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Abstract

We present a new graph composition that produces a graphG from a given graphH and a fixed graph
B called gear and we study its polyhedral properties. This composition yields counterexamples to a
conjecture on the facial structure ofSTAB(G) whenG is claw-free.
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1. Introduction

Given a graphG = (V,E) and a vectorw ∈ QV
+ of node weights, thestable set problemis the problem

of finding a set of pairwise nonadjacent nodes(stable set)of maximum weight.
The stable set polytope, denoted bySTAB(G), is the convex hull of the incidence vectors of the

stable sets ofG. A linear systemAx ≤ b is said to bedefiningfor STAB(G) if STAB(G) = {x :
Ax ≤ b}. Thefacet defining inequalitiesfor STAB(G) are those inequalities that constitute the unique
nonredundant defining linear system ofSTAB(G).

Clearly, finding the defining linear system forSTAB(G) is equivalent to transform the original op-
timization problem into the linear programmax{wT x : Ax ≤ b} and, being the stable set problem
NP -hard, it is unlikely to find such a system for general graphs.

Nevertheless the facial structure of the stable set polytope has been one of the most studied problems
in polyhedral combinatorics. Here is a non-exhaustive listof results related with the study of facets of
STAB(G): facet producing graphs [22, 26, 20, 14, 4, 21],t andh-perfectness [15], lifting operations
for polyhedra [22, 20], characterization ofSTAB(G) whenG is series-parallel [18], oddK4-free [13]
or quasi-line [9].

Besides the description of new classes of facets, it is of interest to find composition procedures that
enable to build new families of facets forSTAB(G) starting from facets of a lower dimensional poly-
tope. These compositions are usually based on graph compositions: for example, sequential lifting is
based on the extension of a graph with an additional node, theWolsey’s lifting procedure [27] is based
on edge subdivision, Chvátal’s compositions of polyhedra[7] are based on node substitution and clique
identification, and so on [1, 2, 3].

In this paper, we present a new graph composition, namedgear composition, which consists of ‘re-
placing’ an edge of a given graphH with a special graph calledgear, so obtaining the graphG. We study
the polyhedral properties of this operation and derive sufficient conditions to generate facet defining in-
equalities forSTAB(G) starting from facet defining inequalities forSTAB(H). The gear composition
can be iteratively applied and generates a very rich family of non-rank facet defining inequalities, that
we namegeared inequalities. For these inequalities we show that the separation problemcan be solved
in polynomial time in some special cases.

In the last section, we also show how to use this composition to build counterexamples to a conjecture
on the facial structure of the stable set polytope of claw-free graphs.

We now introduce some notation and basic definitions. We denote byG = (VG, EG) any graph with
node setVG and edge setEG. Given a vectorβ ∈ Rm and a subsetS ⊆ {1, . . . ,m}, defineβS ∈ R|S| as
the subvector ofβ restricted on the indices ofS andβ(S) =

∑
i∈S βi. Given a subsetS ⊆ {1, . . . ,m},

we denote byxS ∈ Rm the incidence vector ofS.
A linear inequality

∑
j∈VG

πjxj ≤ π0 is said to bevalid for STAB(G) if it holds for all x ∈
STAB(G). A valid inequality forSTAB(G) definesa facet ofSTAB(G) if and only if it is satis-
fied as an equality by|VG| affinely independent incidence vectors of stable sets ofG (called roots). If
the support of a facet defining inequality coincides withVG, we say that the graphG producesthe cor-
responding facet. For short, we also denote a linear inequality πT x ≤ π0 as(π, π0) and the right hand
sideπ0 asrhs.

We denote byδ(v) the set of edges ofG havingv as endnode and byN(v) the set of nodes ofVG

adjacent tov. If w : VG → Q+ is any weighting of the nodes ofG, thenα(G,w) denotes the maximum
weight of a stable set ofG. We refer toα(G) = α(G,1) (1 being the vector of all ones) as thestability
numberof G.

A k-holeCk = (v1, v2, . . . , vk) is a chordless cycle of lengthk. A 5-wheelW = (h : v1, . . . , v5) is
a graph consisting of a5-holeC = (v1, . . . , v5), calledrim of W , and a nodeh (hubof W ) adjacent to
every node ofC.

A gear B is a graph of eight nodes{h1, h2, a, b1, b2, c, d1, d2} such that(h1 : a, d1, b1, c, h2) and
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(h2 : a, d2, b2, c, h1) are5-wheels (see Fig. 1); moreover, the edges of these wheels arethe only edges
of B.

