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Abstract

We present a new graph composition that produces a dgrafshm a given graph and a fixed graph
B called gear and we study its polyhedral properties. This compositicgldg counterexamples to a
conjecture on the facial structure 81" AB(G) whenG is claw-free.
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1. Introduction

Given a graphG = (V, E) and a vectow € QY of node weights, thetable set probleris the problem
of finding a set of pairwise nonadjacent nodssble setpf maximum weight.

The stable set polytopedenoted byST AB(G), is the convex hull of the incidence vectors of the
stable sets ofz. A linear systemAz < b is said to bedefiningfor STAB(G) if STAB(G) = {x :
Az < b}. Thefacet defining inequalitiefor ST AB(G) are those inequalities that constitute the unique
nonredundant defining linear system%f AB(G).

Clearly, finding the defining linear system fSfI" AB(G) is equivalent to transform the original op-
timization problem into the linear programax{w’z : Az < b} and, being the stable set problem
N P-hard, it is unlikely to find such a system for general graphs.

Nevertheless the facial structure of the stable set podytegs been one of the most studied problems
in polyhedral combinatorics. Here is a non-exhaustivedistesults related with the study of facets of
ST AB(G): facet producing graphs [22, 26, 20, 14, 4, 214nd h-perfectness [15], lifting operations
for polyhedra [22, 20], characterization 8" AB(G) whenG is series-parallel [18], od&4-free [13]
or quasi-line [9].

Besides the description of new classes of facets, it is ef@st to find composition procedures that
enable to build new families of facets f6fT" A B(G) starting from facets of a lower dimensional poly-
tope. These compositions are usually based on graph cotopssifor example, sequential lifting is
based on the extension of a graph with an additional nodéMiisey’s lifting procedure [27] is based
on edge subdivision, Chvatal's compositions of polyhd@tare based on node substitution and clique
identification, and so on [1, 2, 3].

In this paper, we present a new graph composition, nagead compositionwhich consists of ‘re-
placing’ an edge of a given gragd with a special graph callegkar, so obtaining the grapfy. We study
the polyhedral properties of this operation and derive geffit conditions to generate facet defining in-
equalities forST AB(G) starting from facet defining inequalities f6" AB(H). The gear composition
can be iteratively applied and generates a very rich fanfilgom-rank facet defining inequalities, that
we namegeared inequalitiesFor these inequalities we show that the separation prob&mbe solved
in polynomial time in some special cases.

In the last section, we also show how to use this compositidouild counterexamples to a conjecture
on the facial structure of the stable set polytope of clasefyraphs.

We now introduce some notation and basic definitions. WetgdmpG = (V, E) any graph with
node sel/;; and edge sef. Given a vecto € R” and a subset C {1,...,m}, definefs € RISl as
the subvector off restricted on the indices ¢f and3(S) = > .4 f;. Given a subse$ C {1,...,m},
we denote by:® € R™ the incidence vector of.

A linear inequality) ;... mjz; < mo is said to bevalid for STAB(G) if it holds for all » €
STAB(G). A valid inequality forST AB(G) definesa facet of STAB(G) if and only if it is satis-
fied as an equality by¥;| affinely independent incidence vectors of stable set§ ¢falledroots). If
the support of a facet defining inequality coincides witth we say that the grapy producesthe cor-
responding facet. For short, we also denote a linear inggual = < 7y as(r, ) and the right hand
sider asrhs.

We denote by(v) the set of edges aff havingv as endnode and h¥ (v) the set of nodes of;
adjacent taw. If w : Vo — Q4 is any weighting of the nodes 61, thena (G, w) denotes the maximum
weight of a stable set af. We refer toa(G) = (G, 1) (1 being the vector of all ones) as te&bility
numberof G.

A k-holeC, = (v1,v9,...,v) is a chordless cycle of length A 5-wheelW = (h : vy,...,v5) iS
a graph consisting of &holeC' = (vy,...,vs), calledrim of W, and a nodé: (hubof W) adjacent to
every node of”.

A gear B is a graph of eight node§hy, ho, a, by, be, c,dy,ds} such that(h; : a,d;, by, c, hy) and



(ha : a,ds, be, c, hy) are5-wheels (see Fig. 1); moreover, the edges of these wheethamly edges
of B.

Figure 1: The gear with nodés, ho, a, b1, b, ¢, d1, ds.

2. Gear composition

In this section, we introduce a graph operation, namgedr compositionand we show some of its
polyhedral properties. In particular we show under whichditoons the gear composition preserves the
property of a graph of being facet producing.

