
ISTITUTO DI ANALISI DEI SISTEMI ED INFORMATICA
“Antonio Ruberti”

CONSIGLIO NAZIONALE DELLE RICERCHE

A. Frangioni, C. Gentile

A COMPUTATIONAL COMPARISON OF

REFORMULATIONS OF THE PERSPECTIVE

RELAXATION: SOCP VS. CUTTING PLANES

R. 08-01, 2008

Antonio Frangioni – Dipartimento di Informatica, Polo Universitario della Spezia, Via dei Colli 90,
19121 La Spezia – Italy. Email: frangio@di.unipi.it.

Claudio Gentile – Istituto di Analisi dei Sistemi ed Informatica, CNR, Viale Manzoni 30 - 00185
Roma, Italy. Email: gentile@iasi.cnr.it Ph. +39 06 77161, Fax +39 06 7716461..

ISSN: 1128–3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, CNR

viale Manzoni 30, 00185 ROMA, Italy

tel. ++39-06-77161
fax ++39-06-7716461
email: iasi@iasi.cnr.it
URL: http://www.iasi.cnr.it

Abstract

The Perspective Reformulation is a general approach for constructing tight approximations to MINLP
problems with semicontinuous variables. Two different reformulations have been proposed for solving it,
one resulting in a Second-Order Cone Program, the other based on representing the perspective function
by (an infinite number of) cutting planes. We compare the two reformulations on two sets of MIQPs to
determine which one is most effective in the context of exact or approximate Branch-and-Cut algorithms.
Key words: Mixed-Integer Non Linear Programs, Reformulations, Second-Order Cone Programs, Valid

Inequalities, Unit Commitment problem, Portfolio Optimization

3.

1. Introduction

Semi-continuous variables are very often found in models of real-world problems such as production
planning problems [17, 5, 7, 8], financial trading and planning problems [10, 6], and many others [4, 1, 9].
These are variables that are constrained to either assume the value 0, or to lie in some given convex

compact set P ⊆ R
m; in our applications P will always be a polyhedron. Often 0 /∈ P . For example, this

the case when the variable represents the output of a production process that has a “nonzero minimum
producible amount”, but that can be switched off altogether. Alternatively, 0 may belong to P , but one
may incur in a fixed cost c to “activate” the process (produce a nonzero amount).

We will consider optimization with n semi-continuous variables pi ∈ R
mi for each i ∈ N = {1, . . . , n}.

Assuming that each Pi = {pi : Aipi ≤ bi} has the property that {pi : Aipi ≤ 0} = {0}, each pi can be
modeled by using an associated binary variable ui. We will consider Mixed-Integer NonLinear Programs
(MINLP) of the form

min g(z) +
∑

i∈N fi(pi) + ciui (1)

Aipi ≤ biui i ∈ N (2)

(p, u, z) ∈ O (3)

u ∈ {0, 1}n , p ∈ R
m , z ∈ R

q (4)

where all fi and g are closed convex functions, z is the vector of the non-semi-continuous variables, and
O is any subset of R

m+n+q (with m =
∑

i∈N mi), representing the other constraints of the problem.
It is known that the convex hull of the (disconnected) domain {0} ∪ Pi of each pi can be conveniently

represented in a higher-dimensional space, which allows the derivation of disjunctive cuts for the problem
[14]. This leads to defining the Perspective Reformulation (PRef) of (MINLP) [3, 5]

min g(z) +
∑

i∈N uifi(pi/ui) + ciui (5)

(2) , (3) , (4) .

While (5) is undefined when some ui = 0, it can be extended by continuity to allow for null values. This
results in (5) and (1) coincident for u ∈ {0, 1}n, hence (PRef) is a “good” reformulation of (MINLP)
since its continuous relaxation, called the Perspective Relaxation (PRel), provides significantly stronger
bounds than the continuous relaxation of (MINLP) [5, 6, 1, 8, 9]. We remark that uifi(pi/ui) for ui ≥ 0
is the perspective function of fi(pi), a well-known tool in convex analysis, hence the name.

However, an issue with (PRel) is the high nonlinearity in the objective function due to the added
fractional term. Two workable reformulations of (PRel) have been proposed: one as a Second-Order
Cone Program (SOCP) [15, 1, 9], and the other as a Semi-Infinite Linear Program [5]. These are recalled
in Section 2. In Section 3 we compare them, from a computational standpoint, in the context of exact or
approximate Branch&Cut algorithms for two different Mixed-Integer Quadratic Programs (MIQP): the
Mean-Variance problem (§ 3.1) and the Unit Commitment problem (§ 3.2), respectively.

