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Abstract

Perspective cuts are a computationally effective family of valid inequalities, belonging to the
general family of disjunctive cuts, for Mixed-Integer Convex NonLinear Programming problems
with a specific structure. The required structure can be forced upon models that would not
originally display it by decomposing the Hessian of the problem into the sum of two positive
semidefinite matrices, a generic and a diagonal one, so that the latter is “as large as possible”.
We compare two ways for computing the diagonal matrix: an inexpensive approach requiring
a minimum eigenvalue computation and a more costly procedure which require the solution of
a SemiDefinite Programming problem. The latter dramatically outperforms the former at least
upon instances of the Mean-Variance problem in portfolio optimization.
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1. Introduction

Perspective cuts are a family of valid inequalities, belonging to the general family of disjunctive
cuts [1], for Mixed-Integer NonLinear Programming (MINLP) problems which exhibit blocks of
the form

min{f(:n,y):f(:n)+cy : lygmguy,ye{o,l}} (1)

where f(x) is (closed) convex. That is, x is a semi-continuous variable whose domain is the
disconnected set 0 U [I,u] (if 0 ¢ [I,u]), and/or one has a fized-charge cost function whereby one
pays the fixed cost ¢ whenever z # 0 (if ¢ # 0). Actually, the approach can be extended to
more general cases where several x variables depend on the same y and the linking constraints
are different [6], but for the sake of clarity of the present discussion the simpler form (1) is more
appropriate.

Perspective cuts are a way to strengthen the continuous relaxation of (1). They are obtained
by computing the convex envelope of f on its domain (0,0) U [l,u] x {1}, i.e., the “best” (with
smallest epigraph, in set-inclusion sense) convex lower approximation of f; this turns out to be

0 ifzr=0and y=0
cof (r,y)=9 yf(z/y)+ecy ifxe(lu], ye(0,1]
+00 otherwise

This function (which is strongly related with a well-known object in convex analysis, the per-
spective function of f(x), whence the name of the cuts) provides a better continuous relaxation
to the original problem; this is easily seen in the quadratic case f(z) = ax? + bz (a > 0), where
one obtains

cof (,y) = (1/y)az’ + bz + cy > f(z,y)

for all y€(0,1) and feasible x. Note that nonlinearity is required for the approach to have any
impact: for a =0, cof = f.

However, using ¢of as the objective function instead of f has a serious drawback, especially in
the “simple” quadratic case, in that ¢of is much “more nonlinear” than f, and it is nondifferen-
tiable at (0,0). The interior-point method of [3] could be used, but efficient implementations of
that approach are not widely available, and have not yet been shown to be competitive with the
sophisticated QP solvers available; furthermore, interior-point methods are less well-suited than
simplex-like methods in the context of enumerative approaches [6], since the latter reoptimize
more efficiently.

A possible alternative is to mimic what is done in most NonDifferentiable Optimization al-
gorithms [5], using a polyhedral approzimation of cof as the objective function; this requires
characterizing the subdifferential of ¢of and using the subgradient inequalities in the epigraph-
ical space of f ((v,x,y) such that v > f(z,y)). After proper analysis, all this boils down to
simple formulae; in the quadratic case, for instance, the perspective cut obtained at the feasible
(fractional) point (z*,y*) is just

v> (20T + b))+ (c—ax?)y (2)

where Z = x* /y*. This can be seen as an application of the general lift-and-project approach [1],
but it is much easier to implement since there is no need to set up and solve a large-scale,
nonlinearly-constrained separation problem, and the obtained cuts are global by nature and do
not require lifting. Despite the low dimensionality of the faces that they represent, perspective



cuts have been shown to significanlty improve the efficiency of enumerative approaches to Mixed-
Integer Quadratic Problems (MIQP) with (many blocks with) structure (1) [6].