An edgev; v Of a graphH is said to besimplicial if K1 = N(v1) \ {v2} andKy = N(v2) \ {v;} are
two nonempty cliques off.

Definition 2.1. Let H = (Vy, E) be a graph with a simplicial edge,v2 and letB = (Vp, Ep) be a
gear. Thegear compositioof H and B produces a new grapt¥ = (H, B, vjv3), calledgeared graph
such that:

Vo =V \ {v,12} U VB
Eq=Fg \ (5(’[}1) U 5(212)) UFEpUF UF5, whereF; = {dlu, bzu|u S Kz} fori = 1,2

A sketch of how the gear composition works is shown in Fig. 2.

Figure 2: (a) A graptH with a simplicial edge» vs; (b) The geared grapf = (H, B,v1v2).

Definition 2.2. Let H = (Vi, Ey) be a graph containing the simplicial edggv,. The inequality
(m,m) is said to beg-extendablevith respect ta, v if it is valid for STAB(H), it hasm,, = m,, =
A > 0 and it is not the clique inequality.,, + z,, < 1. If B = (Vp, Ep) is a gear, the following
inequality produced byr = (H, B,viv3)

Z TiT; + A Z i + 2N (xpy + Thy) < mo + 2A @
’iEVH\{’Ul,’Ug} ’iEVB\{hl,hQ}



is called thegeared inequalitgssociated wittr, o) and will be denoted a&r, 7).

In the following we show that geared inequalities are esaleint the linear description of the stable
set polytope of geared graphs. We first prove that they arne wedqualities forST AB(G).

Lemma 2.3. If G is a geared graph, then the geared inequality (1) is validS@rAB(G).

Proof. Let.S be a maximal stable set 6f. To prove the lemma we distinguish three cases depending
on the intersection of with the subsefb;, by, d;,d>} of V.

If |SN{b1,be,d1,do}| = 2,thenK; NS = Ky,NS = () and the selS \ V3 is a stable set ofi.
It follows that7(S \ Vp) = 7(S \ Va) < my — A, since otherwise the stable s&t\ Vi U {v;}
of H would violate (7, 7). Moreover, it is not difficult to check that(S N V) < 3\ and thus,
T(S\ V) +7(SNVp) <mp— A+ 3\ =m+ 2\

If |S N {by,ba,d1,do}| = 1, we first suppose thd € S; then,be, hy,c,di,de ¢ S andS N Vp
contains exactly one node {hy, a}. SinceS N K; =0, (S'\ V) U{v} is a stable set off; hence, as
in the previous case;(S \ Vi) = ©(S \ Vi) < mp — A and the result follows. The cases withe S,
di € S, ordy € S are analogous.

In the last case,S N {b1,b2,d1,d2}| = 0 andS \ Vg is a stable set itH. By the maximality ofS,
exactly one among the se€ts; }, {h2}, and{a, c}, is contained irt, thus implying thatr (SNVg) = 2.
Hence (S \ Vi) + 7(SNVg) < my + 2X and the thesis followd

Theorem 2.4. Let (7, my) be a g-extendable inequality. (i, mo) is facet defining foST AB(H ), then
the associated geared inequality (1) is facet definingSfotd B(G).

Proof. Suppose3”z < f3 is facet defining folST AB(G) and contains all the roots of (1): we show
below that such inequality is equivalent to (1).
We start with the following three observations.

i) Let 21 be aroot of(r, my) such that, € S;. Consider the sets:

St =81\ {va} U {h1,do}
S% =5 \ {UQ} U {hl,bg}.

They are stable sets 6f and their incidence vectors® andz5i are roots of (1); consequently,
they are roots of3, 3y). As 3(S1) = B(S?) = By, we have thaB,, = 34,. Symmetrically, we
prove that3,, = 3y,.

i) Let 2°2 be a root of(m, mp) such thaty,ve ¢ S;. The existence of such a root is guaranteed by
the fact that(r, mp) is not the clique inequality,,, + z,, < 1. Consider now the sets

521 =S U {hl}
53 = Sy U{a,c}.

