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Abstract

We consider a 0 — 1 linear programming formulation for Staff Rostering Problems (SRP) that
arise when the set of staff members is homogeneous, a 7-days-a-week service is to be provided,
and some specific requirements on rest shifts have to be fulfilled. The objective function to
be maximized expresses, in terms of weights on pairs of consecutive shifts, the global staff
satisfaction. We consider some polytopes associated with SRP and study their structure. As a
result we strengthen the original formulation and obtain very tight bounds at the root node of
a Branch & Bound algorithm. Finally, some computational tests on real instances coming from
the ground staff management of an airline company are presented.

Key words: Integer Programming, Polyhedral Methods, Rostering Problems.






1. Introduction

In this paper we consider a particular class of personnel management problems, referred to as
Staff Rostering Problems (in the following, SRP).

Given a set of staff members P, a set of shifts S, and a minimum demand of each shift for
all days of the week, one has to determine an assignment of the workers that satisfies the daily
demand, respects the collective work agreement, and maximizes a measure of staff satisfaction.
A staff member can cover any shift (i.e. the set of staff members is assumed to be homogenous),
can be assigned only one shift per day, and has to be assigned a specific number of days off per
week. The objective function takes into account staff satisfaction, expressed by the weighted
sum of certain pairs of consecutive shifts.

The solution to the problem is represented by a roster design, that can be visualized by a
table with a row for each staff member and seven columns indexed by the days of the week (see
Figure 1). Note that a week starts on Monday and ends on Sunday. Each row of the table
represents a sequence of shifts to be covered during a week (in the example, shifts are identified
by their starting time). The sum of shift occurrences over a column respects the minimum
demand of that shift for the corresponding day of the week.

Employee | MON TUE WED THU FRI SAT SUN
1 OFF 13.00 9.00 7.00 6.00 8.00 OFF
2 15.00 13.00 13.00 15.00 OFF OFF 11.00
3 7.00 OFF OFF 15.00 15.00 13.00 9.00
4 6.00 OFF OFF 15.00 15.00 9.00 7.00
5 6.00 OFF 9.00 9.00 8.00 8.00 OFF
6 700 7.00 6.00 700 6.00 OFF OFF
7 9.00 9.00 8.00 9.00 530 OFF OFF
8 16.30 11.00 7.00 6.00 OFF OFF 8.00
9 700 7.00 7.00 7.00 OFF OFF 15.00
10 13.00 OFF OFF 15.00 15.00 15.00 15.00
11 OFF 15.00 15.00 13.00 13.00 11.00 OFF
12 OFF 16.30 16.30 15.00 13.00 8.00 OFF
13 OFF 16.30 16.30 15.00 15.00 OFF  7.00

Figure 1: An example of roster table: a shift is assigned to each cell

Each staff member is assigned to a row of the roster table at the beginning of the planning
period; at every new week, each member is assigned to the next row of the table, while the one
in the last row is assigned to the first one. This circular assignment guarantees that, after |P|
weeks, the workload is equally distributed amongst all staff members.

The work agreement can impose different constraints on how to fill the cells of the roster table.
Typically, shift workers are allowed two days off per week; some agreements allow to average
this value over more than a week (e.g., one month), while others require each worker to have
exactly two days off in every week. A rigid agreement may also specify the maximum number
of work shifts that can be assigned to a worker in consecutive days and the number of days off
assigned on weekends. Throughout the paper we refer to days off as particular shifts called rest
shifts.

In this work, we focus on Staff Rostering Problems where rigid constraints are specified. In
particular, we consider the following work agreement constraints: exactly two rest shifts in each



week, no more than five consecutive work shifts, and at least one rest shift on Sunday every four
weeks.

We make use of an integer programming formulation and propose a polyhedral approach for
its solution that proved to be effective on large real world instances. The formulation of the
problem is composed of three main classes of constraints, that we name:

e Structural Constraints;
e Work Agreement Constraints;

e Objective Function Related Constraints.

The Structural Constraints express the main relations between the integer variables; for exam-
ple, they specify that every day a shift must be assigned to each staff member, or that a minimum
number of staff members must be assigned to a given work shift. The Work Agreement Con-
straints are related to rules coming from the work agreement: for example, they include the
constraints forbidding certain pairs of shifts to be scheduled in consecutive days, or constraints
stating a bound on the number of work shifts that can be assigned in a given interval of the
planning period. The objective function maximizes the staff satisfaction expressed by sequences
of “good” shifts (e.g., rest shifts in consecutive days). As an approximation of these sequences,
we maximize a weighted combination of the product of variables in two consecutive cells. We
linearize the resulting model to apply linear integer programming methods, and introduce new
binary variables linked to the previous variables by the Objective Function Related Constraints.

The paper is organised as follows: in Section 2 we review the previous work in the literature;
in Section 3 we discuss an integer programming formulation of SRP; in sections 4 and 5 we
present a particular relaxation of SRP and identify three classes of facet inducing inequalities,
state their validity for the complete problem, and describe other classes of valid inequalities; in
Section 6 we discuss a particular class of valid inequalities that are derived by solving certain
subproblems of SRP; in Section 7 we discuss symmetry properties and branching rules; finally,
in Section 8 we present some computational results for real instances provided by the ground
staff management of the airline company Alitalia.

2. Literature review

Rostering problems have been extensively addressed in many research papers. They span several
application fields, such as public services, hospitals, call centers and industry in general. Different
techniques and methods have been proposed and analyzed in the related literature.

One of the most significant approaches to the problem is based on mathematical programming
models and algorithms, where the problem is formalized as a set of linear constraints with a linear
objective function. Due to the nature of the problem, the use of integer variables is required.
Then, proper algorithms are applied in order to determine an optimal solution. This approach
has been adopted in early works, where it proved to be successful only for simple problems
([9], [3]); mixed integer models are also considered in [4]. Also in this setting, several authors
adopt a covering model, where the variables represent all the possible employee schedules and
the objective is to find a subset of such schedules with optimal objective function value ([2], [12],
and [10]). For large problems, it becomes nearly impossible to represent directly all possible
schedules, and therefore column generation approaches have also been proposed in [7], where
the schedules are generated by solving, at each iteration, a column generation subproblem.