Figure 1: The gear with nodesh1, h2, a, b1, b2, c, d1, d2.

2. Gear composition

In this section, we introduce a graph operation, namedgear composition, and we show some of its
polyhedral properties. In particular we show under which conditions the gear composition preserves the
property of a graph of being facet producing.

An edgev1v2 of a graphH is said to besimplicial if K1 = N(v1) \ {v2} andK2 = N(v2) \ {v1} are
two nonempty cliques ofH.

Definition 2.1. LetH = (VH , EH) be a graph with a simplicial edgev1v2 and letB = (VB , EB) be a
gear. Thegear compositionof H andB produces a new graphG = (H,B, v1v2), calledgeared graph
such that:

VG = VH \ {v1, v2} ∪ VB

EG = EH \ (δ(v1) ∪ δ(v2)) ∪ EB ∪ F1 ∪ F2, whereFi = {diu, biu|u ∈ Ki} for i = 1, 2

A sketch of how the gear composition works is shown in Fig. 2.

(a) (b)

Figure 2: (a) A graphH with a simplicial edgev1v2; (b) The geared graphG = (H,B, v1v2).

Definition 2.2. Let H = (VH , EH) be a graph containing the simplicial edgev1v2. The inequality
(π, π0) is said to beg-extendablewith respect tov1v2 if it is valid for STAB(H), it hasπv1

= πv2
=

λ > 0 and it is not the clique inequalityxv1
+ xv2

≤ 1. If B = (VB , EB) is a gear, the following
inequality produced byG = (H,B, v1v2)

∑

i∈VH\{v1,v2}

πixi + λ
∑

i∈VB\{h1,h2}

xi + 2λ(xh1
+ xh2

) ≤ π0 + 2λ (1)
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is called thegeared inequalityassociated with(π, π0) and will be denoted as(π̄, π̄0).

In the following we show that geared inequalities are essential in the linear description of the stable
set polytope of geared graphs. We first prove that they are valid inequalities forSTAB(G).

Lemma 2.3. If G is a geared graph, then the geared inequality (1) is valid forSTAB(G).

Proof. Let S be a maximal stable set ofG. To prove the lemma we distinguish three cases depending
on the intersection ofS with the subset{b1, b2, d1, d2} of VB .

If |S ∩ {b1, b2, d1, d2}| = 2, thenK1 ∩ S = K2 ∩ S = ∅ and the setS \ VB is a stable set ofH.
It follows that π(S \ VB) = π̄(S \ VB) ≤ π0 − λ, since otherwise the stable setS \ VB ∪ {v1}
of H would violate (π, π0). Moreover, it is not difficult to check that̄π(S ∩ VB) ≤ 3λ and thus,
π̄(S \ VB) + π̄(S ∩ VB) ≤ π0 − λ + 3λ = π0 + 2λ.

If |S ∩ {b1, b2, d1, d2}| = 1, we first suppose thatb1 ∈ S; then,b2, h1, c, d1, d2 /∈ S andS ∩ VB

contains exactly one node in{h2, a}. SinceS ∩ K1 = ∅, (S \ VB) ∪ {v1} is a stable set ofH; hence, as
in the previous case,π(S \ VB) = π̄(S \ VB) ≤ π0 − λ and the result follows. The cases withb2 ∈ S,
d1 ∈ S, or d2 ∈ S are analogous.

In the last case,|S ∩ {b1, b2, d1, d2}| = 0 andS \ VB is a stable set inH. By the maximality ofS,
exactly one among the sets{h1}, {h2}, and{a, c}, is contained inS, thus implying that̄π(S∩VB) = 2λ.
Hence,̄π(S \ VB) + π̄(S ∩ VB) ≤ π0 + 2λ and the thesis follows.

Theorem 2.4. Let (π, π0) be a g-extendable inequality. If(π, π0) is facet defining forSTAB(H), then
the associated geared inequality (1) is facet defining forSTAB(G).

Proof. SupposeβT x ≤ β0 is facet defining forSTAB(G) and contains all the roots of (1): we show
below that such inequality is equivalent to (1).

We start with the following three observations.

i) Let xS1 be a root of(π, π0) such thatv2 ∈ S1. Consider the sets:

S1
1 = S1 \ {v2} ∪ {h1, d2}

S2
1 = S1 \ {v2} ∪ {h1, b2}.