They are stable sets 6f and their incidence vectors®: andz5? are roots of (1), and hence, of
(8, B0). This implies that3, + 3. = B,,. ReplacingS: with Sy U {hs}, we get3, + 8. = B,
and then8h1 = ﬁh2.

iii)y Let 2°" be aroot of £, m) such thal K> U{v;})N.S” = (. This root always exists because fr)
is not the clique inequality defined Wys U {v2} (since by hypothesis,, = m,, = A > 0). Then
v1 € 5, since otherwis&’ U {v, } would be a stable set violatingr, mo). Let.Ss = 5"\ {v1 }: we



have thatr(Ss) = m9 — A, as(w, mp) is g-extendable. Finally, consider the following stablesse
whose incidence vectors are roots of (1):

S% = S3U {dl,dg,c}
Sg = S3U {bl,bg,a}
3 — Sy U {bo, ).

From3(S3) = B(52), and (i) it follows that3, = S, and so, by (ii),8y, = 28.. From3(53) =
B(S3) it follows that 8y, + 3, = By, thatispy, = (.. ReplacingS; with S3 U {b1, ha}, we get
662 - 5{1-

Without loss of generality, we can fi%;, = m,, = A, and so, by (i)-(iii), we have that, = )\ for each
v e Vg \ {hi,ho} ands,, = B, = 2.

Let M be a matrix whose rows a7 | incidence vectors of stable sets Bf which are linearly
independent roots dfr, 7p), i.e.,

Mnm = ml. (2

Any stable sef of H can be transformed into a stable Setf G as follows: setS = S\ {v1,v2} U S,
where Sy is a stable set o3 such thatd; € Sp if and only if v; € S for i = 1,2. Itis not difficult
to verify that if z° defines a root ofr, ) then Sz can be chosen so that defines a root of (1) such
that 3(S N {h1, ha,a, by, b, c}) = 2\. By replacingVy with V! = Vi \ {v1,v2} U {dy,d2}, we have
MpBy: = (o —2A)1 and by (2),

/BV/ - (50 — 2/\)M_1]l = ﬁo _ 2)\71'
0
In particular, we have
—2X -2
b = =2 o= 2Ay ©)
) o
As, by assumption3,;, = A, we have that
Bo = mo + 2,
By = my for eachw € Vi \ {v1, 02},
By = A for eachw € Vg \ {h1, ho},
ﬁh1 = ﬁhQ = 2A7

and the theorem followd
The following example shows a geared graph obtained by #esapplication of the gear composition
to a5-hole and the relative geared inequality.

Example 2.1. Consider thes-hole C; = (v}, vi,u,v?v3) and the geared-hole H, = (Cs, B!, v{v])
depicted in Fig. 3. Two simplicial edges are emphasizediek lines.
As the5-hole inequalityz(Ve, ) < 2 is facet defining folST AB(C5), by Theorem 2.4
(Vi \ {hi h%}) + 2wh% + 2wh§ <4 (4)
is facet defining folST AB(H,). O

Observe that the gear composition can be applied iterptpedvided that the graph involved in the
operation at theé-th step has a simplicial edge. For instance, the giphin the Example 1 contains
viv3 and thus it can be composed with another géato obtain the graplir = (Hy, B2, viv3) shown



Figure 3: A5-hole and a gearegthole

in Fig. 4. A further application of Theorem 2.4 yields theld@ling “double” geared facet defining
inequality

(Vo \T) +2x(T) < 6, (5)
whereT = {h}, hi, h2, h3}.

Figure 4: A double geared graph

As expected, in the description of the stable set polytopé/afthere are facet defining inequali-
ties which are not geared inequalities and whose suppogtiaghs contain nodes of botfy and B'.
Therefore, when a new gear composition is performedigmusing another simplicial edge and another
gear B2, beyond inequality (5) several geared inequalities apjpetire linear description of the stable
set polytope of the resulting gragh

We explain what happens with an example. Consider the gfaplbf Fig. 3: the following rank
inequalities

o(Vi, \ {dy,a'}) <3
x(VH1 \ {d%,al}) <3
x(VHl \{bévcl}) <3 (6)
x(VH1 \ {b%vcl}) <3
x(VHl \{al’cl}) <3

are facet defining fo6T AB(H;) and they are also g-extendable with respeatte. Hence, by Theo-
rem 2.4, each of the inequalities (6) generates a gearedaliggwhich is facet defining fo6 T AB(G)



and it is different from (5).