Alternative approaches for rostering problems are based on network approaches. Here the
problem constraints and the objective function are represented using the nodes and the arcs
of a network, and solutions are determined by solving shortest path problems on such graphs
(11, [8)).

Although rostering problems may differ substantially from application to application, most
of them belong to the NP complexity class and are thus difficult to solve (for example, see [2]
for a proof of N'P-completeness of the cyclic staff scheduling problem). This fact has directed
the effort of many researchers toward the use of heuristic strategies that provide good, but not
necessarily optimal, solutions ([9], [11], and [6]). In [5] the problem of determining the minimum
staff size is formulated and solved.

The work here presented relates to the first type of approach, that is, an exact mathematical
model of the problem is adopted and special techniques are used to implement an algorithm
capable of finding the optimal solution.

3. Integer Programming Formulation

We denote by P the set of staff members, by C' the set of cells of the roster table, and by S the
set of shifts, composed of a number of work shifts plus the rest shift. We associate with the seven

days of the week the integers 1,2, ..., 7, where 1 represents Monday, 2 represents Tuesday, etc.,
and D = {1,2, ...,7} the set of days in the week. The set C is used as a circular set indexed
by the integers 0,...,|C| — 1, so a sum of indices belonging to C must always be considered

mod |C| (in the second week the staff member associated with the last row progresses to the
first one and so on for the following weeks). To simplify the notation we define C(d) as the set
of cells corresponding to day d, and d(c) as the day of the week associated with cell ¢ of the
roster table.

The main integer variables considered in SRP are binary assignment variables: for each cell
¢ € C and for each shift s € §

A 1 if cell ¢ is assigned shift s,
“ 71 0 otherwise.

We subdivide the constraints of the problem in three classes: Structural Constraints, Work
Agreement Constraints, and Objective Function Related Constraints.

Structural Constraints

Structural constraints are of two types: assignment constraints and work shifts covering con-
straints.

Assignment constraints impose that, for each staff member and for each day, exactly one shift
has to be assigned. These constraints are formulated in terms of the cells of the roster table as
follows:

Emcs =1, forallce C. (1)

sES

Work shifts covering constraints simply state that the number of staff members assigned to
a given shift must be greater than or equal to the given demand for that shift on that day. To
express these constraints, we define bsg as the demand of shift s on day d, denote with r € S
the rest shift, and write:



Z Zes > bgg, forallde D, se S\ {r}. (2)
ceC(d)

Work Agreement Constraints

Work agreement constraints are of two types: forbidden sequences constraints and rest shift
constraints.

Forbidden sequences constraints are used to represent agreement restrictions on consecutive
shifts. For example, two consecutive “night” shifts or two consecutive shifts that do not allow
for a sufficiently long break may be forbidden.

To express forbidden sequences constraints, we consider the set of forbidden pairs FF C S x S,
such that (s,t) € F if shift ¢ cannot follow shift s. Thus we have:

Tes + Tepr,e < 1, forall (s,t) € F, ceC. (3)

The rest shift constraints considered in this paper are based on the following strict rules:

1. weekly rest shifts: there must be exactly two rest shifts in each week;
2. Sunday rest shift: there must be at least one rest shift on Sunday every month (four weeks).

3. rest shifts interval: there may be at most five consecutive days without a rest shift;

To express these constraints, we make use of certain subsets of the indices in C' that identify
the needed cells. Let W (p) be the set of cell indices corresponding to row p of the roster table.
The weekly rest shift constraints are then expressed by:

Z ZTer =2, forallp e P. (4)
ceW(p)

In order to express Sunday rest shift constraints, we define S(p) as the set of cells associated
with the four Sundays in rows p, p+ 1, p+ 2, p+ 3. Then we have S(p) = {7p—1,7p+6,7p +
13,7p 4+ 20}), and write

Z T >1, forallp e P. (5)
ceS(p)

Rest shift interval constraints are expressed by:

5
chﬂ-,r >1, forallce C. (6)
1=0

In sections 4 and 5 we will see that many classes of valid inequalities can be found on the rest
shift constraints to strengthen the formulation.



Objective Function and Related Constraints

The objective function of SRP takes into account staff satisfaction, that is measured by the
proximity of certain shifts. Its main component is the sequencing of rest shifts: rosters where
the two weekly rest shifts are assigned to consecutive days are typically to be preferred. The
same applies to other work shifts. Staff satisfaction is thus expressed in the z variables by the
following quadratic objective function

max E E g WstLesTet1,t

ceC seS teS

that is linearized to apply integer linear programming methods. A straightforward technique
is to introduce additional integer variables associated with the product of pairs of x variables:
Yest = 1 if Tes = xey1r = 1, and yer = 0 otherwise. The objective function can then be
expressed as a linear function on the y variables, that are related to the x variables by the
following objective function related constraints:
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The Complete IP Formulation of SRP

The complete integer programming formulation of the SRP is summarized below:
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The introduction of y variables makes it possible to reformulate certain constraints of the
model, already expressed using only the z variables, in a more efficient fashion. In fact, com-
bining the definition of the y variables with the assignment constraints (1), we can formulate
the objective function related constraints (7) and the forbidden sequences constraints (3) in an
alternative way.

Proposition 3.1. Let F; be the set of shifts that can be scheduled after shift s, and F, be the
set of shifts that can be scheduled before shift t, i.e., Fs = {t: (s,t) & F}, F, ={s:(s,t) & F}.
The following equalities are valid for SRP:

Z Yest = Tes, forallce C,se S (8)
teF,

Z Ye—1,5t = ZTet, forallce C,t e S (9)
SEﬁt

Proof: Consider equality (8):
i) if z.s = 0, then, as y.st < x5 for constraints (7a), yes: = 0 for all ¢ € S;

ii) if .5 = 1, a shift ¢+ € F has to be scheduled in cell ¢+ 1, then, as y.s; > Tes+Tep1p—1=1
for constraints (7c), > ez Yest = 1.