2. The solution methods

2.1. SOCP reformulation

It is well-known that the epigraphs of many convex functions can be represented by means of conic

inequalities ; this is in particular true for the perspective function of any SOCP-representable convex
function [2]. It is therefore not surprising that (PRel) can be written as a SOCP, as recently proposed
in [1, 9] following suggestions dating back to [15], provided that the same is possible for (MINLP). The
reformulation of (PRel) as a SOCP is actually quite simple in the quadratic case fi(pi) = aip

2
i + bipi, as

when ui > 0 a constraint ti ≥ aip
2
i /ui can be algebraically transformed into the equivalent (ti +

4.

ui)
2/4 ≥ aip

2
i + (ti − ui)

2/4, leading to the Mixed-Integer SOCP

min g(z) +
∑

i∈N ti + bipi + ciui
√

aip2
i + (ti − ui)2/4 ≤ (ti + ui)/2 i ∈ N

(2) , (3) , (4) , t ∈ R
n
+ ,

which can be approached with solvers such as Cplex. This can be more efficient than attacking (MINLP)
directly [1, 9]. We call the above the Conic Program (CP) reformulation.

2.2. Perspective Cuts

An alternative formulation [5] is based on the fact that the epigraph of uf(p/u) + cu on conv({0} ∪ P)
can be represented by the following (infinite) family of linear inequalities, called Perspective Cuts (P/C),

v ≥ sp + (c + f(p̄) − sp̄)u (6)

indexed over all the (uncountably many) p̄ ∈ P and s ∈ ∂f(p̄), where ∂f(p̄) denotes the subdifferential
of f at p̄. When f is quadratic, this leads to the following Semi-Infinite MINLP

min g(z) +
∑

i∈N vi

vi ≥ (2aip̄i + bi)pi + (ci − aip̄
2
i)ui

p̄i ∈ Pii ∈ N
(2) , (3) , (4) , v ∈ R

n ,

which we call the P/C formulation of (PRef). While this problem cannot be solved directly, it lends
itself nicely to iterative approximation techniques whereby a (small) finite subset of the P/C (6) are kept,
the current solution (p∗, u∗, v∗) of the relaxation is produced, and all the violated P/C with p̄i = p∗i /u∗

i

(assuming 0/0 = 0) are added. This procedure can easily be implemented by using the standard tools
made available by off-the-shelf solvers such as Cplex. Again, this is usually more efficient than approaching
(MINLP) directly [5, 6, 8].

2.3. Features comparison

The two formulations have different potential strengths and weaknesses. CP is more appealing because
it can be solved one-shot, instead of requiring a—theoretically, infinite—iterative process. However, it
can only be used if the fis are SOCP-representable, at least approximately [13]. Furthermore, SOCP-
representing a function typically requires the introduction of auxiliary variables, whose number, roughly
speaking, grows as the function becomes “more complex”. Finally, conic programs require interior-point
solution methods, which are less efficient than active-set ones in the context of enumerative approaches
[16]. On the contrary, the P/C formulation can be used even if the fis are not SOCP-representable, it
always requires only one additional variable vi for each i ∈ N , irrespective of the “complexity” of fi,
and (PRel) is a LP or QP if g and O are “simple enough”, allowing to use more reoptimization-friendly
active-set methods. Of the other hand, repeated solutions of the approximated versions of (PRel) are
needed. Furthermore, if g and O are nonlinear then interior-point approaches may need to be used also
for P/C, possibly negating it a potential advantage.

In the following, we will compare CP and P/C on the case where (MINLP) is a MIQP. This allows both
approaches to be implemented within the same general-purpose solver, making the comparison between
them as fair as possible. Besides, this is in some sense the “best case” for both approaches: in CP it only
require one extra variable for each i, thus resulting in the smallest (all the rest being equal) formulation,
and in P/C it allows the use of active-set solvers.

2.4. Implementation details

For our experiments we have used Cplex 11, which allows to directly input the CP formulation as a
Mixed-Integer Quadratically Constrained Quadratic Program (QCQP). As for the P/C formulation, the
dynamic generation of (6) can be easily implemented by means of the cutcallback procedure. Thus,
apart from the basic formulation, the same sophisticated tools (valid inequalities, branching rules, . . .)

