claw-
free graphs: the quasi-line graphs (a graph is quasi-line
if the neighborhood of each node can be partitioned
into two cliques). These graphs generalize the line
graphs and their stable set polytope is completeley
described by theclique family inequalities[16] which
are a generalization of theEdmonds’ inequalities[2].

It remains open the problem of finding the linear
description ofSTAB(G) when G is claw-free and
not quasi-line. It is well-known [7] that any claw-free
graphG which is not quasi-line and hasα(G) ≥ 4,
contains at least one5-wheel and no odd antihole
C̄2p+1 with p ≥ 3. Recently, Stauffer [19] conjectured
that:
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Conjecture 1 The stable set polytope of a claw-free
graph G which is not quasi-line and hasα(G) ≥ 4
is described by: non-negativity inequalities, rank in-
equalities and (lifted)5-wheel inequalities.

To build counterexamples to the above conjecture it
suffices to observe that each geared inequality is
• supported by a graphG that is not quasi-line (since

it contains a5-wheel)and moreover, is a
• non-rank valid inequality forSTAB(G) with rhs

greater than 2.
Thus, any geared inequality that is facet defining for
STAB(G), when G is claw-free withα(G) ≥ 4,
is a counterexample to Conjecture 1 becauseG is
not quasi-line and the rhs of the geared inequality is
greater than the rhs of a (lifted)5-wheel inequality
which is2. Instances of such inequalities are provided
in Example 1.

We define recursively the familyGR of geared rank
inequalitiesas the family of geared inequalities asso-
ciated with inequalities that: either are rank inequali-
ties or belong toGR. By repeated applications of Def-
inition 2, we have that the coefficients of geared rank
inequalities are all1’s apart from some pairs of gears’
hubs which have coefficient2; moreover, their rhs is
greater than2.

Geared rank inequalities play a role in the study of
STAB(G) whenG is claw-free. The results of this
paper imply that the geared rank inequalities have to
be necessarily added to the defining linear system of
STAB(G). Moreover, the recent decomposition the-
orem for claw-free graphs of Chudnovsky and Sey-
mour [1] made us quite confident that geared rank in-
equalities are also sufficient to give a linear descrip-
tion ofSTAB(G) whenG is claw-free, not quasi-line
and has stability number greater than 3. This led us to
conjecture that

Conjecture 2 The stable set polytope of a claw-free
graphG which is not quasi-line and hasα(G) ≥ 4 is
described by:

non-negativity inequalities
rank inequalities
(lifted) 5-wheel inequalities
(lifted) geared rank inequalities.
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