The same argument applies to equality (9). O

Constraints (8) and (9) clearly dominate the objective function related constraints (7). More-
over, constraints (8), (9) and (1) dominate forbidden sequences constraints (3) as, for (s,t) € F,

Tes + Tetlp = Tes + E Yes't < Tes + § Test < § Tesr = 1,
S’Eﬁ't s’eﬁ't s'esS

where the first equality is derived by constraints (9), the first inequality is derived by (7a),
and the second inequality is valid as s ¢ F;; then, the last equality is given by the assignment
constraints (1).

4. The Relaxed Rest Shift Subproblem

In this section we present a particular subproblem of SRP, called Relazed Rest Shift Subproblem
(RRSS), and derive three classes of facet inducing inequalities of its associated polytope P.
These inequalities are valid for SRP as well, and can be applied to strengthen the formulation
given in Section 3.

The Relaxed Rest Shift Subproblem is defined by the rest shift constraints (4), (5), (6), and
the constraints (7) relating the y variables and the z variables only for the rest shift:



ceEW (p)

Z Ler > 1 peP (5
ceS(p)

5
Zach,r > 1 ceC (6)
1=0
Yerr < T ceC (Ta)
Yerr < Zep1y CE C (7Ib)
Ter + LTet1,r — 1 < Yoo celC (710)
zer € {0,1} ceC
Yerr € {0,1} ceC.

It is clear from the above definition that RRSS is a relaxation of SRP. As a first result on the
polytope P, we find its dimension.

In the proofs of this section we frequently make use of solutions with special structure. An ad
hoc notation is introduced to represent solutions in a compact and immediate way. As we often
need to express if a day is assigned a work or a rest shift, we adopt the following symbols:

e an overlined number in D indicates a rest shift assigned on the corresponding day;

e an underlined number in D indicates a work shift assigned on the corresponding day.

Proposition 4.1. The dimension of the polytope P is equal to 2|C| — |P|.

Proof: As the number of variables is 2|C| and there are | P| linearly independent equations given
by constraints (4), the maximum dimension is 2|C| — | P|.

Below we show that any equation ay + Sz = «q satisfied by all points in P is a linear combi-
nation of constraints (4). We consider two cases, where pairs of solutions (y!,z!), (v2,2%) € P
with y! = y? = 0 are used to find relations on the coefficients in 8 by exploiting the equation

Bz! = pz? = ay.

First case: Given p € P, let (y!,z'), (y?,2%) € P such that:
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We denote with ¢ the cell associated with Monday (d(c) = 1) in row p. The above two solu-
tions differ only in row p, where z., = 1, x}:H,T =0, while 22, = 0, 373+1,r = 1. Thus 8. = Be+1-
The same argument applies when d(c) € {2, 3,4}; therefore, for each fixed row p, the coefficients
B have the same value for ¢ € W(p) and d(c) € {1,2,3,4,5}.



10.

Second case: Here we conclude that the coefficients (. are equal one another for all indices ¢
belonging to a fixed row p, considering the cells with d(c) = 6 or d(c) = 7. The two cases are
very similar, and we omit for brevity the case d(c) = 7. For d(c) = 6, let (y',z!), (v%,2%) € P
such that:

=
IN
[[oN)
|
lon
[}
~|
|
IN
lw

e 7! has, starting from row p, the pattern 1234567 456

I~

7

|
IN
[[oN)
|
lon
[}
~|
|
IN
lw

e 22 has, starting from row 5, the pattern 1234567 456

I~

Note that the common rest shift on row p has been fixed on Tuesday, so the two solutions only
differ on Friday (¢ — 1) and Saturday (c), thus 8.—1 = ..

As all coefficients (. are equal one another in a given row, they can be obtained as linear
combinations of the left hand sides of equations (4). Then, if we subtract that combination to
ay + fr = ap, we obtain an equivalent equation o'y + f'z = af, with o/ = @ and g’ = 0.

If we consider one of the four solutions used above, which have y' = 0 or y> = 0, we obtain
that o, = &’y = 0. Moreover, for each pair of consecutive cells it is easy to define a solution
in P with a unique sequence of two consecutive rest shifts. For instance, choose p € P, ¢ € W (p)
such that d(c) = 2, and define a solution (y, z) with the following pattern (starting from row p):

1234567 1234567 1234567 ... 1234567;

As a consequence we derive that o/ = o'y = af, = 0 for all ¢ € C. This completes the proof and,
as any equation ay+ Sz = «q satisfied by all points in P is a linear combination of equations (4),
then dim(P) = 2|C| — |P|. O

We now describe three classes of valid inequalities and prove that they induce facets for P,
thus giving an insight of their theoretical effectiveness in strengthening the formulation of SRP.
The proofs are based on the indirect method (see [13], Section 9.2.3), and differ only on few
technical details.

Forbidding three consecutive rest shifts

Due to weekly rest shift constraints (4), it is not possible to assign three consecutive rest shifts
in a week. We use this condition to strengthen the formulation with the following inequalities:

Yerr + Yet1,0r < Zeg1, for all ¢ € C such that d(c) € {6,7}. (10)
Proposition 4.2. The inequalities (10) are valid for the Relazed Rest Shift Subproblem.

Proof: The left hand side (hereafter, lhs) of (10) may be equal to 0, 1, or 2. If it is 0, then (10) is
trivially satisfied. If it is 1, then either y.., =1 or y.41, = 1. In both cases we have .11, =1
for constraints (7), so (10) is valid. If the lhs is 2, then there are three consecutive rest shifts
and this is only possible starting from day 6 or day 7 (i.e., considering rest shifts of two distinct
weeks). O

Theorem 4.3. The inequalities (10) induce facets of P.

Proof: Assume ay+ Bz < ap to be an inequality inducing a facet of P that contains all the tight
solutions for an inequality Yerr + Yeti1,0r < Tey1, Of type (10). We now prove the equivalence



11.

and o of the first inequality using tight solutions for inequality (10).

First, note that weekly rest shift constraints (4) are equations for RRSS defined on disjoint
subsets of the x variables. As all inequalities obtained adding a multiple of an equation are
equivalent, we can suppose, without loss of generality, that the coeflicients Sz,) = 0, where ¢(p)
is a cell in W (p) different from c + 1, for each p € P.