5.

are used for both. A few differences remain: for instance, the need for invoking the callback functions
disables the—allegedly—more efficient dynamic search of Cplex 11 for P/C, whereas it is used with CP.
Apart from these, the very same machinery is used with both formulations, allowing a fair comparison.

The tests have been performed on an Opteron 246 (2 GHz) computer with 2 GigaBytes of RAM, running
Linux Fedora Core 3. Unless otherwise stated, the default required gap for Mixed-Integer programs
(0.01%) has been set; a maximum time limit of 24 hours (86400 seconds) of CPU time has been set.

3. Computational results

3.1. Markowitz Mean-Variance model

A set of n risky assets are available for purchase; for each asset i, the expected unit return µi for the
considered time horizon is known, and minimum and maximum buy-in thresholds 0 < pmin

i < pmax
i are

set on the purchasable quantity. The Mean-Variance (MV) model with minimum buy-in thresholds in
portfolio optimization

min pT Qp
ep = 1 , µp ≥ ρ , u ∈ {0, 1}n

uip
min
i ≤ pi ≤ uip

max
i i ∈ N ,

(7)

where Q � 0 is the n × n variance-covariance matrix and e is the all-ones vector, requires the selection
of a minimum-risk (as measured by variance) portfolio produceing a desired level of return ρ. This
MIQP has a very “simple” structure, consisting almost only of the nonlinear semicontinuous variables;
however, it does not directly qualify for (PRef), as the cost function is nonseparable. This can be dodged
with a reformulation trick first proposed in [5], and somewhat reminiscent of the so-called Larangian

Decomposition; compute a diagonal matrix D � 0 such that R = Q−D � 0, change the objective function
to pT Dp+ zT Rz, and add the additional constraint z = p. In this way, the perspective reformulation can
be applied to the—now, separable—p variables, while all the “nonseparability” in the objective function
is moved to the “other” variables z. An efficient and effective way for computing a “large” D is by solving
a single SemiDefinite Program [6].

We have compared P/C and CP on 90 randomly generated MV instances, described in [6] and freely
available at

http://www.di.unipi.it/optimize/Data .

The instances are characterized by the value of n∈{200, 300, 400}, and by the dominance index of Q, i.e.,
the average over all i ∈ N of 1−

∑

j 6=i |Qij |/Qii, measuring how much the matrix is diagonally dominant;

this turned out to have a significant impact on the effectiveness of the (PRef) [6]. The “+”, “0” and “−”
instances have, respectively, strongly, weakly, and strongly not diagonally dominant Q (the dominance
index is ≈ 0.6, ≈ 0 and ≈ −0.5, respectively). For each combination, 10 instances are generated.

In Table 1 we report results of four different variants. For P/C, we have tested both with default Cplex
settings, which lead to using the quadratic simplex for solving the relaxations during the B&C, as well as
with forcing Cplex to use its IP algorithm throughout all the search. For CP, we have tested both with
default Cplex settings and with miqcpstrat = 2, which implements a linearization-based method for
the solution of QCQPs (new to Cplex 11) akin to [11, 12, 17]. In the Table, columns “nds” and “time”
report the number of nodes in the B&C tree and the total running time (in seconds) required by each
approach, while column “gap” reports, only for those cases where not all the instances could be solved to
optimality within the allotted time limit, the attained gap (in percentage) at termination. The number in
parenthesis next to the gap is the number of unsolved instances. Columns “LPs” (resp. “QPs”, “CPs”)
and “t/LP” (resp. “t/QP”, “t/CP”) report respectively the total number of Linear (resp. Quadratic,
Conic) Programs solved, and the average time required for solving one of them.

The results clearly favor P/C over CP. Using the default quadratic simplex allows extremely quick
reoptimization, and therefore enumeration of enough B&C nodes to solve even the largest instances.
Using the IP algorithm instead often has a significant positive effect on the number of explored nodes.
The reason is not very clear; apparently, the “more interior” solutions it generates help the branching
rules to perform better. However, since the cost per relaxation can be more than two orders of magnitude

6
.