They are stable sets ofG and their incidence vectorsxS1

1 andxS2

1 are roots of (1); consequently,
they are roots of(β, β0). As β(S1

1) = β(S2
1) = β0, we have thatβb2 = βd2

. Symmetrically, we
prove thatβb1 = βd1

.

ii) Let xS2 be a root of(π, π0) such thatv1, v2 /∈ S2. The existence of such a root is guaranteed by
the fact that(π, π0) is not the clique inequalityxv1

+ xv2
≤ 1. Consider now the sets

S1
2 = S2 ∪ {h1}

S2
2 = S2 ∪ {a, c}.

They are stable sets ofG and their incidence vectorsxS1

2 andxS2

2 are roots of (1), and hence, of
(β, β0). This implies thatβa + βc = βh1

. ReplacingS1
2 with S2 ∪ {h2}, we getβa + βc = βh2

and thenβh1
= βh2

.

iii) Let xS′

be a root of (π, π0) such that(K2∪{v2})∩S′ = ∅. This root always exists because (π, π0)
is not the clique inequality defined byK2 ∪ {v2} (since by hypothesisπv1

= πv2
= λ > 0). Then

v1 ∈ S′, since otherwiseS′ ∪{v2} would be a stable set violating(π, π0). LetS3 = S′ \ {v1}: we
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have thatπ(S3) = π0 − λ, as(π, π0) is g-extendable. Finally, consider the following stable sets
whose incidence vectors are roots of (1):

S1
3 = S3 ∪ {d1, d2, c}

S2
3 = S3 ∪ {b1, b2, a}

S3
3 = S3 ∪ {b2, h1}.

Fromβ(S1
3) = β(S2

3), and (i) it follows thatβa = βc, and so, by (ii),βh1
= 2βa. Fromβ(S2

3) =
β(S3

3) it follows thatβb1 + βa = βh1
, that isβb1 = βa. ReplacingS3

3 with S3 ∪ {b1, h2}, we get
βb2 = βa.

Without loss of generality, we can fixβd1
= πv1

= λ, and so, by (i)-(iii), we have thatβv = λ for each
v ∈ VB \ {h1, h2} andβh1

= βh2
= 2λ.

Let M be a matrix whose rows are|VH | incidence vectors of stable sets ofH which are linearly
independent roots of(π, π0), i.e.,

Mπ = π01. (2)

Any stable set̃S of H can be transformed into a stable setS of G as follows: setS = S̃ \ {v1, v2}∪SB,
whereSB is a stable set ofB such thatdi ∈ SB if and only if vi ∈ S̃ for i = 1, 2. It is not difficult
to verify that if xS̃ defines a root of(π, π0) thenSB can be chosen so thatxS defines a root of (1) such
thatβ(S ∩ {h1, h2, a, b1, b2, c}) = 2λ. By replacingVH with V ′ = VH \ {v1, v2} ∪ {d1, d2}, we have
MβV ′ = (β0 − 2λ)1 and by (2),

βV ′ = (β0 − 2λ)M−11 =
β0 − 2λ

π0
π.

In particular, we have

βd1
=

β0 − 2λ

π0
πv1

=
β0 − 2λ

π0
λ. (3)

As, by assumption,βd1
= λ, we have that

β0 = π0 + 2λ,
βv = πv for eachv ∈ VH \ {v1, v2},
βv = λ for eachv ∈ VB \ {h1, h2},
βh1

= βh2
= 2λ,

and the theorem follows.
The following example shows a geared graph obtained by a single application of the gear composition

to a5-hole and the relative geared inequality.

Example 2.1. Consider the5-holeC5 = (v1
1 , v

1
2 , u, v2

1v
2
2) and the geared5-hole H1 = (C5, B

1, v1
1v

1
2)

depicted in Fig. 3. Two simplicial edges are emphasized as thick lines.
As the5-hole inequalityx(VC5

) ≤ 2 is facet defining forSTAB(C5), by Theorem 2.4

x(VH1
\ {h1

1, h
1
2}) + 2xh1

1

+ 2xh1

2

≤ 4 (4)

is facet defining forSTAB(H1). 2

Observe that the gear composition can be applied iteratively provided that the graph involved in the
operation at thei-th step has a simplicial edge. For instance, the graphH1 in the Example 1 contains
v2
1v

2
2 and thus it can be composed with another gearB2 to obtain the graphG = (H1, B

2, v2
1v2

2) shown
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Figure 3: A5-hole and a geared5-hole

in Fig. 4. A further application of Theorem 2.4 yields the following “double” geared facet defining
inequality

x(VG \ T ) + 2x(T ) ≤ 6, (5)

whereT = {h1
1, h

1
2, h

2
1, h

2
2}.

h1

1
h2

1

c1 a1 c2a2

u

b1

1

h1

2

b1

2

d1

1

d1

2

d2

1

d2

2

b2

1

b2

2

h2

2

Figure 4: A double geared graph

As expected, in the description of the stable set polytope ofH1, there are facet defining inequali-
ties which are not geared inequalities and whose supportinggraphs contain nodes of bothC5 andB1.
Therefore, when a new gear composition is performed onH1 using another simplicial edge and another
gearB2, beyond inequality (5) several geared inequalities appearin the linear description of the stable
set polytope of the resulting graphG.