Using perspective cuts crucially requires the objective function to be separable among the
blocks of semi-continuous variables; yet, there are applications, e.g., in Financial Trading and
Planning problems [7], which sport semi-continuous variables and a nonseparable objective func-
tion. For these problems, a general reformulation technique was proposed in [6] which selects
“the nonseparable part” of the objective function and moves it to newly introduced variables,
leaving a separable objective function to which perspective cuts can then be applied. Different
ways exist for selecting how to “decompose” the nonseparable objective function; in [6] a simple
procedure, based on computing the minimum eigenvalue of the Hessian, was found to already
provide good enough results to prove the worthiness of the approach. In this paper, we propose
a more sophisticated—but still relatively simple to implement—procedure which requires the
solution of a SemiDefinite Programming problem, and we report about the impact of using the
resulting approach upon instances of the Mean-Variance problem with minimum and maximum
buy-in thresholds in portfolio optimization. Our results show that the significantly larger cost
of reformulating the instance in a “better” way dramatically pays off in terms of quality of the
obtained lower bounds, allowing us to routinely solving instances of much larger size than those
solvable (within the same time limit) with the simpler approach.

2. The reformulation technique
Assume the following (MIQP) is given

min xTQa:+qx+cy
Ax+ By >b (3)
Ly <z <wy; , y;€{0,1} i=1,...,n

where @ is positive semidefinite (and not diagonal). Perspective cuts (2) cannot be directly
applied to (3), as the quadratic objective function is nonseparable on the x variables. In [6]
a decomposition technique of the objective function was proposed: select any non-negative
diagonal D € R™*™ such that Q — D still is positive semidefinite, replace 7 Qx in the objective
function with 27 Dz + 27(Q — D)z and add contraints enforcing = = 2. The resulting model is

min 27Dz + 27(Q — D)z + qx + ¢y
Az +By>b , z=x (4)
Ly <z < uy; yie{O,l} 1=1,....n

Model (4) is directly amenable to application of perspective cuts, and retains most of the struc-
ture of the original problem by just introducing a copy of the x variables and assigning it all
the non-separability in the objective function. Intuitively, the “larger” D (the “fraction” of the
overall objective function that is properly reflected on the separable costs) is, the more perspec-
tive cuts could be expected to improve the lower bound. As we will see, this is clearly confirmed
by the computational results. Thus, procedures have to be devised for (efficiently) finding a
“large” D.

In the context of the original experiments of [6], aimed at evaluating the effectiveness and effi-
ciency of perspective cuts in general, a simple rule was used: computing the minimum eigenvalue
Amin Of Q and setting D = Apy;,]. There are many efficient ways for computing the minimum
eigenvalue of a symmetric matrix; for our experiments, we have chosen to just compute all the



eigenvalues of @) using the eig() function of the open-source package octave 2.1 [4], and then
extract the smallest one. We will refer to this as the Minimum Eigenvalue (ME) approach. More
efficient methods for finding the minimum eigenvalue exist, but this is irrelevant for our appli-
cation because the time required for this operation is negligible with respect to the total time
of the B&C approach (cf. Table 1). We remark that the ME approach obviously requires @ to
be strictly positive definite (for otherwise A\, = 0 = D = 0); although this was the case in all
the instances of our test set, there may exist cases of nonseparable (MIQP) with non-full-rank
Hessian matrix, to which the ME approach could not be applied.

More sophisticated techniques allow to find “larger” matrices D. In want of a better metric,
we assumed tr(D)—the sum of the diagonal elements of D—to be a relevant indicator of the
quality of D as a diagonal approximation of (). Thus, finding the largest diagonal approximation
that still leaves Q) — D positive semidefinite can be cast as the following dual pair of SemiDefinite
Programming (SDP) problems

(PD) max{Zd,-:Q—Zdi(eief)zR,Rzo,dzo}
=1 =1

(DD) min { tr(QX11) @ %y — Tiqgmitn=11=1,...,n, X =0 }

where I' = 0 means that I' belongs to the cone of symmetric positive semidefinite matrices of
proper dimension, e; is the i-th vector of the canonical base of R” and X1 is the n x n principal
submatrix of the 2n x 2n matrix X.