Second, let ¢, ca # ¢+ 1 be two cells; one can find two feasible solutions (y!, z!), (32, z?) for
RRSS such that the following conditions hold:

between ay + Bz < o and Yerr + Yet1,00 < ZTey1,r finding the values of the coefficients o, £,

1
c1r

1

er =0, and 22, =0, 22

* T cir car

=1z =1;

oy, = yi_H’M = $i+1,r =0 for i € {1,2} and (y!,z'), (v?, x2) are equal for other indices.

As they are both tight for (10), then ay' + Bz! = ay? + Bz? = ap, and therefore B, = fe,-
Since ¢; or ¢z can be chosen equal to one of the indices ¢(p), then B, = B, = 0 for all ¢,
c2 # ¢+ 1. The solutions (y',z!) and (32, z2) can be chosen without sequences of consecutive
rest shifts, that is, with all y variables equal to zero. So we have Bz! = ag, and, as the coefficients
in vector § are equal to zero for all cells different from ¢ + 1 and .41, = 0, we have ap = 0.

Third, let ¢’ # ¢, ¢ + 1, then there exists a tight feasible solution (g, Z) such that Z.11, = 0
and ¢, = 1 is the unique y variable with value 1. Then ay + 8Z = ay = ag = 0.

Finally, suppose that cell ¢ = ¢, i.e., Jorr = 1 and Zop = ZTep1, = 1. Then ay + T =

ac + Bey1 = ap = 0, that is @, = —fc+1 = p. Similarly, considering ¢ = ¢+ 1, we get
Qet1 = —Pe+1 = p. We have thus shown that the facet inducing inequality oy + Sz < ap is
equivalent to pyerr + pYcti,rr — BTer1y < 0, ie., to an inequality of type (10). O

Strengthening weekly rest shift constraints

Here we describe a class of inequalities that considers the 7 cells of the roster table associated
with a week and it is derived again using the weekly rest shift constraints (4).

Proposition 4.4. For all ¢ € C such that d(c) = 1 the inequalities

Ter + Tet1,r + Ye+2,rr + Ye+3,rr + Ye+a,rr + Yet5,rr S 1+ Yerr (11)
are valid for the Relazed Rest Shift Subproblem.

Proof: To show validity of (11), we note that it is obtained as a reinforcement of the following
inequality:

Ye+2,rr T Yet+3,0r T Yetarr + Yot 5,0r <1 (12)

Constraints (4) state that there are exactly two rest shifts in the same week. This trivially
implies (12), as a value greater than 1 in its lhs would require at least 3 rest shifts in the same
week.

Then we prove the proposition considering the following three cases that cover all the possible
solutions:

i) Z¢r + Teq1, = 0, that implies y¢, = 0. In this case, (11) reduces to (12);

ii) @er +Zeq1, = 1; in this case the y variables in the lhs of (12) must have all value 0 because
of (4), and thus (11) is satisfied;
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ili) ¢ + Tey1,, = 2. Also in this case the y variables in the lhs of (12) must have all value 0
because of (4); moreover, we have that y.» = 1. Then the rhs of (11) takes value 2.

O
Theorem 4.5. The inequalities (11) are facet inducing for the Relaxed Rest Shift Subproblem.

Proof: As in the proof of Theorem 4.3 we consider an inequality o y + 8z < o inducing a
facet of P that contains all tight solutions of inequality (11); moreover, we choose indices ¢(p)
different from ¢ and c + 1, so the coeflicients [,y can again be assumed to be zero. Now we
find the coefficients in all the other cases.

First, let ¢1,co & {c,c+ 1} and consider two solutions for RRSS such that

1
c1r

1

2 _ 2 _ 1.
car —0,.’L‘ _17

ez, =1,1z.,=0,and z7, o

o7l =1, :vsz,T =0 for i € {1,2}, and (y',z'), (v%,2?) are equal for all other indices.

As they are both tight for (11), then ay! + Bz! = ay? + Bz? = ap, and therefore B, = fBc,. As
in Theorem 4.3, ¢; or co may be chosen equal to one of the indices ¢(p), so B¢, = B¢, = 0.

Moreover, the solutions (y!, z!) and (2, z?) can be chosen with ! = 2 = 0, so that Bz' = «.
As all the coefficients in vector S are equal to zero for the cells different from ¢ and c¢+1, zo = 1,
and z.41, = 0, we also have 8. = oy = p. The same applies if (y',z!) is chosen such that .. = 0
and z.y1, = 1, deriving that 8,11 = ap = p.

Second, let ¢ € {¢, c+1, ..., ¢+ 5}; we can choose a tight solution with yu,. = 1, zo = 1,
and z.11, = 0, and all other y variables equal to zero; thus oy + 8. = ap, i.e., o = 0.

Third, let ¢ = ¢+ 1; we can choose a tight solution with y.41, = 1 and all other y variables
equal to zero. Then z.11, = Tey2, = 1, and thus acy1 + Bey1 = o, ie., acp1 = 0 since
Bet1 = ag = p.

Fourth, let ¢ € {c+2, ..., ¢+ 5}; we can choose a tight solution with y.,, = 1, and thus, as
the other variables in the considered inequality must be equal to zero and we have determined
that the other coefficients are equal to zero, we obtain ay = ag = u.

Finally, consider a tight solution with Y., = 1 and =4 = Zep1, = 1, then ay + Bz =
¢+ Be+ Betr1 = ap- As we have seen that B, = B.+1 = ag = p, then o +2u = p, ie. . = —p,
and therefore we have shown that the facet inducing inequality ay + Bz < g is proportional to
Ter + Tettrr + Yer2or + Yet3,r + Tetrar + Yetsrr < L+ yerr. o

This class of inequalities can be easily generalized shifting the pair of z variables in (11) to
days of the week different from Monday and Tuesday. We can summarize this class of valid
inequalities in the following list:

Ter +Tet1r + Yetr2ort Yet3,0r T Yetrdrrt Yet5,rr <1+ Yerr
Tetlyr + Tet2r + Yet3rt Yetdrrt Yetsrr <1+ Yet+1,0r
Yerr + Tevr2s + T3y + Yerdrrt Yetr5,0r <1+ Yetor
Yerr T Yet1,rr + Tet3r + Tetar + Yet5,0r <1+ Yet+-3,0r (13)
Yerr T Yet1,0r T Yetr2,r + Zetar + Tegsy <1+ Ye+arr

Yerr T Yet1,r + Yet2,0rt Yot 3,07 + Tt $c+6,rr§ 1+ Ye+5,rr-



13.