Table 1: Results for MV
P/C P/C-IP CP CP - miqcpstrat = 2

n nds QPs time t/QP nds QPs time t/QP gap nds CPs time t/CP gap nds LPs time t/LP gap
200+ 1.9e4 1.9e4 194 0.0008 8.6e3 1.0e4 264 0.037 9.2e3 1.1e3 17961 1.578 0.15(1) 4.8e5 4.4e5 9264 0.027
2000 1.7e4 1.8e4 90 0.0007 1.1e5 1.3e5 348 0.030 2.7e4 3.2e4 30785 1.648 0.32(2) 9.8e5 1.0e6 70024 0.041 1.03(7)
200− 1.2e5 1.3e5 835 0.0006 7.9e3 1.2e4 3815 0.031 1.6e4 1.9e5 55144 1.719 1.02(5) 2.0e6 1.9e6 78424 0.081 3.33(9)
300+ 3.4e4 3.5e4 433 0.0014 1.0e4 1.2e4 1946 0.163 1.1e4 1.4e4 72075 8.334 0.58(7) 7.8e5 7.0e5 31084 0.054 0.01(1)
3000 3.1e5 3.3e4 378 0.0019 4.2e4 5.0e4 1635 0.083 1.0e4 1.3e4 59591 4.464 0.53(6) 7.2e5 7.2e5 69495 0.066 1.32(7)
300− 5.5e5 5.8e4 654 0.0014 1.9e4 2.2e4 3955 0.076 1.1e4 1.3e4 66863 5.272 0.81(7) 1.1e6 1.1e6 65489 0.080 2.30(7)
400+ 7.9e4 8.2e4 2066 0.0032 2.1e4 2.5e4 39136 1.214 0.23(4) 4.7e3 5.9e3 61810 10.397 1.01(6) 7.6e5 7.7e5 54382 0.094 0.70(5)
4000 2.3e5 2.4e5 3974 0.0020 1.9e5 2.2e5 22635 0.223 0.08(1) 6.1e3 7.6e3 83782 10.588 1.79(9) 6.4e5 6.5e5 86400 0.106 2.28(10)
400− 3.3e5 3.4e5 8092 0.0026 8.8e4 1.0e5 44167 0.213 0.18(3) 6.3e3 7.9e3 80382 10.764 2.71(8) 8.2e5 8.4e5 86400 0.135 3.77(10)

7.

higher, P/C-IP is never competitive with P/C. It is instead quite competitive with CP, which requires a
comparable (often slightly smaller) number of nodes, but whose relaxation cost is even higher by at least

one order of magnitude, often more. Using the linearization-based method provided by Cplex produces
mixed results: the cost per relaxation does indeed decrease very significantly, although that of standard
P/C is still considerably lower, but the number of B&C nodes, and especially the number of LPs, is
significantly larger than in all other cases. The net result is that while the miqcpstrat = 2 setting does
improve on the results of standard CP for the “easy +” instances, where the quality of the bound is
better, it actually worsens them in all other cases. All in all, the P/C reformulation, especially when the
quadratic simplex is used, is by far the more efficient one in this case.

3.2. The Unit Commitment problem

The Unit Commitment (UC) problem in electrical power production requires to optimally operate a set I
of thermal generating units and a set H of hydro generating units to satisfy a given total power demand
on each of a set T of discretized time instants, covering some time horizon (e.g., hours in a day or a week).
Each thermal unit i ∈ I is characterized by a minimum and maximum power output 0 < pmin

i < pmax
i ,

when the unit is operational, and by a convex quadratic power (fuel) cost function fi(p) = aip
2 + bip+ ci.

Thus, UC is a MIQP with n = |T | · |I| semi-continuous variables. Besides these, the problem includes
several other groups of variables and constraints. We will not describe the complete formulation here
for space reasons; the interested reader is referred e.g. to [7, 8]. It is however worth mentioning that
thermal units are subject to minimum up- and down-time and ramp rate constraints, hydro units are
subject to mass balance and reservoir volume constraints, while the interconnecting electrical network
adds spinning reserve and capacity constraints. What is relevant here is that UC problems have a “rich”
structure, besides that of nonlinear-cost semicontinuous variables.

We have compared P/C and CP on a test bed of randomly generated realistic instances already em-
ployed in [5, 7, 8], and freely available at the previously mentioned web address. In the tables, “p” is
number of thermal units (hence n = 24p, as the time discretization is hourly on daily instances) and “h”
is the number of hydro units. The first half of the tables, with h = 0, is therefore composed by “pure
thermal” instances, and each row reports averaged results of 5 instances of the same size.