The above dual pair of small-scale SDP problems can be solved by means of the currently
available interior-point SDP codes; for our tests we used the open-source package csdp 4.8 [2],
which proved to be efficient and reliable and directly delivered the required solution d;, ¢ =
1,...,n (we remark that (DD) is the primal problem according to the csdp standards, so d; are
actually optimal dual variables). We will refer to this as the SemiDefinite Programming (SDP)
approach. Clearly, the SDP approach is immediately extended to the case where each of the d;
variables is given a different (non-negative) weight to indicate different relevance of having a
large quadratic coefficient for z; in the resulting reformulation; however, up to now no sensible
rules have been devised for computing those weights, so for our computational results we have
always used identical (unitary) weights. Also, note that, unlike ME, the SDP approach can in
principle be applied even to cases where @ is not strictly positive definite, i.e., Ay = 0.

For both SDP and ME, as a further safeguard measure to avoid that Q — D turns out not to
be positive semidefinite due to numerical errors, we subtracted from D (hence, added to @ — D)
a “small” positive definite matrix of form e/ for a suitably chosen “small” e.

3. Computational results

We have tested the influence of the two procedures ME and SDP on the overall efficiency of a
B&C approach using perspective cuts to nonseparable (MIQP) with semi-continuous variables;
in particular, as in [6] we have applied the approach to instances of the Mean-Variance (MV)
model in portfolio optimization [8], which is as follows.

A set of n risky assets are available; for each asset i = 1,...,n, the expected unitary return p;
for the considered time horizon is known. Also, the n x n variance-covariance matrix ) defined
for the assets is available. Denoting by x; € [0,1] the fraction of the portfolio value invested



in asset i, any vector x with ex = 1 (e being the vector of all ones) is a feasible allocation of
the available resources over the assets, ux is the corresponding expected return and z”Qz is a
measure of the associated risk (volatility). Thus, the problem faced by the “rational investor”
is that of trading returns versus risk. With no further constraints, the problem of fixing a
desired level of return p and minimizing the associated risk is an easy convex (QP); thus, one
can effectively trace all the risk-return efficient frontier, with a classical procedure that has
been considered the very beginning of rational financial analysis. However, in many real cases a
number of further constraints over portfolio decisions exist. Typically, minimum and mazimum
buy-in thresholds l; and u; are set on each asset i, turning the problem into the much harder

(MIQP)
min {xTQa;

ex=1, pr>p, } (5)
Ly <ax; <wy;, y; €{0,1} i=1,...,n ’

Further constraints can be easily imposed, such as maximum and minimum numbers of purchased
assets, or fixed purchase costs can be considered; however, in the following we will stick to the
basic formulation (5). This problem is quite demanding for general-purpose (MIQP) solvers,
most likely due to the fact that it has very few constraints with basically no structure, so that
the classical polyhedral approaches to improve the lower bounds are ineffective. Also, as shown
in Table 2 (column “Cplex”) the root node gaps of the standard continuous relaxation are huge;
as a result, instances with n = 200 are already practically unsolvable by standard methods.

For our tests, we have generated 10 (MV) instances for each value of n€{200,300,400}. The
variance-covariance matrices () have been generated using the well-known random generator
of [9]. The desired level of return p has been randomly chosen in the interval [0.002,0.01], and
the minimum and maximum buy-in thresholds /; and u; have been randomly generated in the
intervals [0.075,0.125] and [0.375,0.425], respectively. The data required for reproducing the
instances is available upon request by the authors.

For our experiments we have implemented a B&C based on perspective cuts. This is not
entirely straightforward, as some of the required operations—such as changing the quadratic
part of the objective function during the execution of the B&C—are not supported by the API
of available (MIQP) solvers such as Cplex. Furthermore, a number of different algorithmic
choices, some unique to perspective cuts and some quite standard, have to made which have an
impact on the overall effectiveness of the approach. However, these issues are mostly irrelevant
for the present discussion, since a preliminary computational investigation showed that the effect
of the different implementation choices is basically the same for both diagonalization procedures
ME and SDP; thus, we just followed the guidelines developed in [6], to which the interested
reader is referred for further details upon the implementation issues of the B&C approach with
perspective cuts.