Moreover this class can be completed with other two inequalities for each week regarding the
beginning and the end of the week:

Ter +Yetirr + Yet20rt Yot 3,0rT Yotdrrt Yets,rr <1 (14)
Yerr +yc+1,r7' + yc+2,rr+ yc+3,rr+ Ye+da,rr + Tct6,r S 1

The proof of Proposition 4.4 and of Theorem 4.5 for the other inequalities in this class is
very similar. In particular, in the proof of Theorem 4.5, one only has to pay attention to the
coefficient of the y variable preceding the pair of x variables, applying the third step also in a
backward sense. After the third step of the proof, it is easy to select a tight solution showing
that this coefficient is equal to ag minus the coefficient of the first of the two = variables, which
are equal.

Inequalities on the sequence Sunday-Monday

The sequence of two consecutive rest shifts on Sunday and Monday (7 1) takes into account rest
shifts of two weeks and can be used to strengthen other inequalities.
If a sequence 67 is chosen in a week, then a 7 must be chosen in the previous week, because:

i) two rest shifts have been chosen in that week, so from Monday to Friday five work shifts
must be assigned;

ii) for constraints (6), at most five consecutive work shifts can be set.
Therefore the following inequalities are valid
Yerr < Te—6, for all ¢ € C such that d(c) = 6.

Considering two consecutive weeks, the sequences 71 at their join and 67 on the second week
are incompatible, because there would be three rest shifts in the second week. Both sequences
require a rest shift on Sunday in the first week, then the following inequalities are valid and
strengthen the previous ones

Ye—b6,rr + Yorr < Te—gy for all ¢ € C such that d(c) = 6. (15)

A similar argument can be applied if one chooses a sequence 12: in the following week there
must be a rest shift on Monday, so the following inequalities are valid

Yerr < Tey7,  for all ¢ € C such that d(c) = 1.
These relations can be strengthened using the sequence 71 at the join of the two weeks:
Yerr + Yetb6,r < Tepry for all ¢ € C such that d(c) = 1. (16)
Theorem 4.6. The inequalities (15) and (16) are facet inducing for RRSS.
Proof: We prove the theorem for an inequality of type (15)
Ye—6,0r T Yerr < Te—6r-

We recall that ¢ corresponds to a Saturday and ¢ — 6 to the previous Sunday. We again consider
a facet inducing inequality ay + Sz < oy containing all tight solutions for (15), choose for each
week p a cell ¢(p) different from ¢ — 6, and fix the coefficients B, = 0.

First, let ¢, ¢y # ¢ — 6 be two cells and (y!, z'), (y2,1?) two tight solutions for (15) such that
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1
c1r

1
car

=0,22,=1;

=0, and z? .

ez, =1z or

. yi_ﬁ’w =yl = xi_w =0 for i € {1,2}, and (y*,z!), (v?, 2?) are equal for other indices.

Then ay! + Bz! = ay? + Bz? = oy, 50 Be; = Pe, and, as ¢; and ¢y can be chosen equal to &(p)
for a p € P, it follows 8., = B., = 0. Moreover, in the previous solutions it is possible that
y' =y? = 0, and therefore og = Bz! = 0.

Second, let ¢’ # ¢, ¢ — 6; we can select a tight solution with yu,, = 1, zc—g, = 0, and all
other y variables equal to zero, and then have ay = ag = 0.

Finally, consider a solution with y._¢,r = Zc—6r = 1, then ac_g + B¢ = ag = 0, ie.,
Qe = —fc—6. In a similar way we obtain . = —f._¢ (it is sufficient to consider a solution with
Yerr = Ze—6,r = 1). Therefore, we have shown that the facet inducing inequality ay + Sz < o
is equivalent to inequality (15). The proof for inequalities of type (16) is similar. O

5. Other classes of valid inequalities

Other classes of inequalities are derived considering different aspects of the problem such as:
e work shifts covering constraints;
e work shifts sequences;
e strong relations between rest shifts chosen in consecutive weeks.

While the following description is very general, in Section 8, discussing experimental results,
we will make some considerations on the effectiveness of each class of inequalities.

Some sequences of rest shifts fixed for a week imply a particular rest shift for the next or the
previous week. Because of Sunday rest shift constraints (5), we can deduce valid inequalities
bounding the number of such sequences of rest shifts.

The number of rest shifts on each day is limited by work shifts covering constraints (2): the
minimum number of staff members needed to cover the work shifts on day d is ) | seS\{r} bsq- We
define the maximum number of rest shifts that can be assigned on day d as:

MR |P| Z bsd
seS\{r}

Saturday-Sunday sequences

If a sequence of rest shifts on Saturday and Sunday (67) is chosen for a week, then in the
previous week one must choose a rest shift on Sunday, otherwise a staff member would work
more than five consecutive days (constraints (6)). Obviously, choosing too many sequences 67
would exhaust the rest shifts on Sundays, and then Sunday rest shift constraints (5) could not
be satisfied for all staff members. The following inequality expresses the maximum number of
sequences 67 that can be assigned:

AMR(7) — | P|
d(cz);e Yerr < \‘fJ . (17)

Proposition 5.1. The inequality (17) is valid for SRP.
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Proof: As already mentioned, if we choose a sequence 67 in a week, we have to choose also a 7
in the previous week. Therefore we have satisfied constraints (5) for five rows of the roster table:
two rows have a rest shift on Sunday and the previous three have a rest shift on Sunday in one
of the following three weeks; for instance see the rows from 2 to 6 in Figure 1.