We explain what happens with an example. Consider the graphH1 of Fig. 3: the following rank
inequalities

x(VH1
\ {d1

2, a
1}) ≤ 3

x(VH1
\ {d1

1, a
1}) ≤ 3

x(VH1
\ {b1

2, c
1}) ≤ 3

x(VH1
\ {b1

1, c
1}) ≤ 3

x(VH1
\ {a1, c1}) ≤ 3

(6)

are facet defining forSTAB(H1) and they are also g-extendable with respect tov2
1v

2
2 . Hence, by Theo-

rem 2.4, each of the inequalities (6) generates a geared inequality which is facet defining forSTAB(G)
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and it is different from (5).
But the situation turns out to be even more complex! In fact, the graphG of Fig. 4 may also be

constructed by applying the gear compositions in a different order: first constructH2 = (C5, B
2, v2

1v
2
2),

and thenG = (H2, B
1, v1

1v
1
2) as the gear composition ofH2 andB1. As noticed before, the first gear

composition generates five rank inequalities (similar to (6)) which are facet defining forSTAB(H2)
while the second gear composition generates their associated geared inequalities. All the inequalities
mentioned so far are different and, by Theorem 2.4, they are all facet defining forSTAB(G). It follows
that two applications of the gear composition to a5-hole have produced 11 geared inequalities which are
facet producing for the stable set polytope ofG.

It is not difficult to see that this situation may be generalized to the case whenG containsk gears:
in this case, any subset of gears may be possibly involved in afacet defining inequality. Therefore, an
exponential number of geared inequalities might appear in the facial description ofSTAB(G). One has
still to be careful since it is not true that any possible subset of gear’s hubs appears with a2λ coefficient
in a facet defining inequality. In the following example we show how a graph obtained by two gear
compositions produces facet defining inequalities with each gear, but not with both.

Example 2.2. Let G be the graph depicted in Fig. 5. It is easy to see thatG may be obtained by the

h1

1
h2

1

c1 a1 c2a2

b1

1

h1

2

b1

2

d1

1

d1

2

d2

1

d2

2

b2

1

b2

2

h2

2

Figure 5: A graph with two alternative gears

composition of two gearsB1 andB2 starting from a cycleC4 = (v1
1 , v

1
2 , v

2
1 , v2

2) with simplicial edges
v1
1v

1
2 and v2

1v
2
2 . As C4 does not produce a facet defining inequality, Theorem 2.4 cannot be applied

right after the first gear composition is performed. Nevertheless, three geared inequalities which are
facet defining forSTAB(G) will be generated by the second gear composition. In fact, let L1 =
(C4, B

1, v1
1v

1
2) be the graph obtained fromC4 andB1 and letG = (L1, B

2, v2
1v

2
2). Theorem 2.4 can be

applied to each of the following facet defining (rank) inequalities of STAB(L1):

x({v2
1 , v2

2 , b
1
2, c

1, b1
1}) ≤ 2

x({v2
1 , v2

2 , d
1
2, a

1, d1
1}) ≤ 2

x(VL1
) ≤ 3,

thus producing three geared inequalities that are facet defining for STAB(G). Symmetrically, there are
three geared facet defining inequalities forSTAB(G) generated by considering the construction ofG as
G = (L2, B

1, v1
1 , v

1
2), whereL2 = (C4, B

1, v1
1v

1
2).

2
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3. Separation of geared inequalities

Although the stable set problem is one of the most studied problems in polyhedral combinatorics and
many facet defining inequalities are known, only few classesof valid inequalities are known to be poly-
nomially separable. Among them, there are the odd cycle inequalities ([12], [8]) and the blossom in-
equalities for line graphs [23]. Odd wheel inequalities canbe separated by modifying the Padberg and
Rao’s procedure for the odd cycle inequalities [15]. Other separation procedures have been proposed
for generalization of wheels [2, 4]. Here, we propose polynomial time separation algorithms for geared
odd cycle inequalities and geared blossom inequalities, i.e., geared inequalities associated with odd cycle
inequalities and blossom inequalities, respectively.