The experiments were performed on a PC with an Opteron 252 processor and 2Gb RAM, run-
ning the Linux Fedora operating system (kernel 2.6.11). The codes were compiled with gcc 4.0
using aggressive optimizations -03; our B&C code uses Cplex 9.1 to solve the continuous re-
laxations at each node of the enumeration tree. We also solved, on the same machine, the same
instances with the general-purpose B&C algorithm of Cplex 9.1. For each code, we set a global
time limit of 10000 seconds.

In Table 1 we report some data that describes the average results of the initialization phase
alone on all the instances of each of the three sizes. For both approaches, column “time” report
the time (in seconds) required for computing D; then, for SDP columns “dyq.”, “dmin” and

“daqvg” Teport respectively the maximum, minimum and average element of the diagonal of D,



while for ME the column “M,,;,” reports the minimum eigenvalue (note that Anin = dpmar =
dmin = davg for ME). On these instances, SDP finds diagonal elements of D which range from
about 0.97 to about 1.97 times the minimum eigenvalue, with average 1.47 times; for doing so,
it requires over two orders of magnitude more time than ME.

SDP ME

n | dypaz  Amin davg  time | Apip  time
200 | 3918 1933 2934  7.24 | 2001 0.13
300 | 5910 2905 4392 24.08 | 2996 0.23
400 | 7894 3887 5886 44.25 | 3994 0.39

Table 1: Comparison of SDP and ME initializations

Yet, the longer time is well-spent when one consider the total effectiveness of the B&C ap-
proach, as shown in Table 2. For each code and instance, columns “nodes” and “time” report
respectively the total number of explored nodes and the total time (in seconds) for the B&C
approach, comprised the initialization phase, while columns “r.gap”, “p.gap” and “d.gap” report
respectively the root node gap and the gap of the best primal solution and the best lower bound
attained at the end of the enumerative process (in percentage); a blank entry corresponds to
a gap less than 0.01%—the optimality tolerance of the B&C—while a “*” in column “p.gap”
means that the algorithm found no feasible solution. We have avoided to report column “time”
for Cplex since it never terminated before the time limit, as well as columns “p.gap” and “d.gap”
for SDP since it solved all the instances to the required precision.

As already seen in [6], the standard continuous relaxation has a huge root node gap, usually
in the 80-90% range, that is only reduced to the 25-75% range (with the only exception of the
“easy” pard400b instance) within 10000 seconds of the standard B&C. It is worth remarking
that, owing to the extremely simple structure of the feasible set, Cplex only adds a handful
of standard MIP cuts for each instance, so it basically behaves like a “pure” B&B approach.
The same simple structure, however, helps the standard MIP rounding heuristics of Cplex to
attain relatively good primal solutions (although with several exceptions); in comparison, the
relatively “more complex” structure created by the perspective cuts makes life more difficult to
the rounding heuristics, up to the point that, more often than not, no primal solution at all
is obtained by ME. On the other hand, even with ME diagonalization perspective cuts close
the root node gap to a much more manageable 5-8%; this allows to solve most of the smallest
instances, but it is not enough for the largest ones.

The SDP diagonalization further reduces the root node gap to around 1.5%, making it possible
to solve all the instances of our test bed up to n = 400. It is worth noting that not all instances
are equally difficult, with over two orders of magnitude of difference in time and node count
between the easiest and the most difficult ones; on the easy ones, solving the SDP program for
computing D takes more than 50% of the total time, but it is clearly time well-spent.

We remark that in [6] (MV) instances were found quite difficult to solve, and thereby a
heuristic approach had been developed, based on perspective cuts (and ME initialization), that
was often—but not always—capable of providing reasonably accurate solutions for instances
with n up to 300. A better choice of the diagonalization approach produces an exact B&C
algorithm which is blatantly more efficient than our previous approximate approach. We also
remark that the much larger root node gaps of [6, Table 2| are actual gaps (between the upper
and lower bound at the root node) while Table 2 in this paper displays theoretical gaps with
respect to the optimal solution.