In general, if we have a sequence composed of 67 in i consecutive weeks, we use i + 1 rest
shifts on Sunday and satisfy constraints (5) for 7 + 4 rows. Let k; be the number of sequences
composed of 67 in 1 consecutive weeks, then

o MR(7) — > ,~1(i 4+ 1)k; is the residual number of rest shifts on Sundays;

o |P|=>",s,(i+4)k; is the number of staff members for which constraints (5) are not satisfied
by the sequences 67.

The number of 7 still to be assigned is at least (|[P| — ). - ; (i +4) k;)/4, as constraints (5)
require at least one 7 every four weeks, and thus -

|P| = X1t + ki
= )

MR(7) = (i+ 1)k >
i>1

With simple computations we derive that

3) ik <AMR(7) - |P|.
i>1

The total number of sequences 67 chosen is given by Zd(c):a Yerr = 2121 1 k;, therefore
3 ) Yerr <AMR(7) — |P|.
d(c)=6

Now dividing by 3 and rounding the rhs, we obtain inequality (17). O

Monday-Tuesday sequences

When a sequence 12 is fixed for a week, then in the next week a 1 must be chosen due to con-
straints (4) and (6). In addition we have to satisfy constraints (5) on Sundays. Next inequality
expresses the maximum number of sequences 12 that can be chosen.

Proposition 5.2. The following inequality is valid for SRP:

> war < | 2. (19)

d(c)=1

Proof: Due to Sunday rest shift constraints (5), we can choose at most three consecutive se-

sequences 12 we have four rest shifts on Monday and the proposition follows. O
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Global bounds on Sunday-Monday sequences

The sequence of rest shifts on Sunday-Monday (71) is very critical, as it considers rest shifts
of two weeks and makes it possible to have sequences of more than two days of consecutive rest
shifts.

If we consider three consecutive days inside a week, for instance Tuesday, Wednesday, and
Thursday, it is obvious that the number of sequences 23 plus the number of sequences 34 is
limited by the maximum number of rest shifts that can be assigned on Wednesday (i.e., M R(3)),
as a rest shift on Wednesday cannot be used in both sequences, because that means assigning
three rest shifts in a week.

So the inequality

Z Yerr + Z Yerr < MR(3),

d(c)=2 d(c)=3

is valid; note that the above inequality is dominated by the inequalities (10) forbidding three
consecutive rest shifts.

The same argument cannot be applied to the sequences 671 or 712, as they consider rest
shifts belonging to two different weeks. Nevertheless we will show that we can derive validity
for inequalities of the same type of the one discussed above for the case of Tuesday-Wednesday-
Thursday.

Theorem 5.3. The following inequalities are valid for SRP:

Z Yerr + Z Yerr < MR(]-) (19)
d(c)=7 d(c)=1

Z Yerr + Z Yerr < MR(7) (20)
d(c)=6 d(c)=T7

Proof: We prove validity of inequality (19). Validity of inequality (20) can be proved in the
same way.

Let k; be the number of sequences 12 repeated for 7 > 1 consecutive weeks. Note that for any
of such sequences the number of 1 to be set is at least 7 + 1, as after a sequence 12 there must
be again 1.

A sequence 71 can be of two types: 712 or 712. The number of sequences 712 is less than or
equal to the number of groups of sequences 12 in consecutive weeks ) ., k;, while the number
of sequences 712 is less than or equal to the number of rest shifts on Monday still available,
i.e., MR(1) — Y ,~1(¢ + 1)k;. So we have that

Z Yerr < (Z kz) + (MR(l) - Z(Z + 1)kz) = MR(l) - Z'Lkl

d(c)=7 i>1 i>1 i>1

From the definition of k; is easy to see that the number of sequences of 12 is exactly >, ik,
so we derive the inequality (19): B

Z Yerr < MR(]-) - Z Yerr-
d(c)=1

d(c)=7
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Weekly relations on Sunday-Monday sequences

The inequalities stated in the following proposition derive straightforwardly from weekly rest
shift constraints (4), which limit the number of rest shifts to exactly two for each week.

Proposition 5.4. The following inequalities are valid for SRP:

4
Zyc+h,rr + Yeyor <1 for all c € C such that d(c) = 1, (21)
h=0
6
Yerr + Z Yethyor <1 for all c € C such that d(c) = 7. (22)
h=2

Proof: It is easy to see that if one the above inequalities is violated by an integer solution, then
there are at least three rest shifts in a week. O

Minimum requirement on rest shifts

Let mr(d) be the minimum number of rest shifts required on day d; this value depends both
on covering constraints for work shifts and on the constraints for rest shifts. For instance
mr(7) > [|P|/4].

Another lower bound on mr(d) valid for all days of the week can be computed as follows.
Note that the total number of shifts to assign is 7|P|, the minimum number of work shifts to
assign is 37 ¢ g\ (1} 2aep bsd, the total number of rest shifts to assign is 2|P[. Then

FW=1P|— > Y by—2P|

seS\{r}deD

is the number of work shifts that can be assigned freely. So the number of rest shifts that has
to be assigned on a given day dj is at least M R(dy) — FW. Indeed,

MR(do) —FW =2|P| - [6|P|— Y > bu],
s€S\{r} deD\{do}

where 2|P| is the total number of rest shifts to be assigned, and the term in parentheses is the
maximum number of rest shifts that can be assigned on days different from dj.

Therefore we consider mr(d) = max{MR(d) — FW,0} for each day d # 7 and mr(7) =
max{MR(7) — FW,[|P|/4]}.

If the mr(d) rest shifts are not covered by consecutive rest shifts including day d, then another
day of the week must be coupled with d to satisfy weekly rest shift constraints (4), thus limiting
the number of consecutive rest shifts including the other days of the week.

We present two different cases and derive the corresponding inequalities. To simplify the
exposition, we define new variables equal to the sum of sets of y variables: let zy = ) cec(d) Yerr
be the sum of the sequence variables associated with the pair of days d and d + 1.
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Case 1: Sunday

The following inequality is clearly valid:

(MR(1) —z1) + (MR(2) — 21 — 2z2) + (MR(3) — 22 — 23)+

+(MR(4) — z3 — z4) + (MR(5) — 24 — z5) > mr(7) — zg.