But the situation turns out to be even more complex! In fdut, graphG of Fig. 4 may also be
constructed by applying the gear compositions in a diffeceder: first construct; = (C5, B2, v?v3),
and thenG = (Hs, B!, vivl) as the gear composition éf; and B*. As noticed before, the first gear
composition generates five rank inequalities (similar 9 ¢@hich are facet defining fo6T AB(H>)
while the second gear composition generates their asedcggared inequalities. All the inequalities
mentioned so far are different and, by Theorem 2.4, theylafacat defining forST AB(G). It follows
that two applications of the gear composition to-hole have produced 11 geared inequalities which are
facet producing for the stable set polytopeCaf

It is not difficult to see that this situation may be generdizo the case whef¥ containsk gears:
in this case, any subset of gears may be possibly involveddcet defining inequality. Therefore, an
exponential number of geared inequalities might appedraridcial description o7 AB(G). One has
still to be careful since it is not true that any possible stilof gear’s hubs appears witt2a coefficient
in a facet defining inequality. In the following example weoshhow a graph obtained by two gear
compositions produces facet defining inequalities witthegaar, but not with both.

Example 2.2. Let G be the graph depicted in Fig. 5. It is easy to see thahay be obtained by the

Figure 5: A graph with two alternative gears

composition of two gear®! and B? starting from a cycle®y = (vi,vi,v?,v3) with simplicial edges
vivd andviv3. As C, does not produce a facet defining inequality, Theorem 2.#atabe applied
right after the first gear composition is performed. Newedhs, three geared inequalities which are
facet defining forSTAB(G) will be generated by the second gear composition. In fattLle =
(Cy, BY,vivd) be the graph obtained frofl, and B! and letG = (L4, B?,v?v3). Theorem 2.4 can be
applied to each of the following facet defining (rank) inelgies of STAB(L1):

a({vf,v3,05,c',bi}) <2
z({vf,v3,d},a',dl}) <2
w(VLl) <3,

thus producing three geared inequalities that are facetidgffor ST AB(G). Symmetrically, there are
three geared facet defining inequalities $f A B(G) generated by considering the constructionzcds
G = (Lg, B, v}, vd), whereLy = (Cy, B, vivd).

|



3. Separation of geared inequalities

Although the stable set problem is one of the most studie@llenas in polyhedral combinatorics and
many facet defining inequalities are known, only few clasgeslid inequalities are known to be poly-
nomially separable. Among them, there are the odd cycleuméms ([12], [8]) and the blossom in-
equalities for line graphs [23]. Odd wheel inequalities barseparated by modifying the Padberg and
Rao’s procedure for the odd cycle inequalities [15]. Otlegasation procedures have been proposed
for generalization of wheels [2, 4]. Here, we propose polgrab time separation algorithms for geared
odd cycle inequalities and geared blossom inequalities,geared inequalities associated with odd cycle
inequalities and blossom inequalities, respectively.

3.1. Geared odd cycle inequalities
Given a cycleC = (V, E¢) with an odd number of nodes, the odd cycle inequality is

Z ZT; S ‘VC‘2_ 1.

i€eVe

In the following we denote by \ uw the graph(Vg, Eq \ {uw}).

Theorem 3.1. Given a graph(7, geared odd cycle inequalities can be separated in polyabtinie over
the set of points satisfying the edge formulation for STAB(G

Proof. First observe that the number of gearsiiis O(n), since two gears cannot intersect. Moreover,
itis not difficult to prove that all the gears 6f can be identified in timé(n?), since one gear is defined
as an induced subgraph 6f with a fixed number of vertices. Once a gdaris fixed, consider the
graphH = (Vy, Ey) obtained fromG by substituting the geaB with the edgevivy, i.e., Vg =
Vo \ VU {’Ul, ’Ug} andEy = Eg \ (EB Uhu Fg) UL ULy U {Ul’Ug}, whereF; = {diu, biu|u S KZ}
andL; = {vulu € K;}, fori = 1,2. Then, any geared odd cycle inequality valid 8F AB(G) is of
the form:

Vel -1
> @< @
iEVC\{Ul,Ug}
whereys(z) = 3 icv\ (hy b} Ti + 22, + 20y, @andC = (Ve, E¢) is an odd cycle off containing
the simplicial edge;v». Define the edge weighig for e € Fy as follows:
® Yyw =1— 1y — x4 fOor eachuw € Eg \ (0(v1) U d(v2)),
® Yy, =1 —x, foreachvu € 6(v;) \ {vive}, i =1,2.