Table 2: Results for UC with optimality tolerance 0.01%
P/C CP

p h gap nds LPs time t/LP gap nds CPs time t/CP
10 0 4.3e2 7.8e2 14 0.018 5.8e2 1.0e3 20 0.021
20 0 5.0e4 5.8e4 6805 0.094 6.6e4 7.5e4 13392 0.145
50 0 0.08 1.7e5 2.1e5 86400 0.421 0.08 9.1e4 1.1e5 86400 0.781
20 10 1.1e4 1.3e4 161 0.014 1.4e4 1.8e4 626 1.937
50 20 5.5e5 6.6e5 29874 0.037 0.00 5.0e5 6.1e5 86400 0.460
75 35 0.01 8.5e5 1.0e6 73076 0.073 0.01 1.8e5 2.2e5 86400 0.314

Table 2 reports the results with standard optimality tolerance 0.01%. These are limited to smaller-size
instances, as none the approaches could solve any of the largest-size ones within the 24 hours time limit.
The results confirm a distinct advantage of P/C over CP, but of a largely reduced magnitude. This is
due to the fact that LPs are “only” up to two orders of magnitude faster to solve than CPs, most often
less, as opposed to the 4+ orders of magnitude witnessed in the MV case. This is likely due to the fact
that these instances have a much larger number of constraints and continuous variables, those devoted to
modeling the hydro units, and IP approaches have a better asymptotic complexity than active-set ones
which actually shows in practical performances. Indeed, relative performances of CP w.r.t. P/C seem
to improve as the size of the instances grow. Also, P/C requires somewhat less nodes. Since the lower
bound is the same, the difference is likely due to the fact that the corresponding formulation is a MILP,
for which more algorithmic options (such as Gomory cuts) are available with respect to the MI-QCQP
corresponding to CP. Specific tests, not reported here for space reasons, have excluded that the heuristics
play a major role in this, as was the case in [7].

8.

Table 3: Results for UC with optimality tolerance 0.5%
P/C CP

p h gap nds LPs time t/LP gap nds CPs time t/CP
10 0 0.09 0 30 0.67 0.023 0.06 0 70 1.91 0.028
20 0 0.06 0 34 2.81 0.085 0.09 0 65 6.78 0.106
50 0 0.18 0 39 15.45 0.411 0.19 0 91 37.91 0.421
75 0 0.22 0 30 23.28 0.785 0.23 0 71 63.27 0.933

100 0 0.15 0 29 34.16 1.182 0.19 0 64 100.28 1.578
150 0 0.10 0 75 90.13 1.410 0.11 0 106 233.46 2.256
200 0 0.09 0 57 126.28 2.313 0.11 0 104 386.36 3.860
20 10 0.11 0 83 2.77 0.034 0.24 20 194 10.45 2.372
50 20 0.04 0 79 6.53 0.102 0.35 1 115 20.55 0.575
75 35 0.09 0 61 10.60 0.182 0.08 15 202 64.50 0.319

100 50 0.04 0 81 20.17 0.267 0.08 10 193 97.03 0.421
150 75 0.06 100 417 247.73 0.596 0.04 15 331 368.92 0.778
200 100 0.04 30 222 247.22 1.111 0.03 5 165 385.03 1.563

In order to test the approaches on larger instances we also experimented with the much coarser opti-
mality tolerance of 0.5%. This is the advised value for quickly obtaining approximated solutions when
the operational environment requires fast response times [7, 8]. The corresponding results, reported in
Table 3, confirm the previous analysis. All the pure thermal instances are solved at the root node by both
reformulations. Despite the fact that P/C inherently requires repeated LP solutions due to the iterative
nature of the approach, CP ends up actually requiring more relaxation solutions than P/C to construct
a good feasible solution. LPs are still, on average, faster than CPs, although much less so than in the
previous cases; this is due to the much smaller number of relaxations solved overall, which reduces the
impact of reoptimization. The comparison between the two approaches is somewhat complicated by the
fact that on hydro-thermal instances the two reformulations require a different amount of enumeration;
however, overall P/C is about a factor of three faster than CP, and the quality of the obtained solution
is most often slightly better. Interestingly, the miqcpstrat = 2 setting was found in this case to be even
less effective than for MV; the results are not reported here due to space concerns.