Each term in parenthesis in the lhs is the maximum number of rest shifts that are not
assigned to consecutive days and can be coupled with the rest shifts on Sunday not coupled
with Saturday in the rhs. Now dividing the inequality by 2 and rounding we get,

> 1<a<s MR(d) — mr(7)
2

21+22+Z3+Z4§[ J—f-ZG.

Case 2: Sunday and Saturday together

Similarly the following inequality is valid:
(MR(1) — z1) + (MR(2) — 21 — 29) + (MR(3) — 22 — 23)+
+(MR(4) — 23 — z4) + (MR(5) — z4 — z5) > mr(7) + mr(6) — z5 — 25.
And again dividing by 2 and rounding we get,

> 1<a<s MR(d) — mr(7) — mr(6)
2

21+ZQ+Z3+Z4S\‘ J—l—z(;. (23)

Finally, substituting zg = > ceC(d) Yerr We derive inequalities with the original variables.

Forbidding six consecutive work shifts

We present a class of inequalities based on work shifts that is very similar to the inequalities (10)
forbidding three consecutive rest shifts.

While inequalities (10) are based on constraints (4) (two rest shifts every week) and variables
on rest shifts, this new class considers constraints (6) (at most five consecutive working days)
and variables on work shifts.

Proposition 5.5. Given any initial cell ¢ and six work shifts sg, s1, S2, S3, S4, and S5 (not
necessarily different), the following inequality is valid for SRP:

4

4
Z Yeth,spspi1 < Z Lct-h,sp, (24)
h=0 h=1

Proof: The lhs of inequality (24) can be a value from 0 to 4. Actually, if all the y variables in
the lhs have value 1 then we have six consecutive working days violating constraints (6). If the
lhs is 0 the inequality is trivially satisfied. In the other cases, due to constraints (7) one can
easily verify that the number of z variables equal to 1 in the rhs must be at least equal to the
number of y variables equal to 1 in the [hs. O
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6. Inequalities Based on SRP Subproblems

We identify some subsets of the SRP variables with a relevant role in the objective function and
in the structure of the polyhedron (e.g., y variables associated with sequences of rest shifts). It
is possible to define certain subproblems of SRP on a subset of shifts 7" and on a subset of shift
sequences L C T x T, whose optimal solution provide the right hand side of a rank inequality
for the related variables. These inequalities turn to be very effective in the solution algorithm
for the complete problem.

In real instances of SRP, rest shift sequences are assigned a weight w,, that is significantly
larger than weights associated with other shifts sequences; this fact derives from the translation
of typical staff preferences into weights for the objective function. Thus we can solve SRP in
two steps:

i) first solve the subproblem obtained considering only rest shifts and using all the related
cuts;

ii) then solve the complete problem using the rank inequality coming from the above sub-
problem and all the other cuts.

We call the subproblem of point (i) the Rest Shift Subproblem. We define it adding new con-
straints to the Relaxed Rest Shift Subproblem (described in Section 4) that for each day of the
week leave a number of staff members sufficient to cover the work shifts of that day. Thus,
recalling from Section 5 that MR(d) = [P| — 3 ¢\ (v} bsd, We write the following constraints:

> T < MR(d) foralld € D.
ceC(d)

In the objective function, we now maximize the sequences of rest shifts:
max Z yCT'7'7
ceC

where all weights w,, are replaced by 1.
Therefore, the complete formulation of the Rest Shift Subproblem is the following;:

ceC

> 3 < MR() deD
ceC(d)

Z Ter = 2 peP
ceW(p)

Z Ter > 1 peEP
c€S(p)

5
Z Tetiyr > 1 ceC
=0
Yerr < Zer ceC
Yerr < Tet1,r ceC
Ter + Tet1r — 1 < Yerr ceC
zer € {0,1} ceC

Yerr € {O; 1} ceC.
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Proposition 6.1. The following inequality is valid for SRP:
Zycrr < u. (25)

ceC

Proof: 1t is easy to verify that the projection of any feasible solution of SRP on the space of the
Rest Shift Subproblem is feasible for the latter problem as well. Thus, inequality (25) is valid
for SRP. |

Although the Rest Shift Subproblem is difficult in general, its size is significantly smaller than
the complete SRP. Moreover, many of the inequalities discussed in sections 4 and 5 are still valid
for the Rest Shift Subproblem and contribute very effectively to determine its optimal solution
in a Branch & Bound algorithm.

7. Branching rules

The SRP feasible solutions have a high degree of symmetry that on the one hand makes the
problem difficult, as there are several different optimal solutions that must be visited by a
myopic Branch & Bound algorithm to prove optimality, and on the other hand may be exploited
to design a clever branching strategy. Breaking these symmetries is crucial for solving SRP to
optimality.

We identify two types of symmetry,

e the cyclic symmetry: for each roster table there are |P| — 1 roster tables with the same
objective function value which can be obtained by rotation of the table on the rows;

e the Sunday symmetry: in a roster table representing a feasible solution of SRP, consider
the sequences of rows with the following structure: the first row follows a week with a rest
on Sunday, and the last row ends with a rest on Sunday (a sequence can be composed of
a single row). Any pair of such sequences can be swapped in the table without affecting
the value of the objective function and the feasibility of the solution.

For an example of Sunday symmetry, consider the roster table in Figure 1. The sequence
composed of rows 2, 3, 4, 5, and the one composed of rows 13 and 1 have the above described
structure, and can thus be swapped resulting in another solution with the same number of rest
sequences.

Another important point is related to the number of sequences 67 that can be assigned. We
have seen that this number is limited by inequality (17) and in some cases reducing the rhs of
the mentioned inequality may result in a strong reduction of the objective function allowing us
to establish that inequality (17) is tight in the optimal integer solution.

We thus design two main branching strategies:

o the Saturday-Sunday rule;
e the hole rule.