Inequality (7) is equivalent to
> ye>2vyp(x) -4
ecEc\{viva}
Therefore, a fractional point* violates an inequality of type (7) if and only if there exiatsodd cycle”
in H, containing the edge, v2, and such that

Z Y < 2yp(x*) — 4. (8)

ecEc\{viva}

Observe now that, for a fixed ge&y, therhs of (8) is a constant and, if* satisfies the edge formula-
tion, we have thay! > 0, for all e € E. Therefore, the problem of finding the odd cy¢€lecontaining
the edgey; v» such that the related geared inequality is violated: byeduces to find an even length path
from vy to v, of minimum weight, in a grapt# \ v;v2 with nonnegative costs on the edges. Thus it is
polynomially solvable by using the algorithm proposed i6][2
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3.2. Geared blossom inequalities

Consider a geared gragh = (H, B, v1v2) such thatH is the line graph of some root gragt(H) and

let wyz andwsz be the two adjacent edges Bf H ) corresponding to the endpoints and v, of the
simplicial edge ofH. Since any non clique inequalityr ) valid for ST AB(H) corresponds to an
Edmonds’ inequality [8] for the matching polytope Bf H ), the associated geared inequality is called
ageared blossonmequality. Proceeding as in the case of geared odd cycbemialities, we can rewrite
such an inequality in the form

> zitysle) <o) +2
iEVT\{vl,vg}

whereT is an induced subgraph &f such thatV; = E(S) andS is an odd subset of nodes of the root
graphR(H), vy, vy € Vi anda(T) = E2.

Therefore, for a fixed geaB, the problem of finding a geared blossom inequality violdiga given
fractional pointz* reduces to find an odd subs®bf nodes of the root grapR(H ) such thatv, z, wez €
E(S) and

N S| —1 *
Z ye>7’ ’2 +2—yp(z"),
e€E(S)\{w1z,waz}

where they variables on the edges &(H) correspond to the variables on the nodes éf. Such a
problem, sincer* satisfies the edge formulation, can be solved in polynonma using the standard
algorithms defined for the blossom separation problem f®mnthtching problem [23].

4. Conclusions

The gear composition has very interesting consequencdseatdble set polytope ofaw-free graphs
i.e., those graphs such that the neighborhood of each naladatable set of size three. Claw-free
graphs generalize line graphs and, as for line graphs, thiglgmm of optimizing over their stable set
polytope is polynomial time solvable [19]. By a well-knowesult of Grotschel, Lovasz and Schrijver
(see [15]), this implies that the separation problem foweleee graphs can be solved in polynomial
time. But up to now no explicit set of facet defining inequetitis known despite many research efforts
[11, 14, 17, 21, 24] and many disproved conjectures [14].

The recent results of Chudnovsky and Seymour on the steuctuguasi-line graphs [6] led to the
settlement of a well-known conjecture on the linear desiompof ST AB(G) whenG is quasi-line[9]

(a graph is quasi-line if the neighborhood of each node capabiitioned into two cliques) and revived
the interest for the facial structure of the stable set jpplgtof claw-free graphs.

Claw-free graphs with stability number at least four seetreta good starting point to face the problem
of finding a defining linear system f&f7T'AB(G); in fact, a result of Fouquet [10] states that claw-free
graphs withoe(G) > 4 do not contain odd antihol€,1 with p > 3, i.e., claw-free graphs with “large”
stability number which are not quasi-line contain ofdwheels. This result somehow supported the idea
that all non-rank facet defining inequalities$T' AB(G) are produced b§-wheels and their neighbors,
the so calledifted 5-wheel inequalitiesRecently, Stauffer [25] proposed the following:

Conjecture 4.1. The stable set polytope of a claw-free but not quasi-lingpr& with a(G) > 4 is
given by: non-negativity inequalities, rank inequaliteasd lifted5-wheel inequalities.

Now, using the gear composition introduced in Section 2, arelwild graphgs having the following
properties:
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G claw-free and not quasi-liney(G) > 4,

G produces non-rank facet defining inequalities wht& greater than two

Examples of such graphs are shown in Fig. (3)-(5). The geiaeglalities produced by these graphs
are all counterexamples for Conjecture 4.1. This implied thnk inequalities and lifted-wheels in-
equalities are not enough to descrit# AB(G) whenG is claw-free, not quasi-line and with(G) > 4.
Nevertheless the decomposition theorem for claw-freelgrap Chudnovsky and Seymour [5] strongly
suggests us that the inequalities presented in this paffisesio give a linear description f& 7' AB(G).
Thus we can formulate the following:

Conjecture 4.2. The stable set polytope of a claw-free but not quasi-linepr& with o(G) > 4 is
given by

e non-negativity inequalities
e rank inequalities
o lifted 5-wheel inequalities

o lifted geared inequalities.
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