SDP ME Cplex

time nodesr.gap| time nodes r.gap p.gap d.gap nodes r.gap p.gap d.gap
pard200a| 93 7615 1.26| 9537 695228 5.28 11479562 89.23 0.21 54.53
pard200b| 13 357 0.97| 1145 77509 6.19 5100085 77.82 27.45
pard200c | 24 1182 1.62| 349 25777 6.07 4404025 77.49 1.07 26.07
pard200d| 10 203 0.75| 1364 92785 5.31 3863561 81.34 35.04
pard200e | 20 1051 0.69| 7246 536692 7.51 11801638 89.65 0.14 55.29
pard200f 20 1035 0.89| 1745126090 5.74 11645001 89.14 54.18
pard200g | 16 531 0.85| 1025 71814 5.65 3985115 83.45 35.95
pard200h | 12 343 0.47|10000 679364 8.57 *1.04|11708754 89.61 55.66
pard200i | 153 12167 2.00| 2160 177523 5.81 11594165 88.99 53.72
pard200j 1275 105789 1.89|10000 711113 8.61 *1.83]11605554 89.54 55.73
pard300a | 1419 46607 1.55|10000 272460 4.81 * 0.50| 5246001 92.61 66.19
pard300b| 64 1305 0.46|10000 263120 5.66 *1.29] 2989191 92.76 0.16 67.53
pard300c | 184 5501 1.30|10000 284900 5.64 13.31 0.48| 2066676 91.55 2.55 62.56
pard300d| 214 6857 1.16|10000 251600 5.96 *1.32| 4598355 92.59 65.62
pard300e | 133 3465 0.96|10000 244400 5.18 *0.57] 4739540 92.55 66.06
pard300f |1486 49851 1.61|10000 266789 5.90 * 1.27] 5037373 92.64 0.04 66.10
pard300g | 48 758 1.14| 1091 29957 4.81 1864199 87.94 54.14
pard300h | 3293 114694 2.05|10000 275115 5.48 2.09 1.07| 5044579 92.67 0.07 66.60
pard300i | 353 10624 1.20|10000 259493 6.12 5.46 1.79| 2189540 92.18 0.85 66.26
pard300j 2354 75672 1.48|10000 273821 5.89 * 1.02| 5077818 92.60 0.23 66.84
pard400a | 1577 321082 1.47|10000 122184 6.42 *3.07| 1583601 94.45 0.88 77.01
pard400b | 129 660 1.89| 228 3516 6.07 918151 63.51 6.48
pard400c | 60 341 0.49|10000 147532 6.97 0.29| 1080227 86.81 50.70
pard400d [ 1614 29680 1.23|10000 141442 5.95 2.10| 1565201 94.35 7.46 75.29
pard400e | 9689 169024 1.74|10000 119398 6.02 2.16| 2838399 94.42 75.69
pard400f | 257 1889 1.69| 5396 48868 8.09 1405341 80.29 0.19 32.93
pard400g [3617 57793 1.42|10000 140572 5.51 * 1.35| 2828635 94.37 0.26 75.84
pard400h | 2327 36860 2.07|10000 154412 5.10 2.33 1.02| 1108111 93.60 1.69 70.73
pard400i | 123 1424 0.51|10000 138389 4.96 *0.61] 2787859 94.40 75.43
pard400j 7238 116128 1.76|10000 130460 6.40 *1.93| 2886807 94.41 75.21

4. Conclusion

We have shown that reformulating (MIQP)s with semi-continuous variables and nonseparable
cost matrix is possible in such a way that a B&C approach using perspective cuts can be quite
efficient in the solution of large-scale instances.
sophisticated approach has to be used for extracting “as large as possible” a part of the orig-
inal nonseparable objective function; luckily, the current available interior-point approaches to
SemiDefinite Programming offer reliable and efficient tools for performing this operation. An
interesting issue that still remains open is the development of different weighting schemes for
the variables in the SDP problem used to construct the reformulation to further improve the

Table 2: Results of the three B&C approaches

performances of the B&C approach.
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