Let r = [(4MR(7) — |P|)/3]; the Saturday-Sunday rule, applied as the first branching rule,
produces two branches: in the first branch we modify inequality (17) as equality

Z Yerr =T,

d(c)=6
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and in the second branch we reduce by one unit the rhs

Z Yerr <7 — 1.

d(c)=6

The hole rule tries to overcome the cyclic and the Sunday symimetries by considering possibly
only one representative solution in each equivalence class. To describe the structure of the
representative solutions we use sequences of rows where only the first row and the last row
have Sunday rest. We then identify with A; the number of such sequences with ¢ rows without
Sunday rest. Thus, hg is the number of consecutive weeks with Sunday rest, hq is the number
of sequences of three rows where only the first and the last have Sunday rest, and so on. From
constraint (5) it is easy to deduce that h; = 0 when 7 > 4.

From the Sunday symmetry described above, it is clear that any swapping of the sequences
above described results in a solution with the same objective value. Thus each configuration
with the same values of hg, hi, ha, hs belongs to the same equivalence class and it is sufficient
to visit only one representative of each class in the branching tree.

To implement the hole rule, we fix the first Sunday of the roster table to be a Sunday rest
(use of the cyclic symmetry); then we enumerate all the feasible configurations of hg, h1, ho,
hs, define a subtree associated with each configuration by fixing Sunday rest variables in the
problem, and solve the subtrees.

Using the cuts described in sections 4, 5, and the branching rules just exposed we have designed
a Branch & Bound algorithm to solve both the Rest Shift Subproblem and the complete SRP.

8. Computational Results

The following tables report a synthesis of the results obtained on eight different SRP instances
with dimensions ranging from 30 to 100 staff members. The data has been provided by the
Alitalia ground staff management department.

The presented test problems are divided into two sets (set A and set B) differing only on the
weight wg; of the objective function for (s,t) # (r,r). In particular, the problems in set B have
weights wg; different from zero only on pairs (s,t) with s = ¢, while the problems in set A have
a more complex objective function with weights different from zero also on other pairs of shifts.
Obviously, the dimensions of the two instances with the same number of staff members are the
same and the same are the results on the Rest Shift Subproblems, where the weight coefficients
for (s,t) # (r,r) are not taken into account. These figures are then reported only once in the
tables below.

Table 1 shows the number of integer variables on the eight problems and the optimal solutions
for the LP relaxation of original formulation and of the formulation where the cuts have been
added. All classes of inequalities described in the previous sections have polynomial cardinality,
and are thus added straightforwardly to the initial formulation. The total number of rows for
the two linear programs is also reported. We can see from the table that, for all considered
problems, the value of the LP solution is reduced to more than one half if the proposed cuts are
added.

Table 2 reports the contributions of each of the ten classes of valid inequalities proposed in this
paper considering the problems in set A. For each class the number of cuts that are added to the
formulation is also reported. We note that the contributions of the classes differ significantly,
being much more effective for those classes that have been proven to be facet inducing for certain
subproblems of the SRP. It is worth mentioning that the last class of the table, the Rest Shift
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Staff Initial Formulation | Formulation with Cuts
Members | cols rows LP sol. rows LP sol.

30A 27720 | 5380 54270 7786 26176

30B 54320 26150

60A 55440 | 10690 113730 15496 51432

60B 113830 51290

75B 69300 | 13345 153610 19351 77182

75B 153750 71940

100A 92400 | 17770 204790 25776 97290

100B 205000 96930

Table 1: Reduction in the LP solution

Subproblem cut (25), shows a very high contribution because it actually conveys most of the
structural information determined by some of the other classes: in fact, that cut is determined
by solving the Rest Shift Subproblem reinforced by the applicable classes of inequalities among
the nine other classes.

Finally, we show in Table 3 some statistics related to the integer solutions of the Rest Shift
Subproblem and of SRP. The number of nodes and CPU times in the Branch & Bound tree are
also reported. Optimal solutions are obtained with reasonable computation times for the Rest
Shift Subproblem and for the complete problem. For all problems, we determine very quickly an
integer feasible solution with a negligible gap, solving the complete problem with rest shifts fixed
according to the optimal solution of the Rest Shift Subproblem (last column of the Table 3), and
this solution is often proved to be optimal. We remark that the stand-alone CPLEX 6.5 has not
been able to solve the Rest Ship Subproblem for instance 30A within an hour of computation
time against 21 seconds of our method.

STAFF MEMBERS
30A 60A 75A 100A

Class of nof LP n.of LP n.of LP n.of LP

Inequalities | cuts  sol. | cuts sol. cuts sol. cuts sol.

(10) 150 32300 | 300 71770 | 375 108570 | 500 149190
(13), (14) 240 36290 | 480 77914 | 600 108570 | 800 148710
(15), (16) 60 48280 | 120 98710 | 150 132162 | 200 176207
(17) 1 48280 1 99700 1 153181 1 204790
(18) 1 52280 1 109740 1 153610 1 204790
(19), (20) 2 48280 2 98710 2 145610 2 196890
(21), (22) 60 37290 | 120 77760 | 150 108580 | 200 148730
(23) 1 45290 1 98700 1 144294 1 196800
(24) 1890 54126 | 3780 113352 | 4725 152888 | 6300 203832
(25) 1 26300 1 51770 1 77610 1 97830

Table 2: Contributions of the classes of inequalities for problems in set A
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Rest Shift Subproblem Complete Problem
Optimal Solution Heuristic Solution
Staff number time in solution | number time in solution relaxed
Members | of nodes seconds(*)  value | of nodes seconds(*)  value  solution gap
30A 71 21 25000 65 226 26160 26160 0.0%
30B 51 130 26070 26130  0.2301%
60A 753 129 49000 212 1513 51390 51432  0.0817%
60B 431 835 51290 51290 0.0%
T5A 1438 1146 69000 339 2897 72110 72182  0.0998%
75B 222 1164 71940 71940 0.0%
100A 3942 4547 93000 313 3712 97150 97290  0.1441%
100B 377 3235 96930 96930 0.0%

(*) Using CPLEX 6.5 on Digital Alpha Workstation 500Mhz

Table 3: Optimal and Heuristic solutions for Rest Shift Subproblem and Complete Problem
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