3.3. Conclusion

The Perspective Relaxation is a useful tool for obtaining tighter lower bounds on nonlinear programs
with semicontinuous variables. Both the Conic Program and the Perspective Cut reformulation allow to
exploit state-of-the-art, off-the-shelf solvers to compute them. Currently, the P/C reformulation seems
to be favored, at least in the two applications that we tested. This is mostly due to the much more
efficient reoptimization capabilities of active-set algorithms with respect to Interior Point ones. It should
be remarked that P/C may be less competitive for “more nonlinear” problems than MIQPs, as discussed
in §2.3, where the “other” structures of the problem (g, O) are inherently conic. Also, our results suggest
that the CP reformulation becomes more competitive as the size of the instances grows, and for instances
with “rich” structure. However, even in that case the use of active-set LP technology should not be
ruled out a priori. This has been recently shown in [16], where an efficient LP approximation of the
Second-Order Cone (in a lifted space) is shown to outperform IP methods in the context of the solution
of MI-SOCPs precisely because of the vastly superior reoptimization capabilities of the simplex method,
despite the fact that IP methods are much better for the one-off solution of SOCPs. All in all, for the
current state of solution technology, and on original formulations with linear constraints, the apparently
more awkward P/C reformulation seems to have a computational edge over the more compact an elegant
CP one.

9.

References

[1] S. Aktürk, A. Atamtürk, and S. Gürel, “A strong conic quadratic reformulation for machine-job
assignment with controllable processing times,” Operations Research Letters, vol. to appear, 2009.

[2] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms,

Engineering Applications. MPS-SIAM Series on Optimization, Philadelphia: SIAM, 2001.

[3] S. Ceria and J. Soares, “Convex programming for disjunctive convex optimization,” Mathematical

Programming, vol. 86, pp. 595–614, 1999.

[4] M. Duran and I. Grossmann, “An outer-approximation algorithm for a class of mixed-integer non-
linear programs,” Mathematical Programming, vol. 36, pp. 307–339, 1986.

[5] A. Frangioni and C. Gentile, “Perspective Cuts for 0-1 Mixed Integer Programs,” Mathematical

Programming, vol. 106, no. 2, pp. 225–236, 2006.

[6] A. Frangioni and C. Gentile, “SDP Diagonalizations and Perspective Cuts for a Class of Nonseparable
MIQP,” Operations Research Letters, vol. 35, no. 2, pp. 181 – 185, 2007.

[7] A. Frangioni, C. Gentile, and F. Lacalandra, “Solving Unit Commitment Problems with General
Ramp Contraints,” International Journal of Electrical Power and Energy Systems, vol. 30, pp. 316
– 326, 2008.

[8] A. Frangioni, C. Gentile, and F. Lacalandra, “Tighter Appro-ximated MILP Formulations for Unit
Commitment Problems,” IEEE Transactions on Power Systems, vol. to appear, 2009.

[9] O. Günlük and J. Linderoth, “Perspective relaxation of MINLPs with indicator variables,” in Pro-

ceedings 13th IPCO (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), vol. 5035 of Lecture Notes in

Computer Science, pp. 1–16, 2008.

[10] N. Jobst, M. Horniman, C. Lucas, and G. Mitra, “Computational aspects of alternative portfolio
selection models in the presence of discrete asset choice constraints,” in Quantitative Finance, vol. 1,
pp. 1–13, Wiley, Chichester, 2001.

[11] A. Oĺafsson and S. Wright, “Efficient schemes for robust IMRT treatment planning,” Physics in

Medicine and Biology, vol. 51, pp. 5621–5642, 2006.

[12] I. Quesada and I. Grossmann, “An LP/NLP based branch-and-bound algorithm for convex MINLP
optimization problems,” Computers and Chemical Engineering, vol. 16, pp. 937–947, 1992.

[13] N. Sawaya and I. Grossmann, “Computational implementation of non-linear convex hull reformula-
tion,” Computers & Chemical Engineering, vol. 31, no. 7, pp. 856–866, 2007.

[14] R. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex programming,” Math-

ematical Programming, vol. 86, pp. 515–532, 1999.

[15] M. Tawarmalani and N. Sahinidis, “Semidefinite relaxations of fractional programs via novel con-
vexifications techniques,” Journal of Global Optimization, vol. 20, pp. 137–158, 2001.

[16] J. Vielma, S. Ahmed, and G. Nemhauser, “A lifted linear programming branch-and-bound algorithm
for mixed integer conic quadratic programs,” INFORMS Journal on Computing, vol. 20, no. 3,
pp. 438–450, 2008.

[17] J. Zamora and I. Grossmann, “A global MINLP optimization algorithm for the synthesis of heat
exchanger networks with no stream splits,” Comput & Chem. Engin., vol. 22, pp. 367–384, 1998.