3.1. Geared odd cycle inequalities

Given a cycleC = (VC , EC) with an odd number of nodes, the odd cycle inequality is

∑

i∈VC

xi ≤
|VC | − 1

2
.

In the following we denote byG \ uw the graph(VG, EG \ {uw}).

Theorem 3.1. Given a graphG, geared odd cycle inequalities can be separated in polynomial time over
the set of points satisfying the edge formulation for STAB(G).

Proof. First observe that the number of gears inG is O(n), since two gears cannot intersect. Moreover,
it is not difficult to prove that all the gears ofG can be identified in timeO(n2), since one gear is defined
as an induced subgraph ofG with a fixed number of vertices. Once a gearB is fixed, consider the
graphH = (VH , EH) obtained fromG by substituting the gearB with the edgev1v2, i.e., VH =
VG \VB ∪{v1, v2} andEH = EG \ (EB ∪F1 ∪F2)∪L1 ∪L2 ∪{v1v2}, whereFi = {diu, biu|u ∈ Ki}
andLi = {viu|u ∈ Ki}, for i = 1, 2. Then, any geared odd cycle inequality valid forSTAB(G) is of
the form: ∑

i∈VC\{v1,v2}

xi + γB(x) ≤
|VC | − 1

2
+ 2, (7)

whereγB(x) =
∑

i∈VB\{h1,h2}
xi + 2xh1

+ 2xh2
, andC = (VC , EC) is an odd cycle ofH containing

the simplicial edgev1v2. Define the edge weightsye for e ∈ EH as follows:

• yuw = 1 − xu − xw for eachuw ∈ EG \ (δ(v1) ∪ δ(v2)),

• yviu = 1 − xu for eachviu ∈ δ(vi) \ {v1v2}, i = 1, 2.

Inequality (7) is equivalent to ∑

e∈EC\{v1v2}

ye ≥ 2γB(x) − 4.

Therefore, a fractional pointx∗ violates an inequality of type (7) if and only if there existsan odd cycleC
in H, containing the edgev1v2, and such that

∑

e∈EC\{v1v2}

y∗e < 2γB(x∗) − 4. (8)

Observe now that, for a fixed gearB, therhs of (8) is a constant and, ifx∗ satisfies the edge formula-
tion, we have thaty∗e ≥ 0, for all e ∈ EC . Therefore, the problem of finding the odd cycleC containing
the edgev1v2 such that the related geared inequality is violated byx∗ reduces to find an even length path
from v1 to v2 of minimum weight, in a graphH \ v1v2 with nonnegative costs on the edges. Thus it is
polynomially solvable by using the algorithm proposed in [16].
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3.2. Geared blossom inequalities

Consider a geared graphG = (H,B, v1v2) such thatH is the line graph of some root graphR(H) and
let w1z andw2z be the two adjacent edges ofR(H) corresponding to the endpointsv1 andv2 of the
simplicial edge ofH. Since any non clique inequality(π,π0) valid for STAB(H) corresponds to an
Edmonds’ inequality [8] for the matching polytope ofR(H), the associated geared inequality is called
a geared blossominequality. Proceeding as in the case of geared odd cycles inequalities, we can rewrite
such an inequality in the form

∑

i∈VT \{v1,v2}

xi + γB(x) ≤ α(T ) + 2

whereT is an induced subgraph ofH such that:VT = E(S) andS is an odd subset of nodes of the root
graphR(H), v1, v2 ∈ VT andα(T ) = |S|−1

2 .
Therefore, for a fixed gearB, the problem of finding a geared blossom inequality violatedby a given

fractional pointx∗ reduces to find an odd subsetS of nodes of the root graphR(H) such thatw1z,w2z ∈
E(S) and

∑

e∈E(S)\{w1z,w2z}

y∗e >
|S| − 1

2
+ 2 − γB(x∗),

where they variables on the edges ofR(H) correspond to thex variables on the nodes ofH. Such a
problem, sincex∗ satisfies the edge formulation, can be solved in polynomial time using the standard
algorithms defined for the blossom separation problem for the matching problem [23].

4. Conclusions

The gear composition has very interesting consequences on the stable set polytope ofclaw-free graphs,
i.e., those graphs such that the neighborhood of each node has no stable set of size three. Claw-free
graphs generalize line graphs and, as for line graphs, the problem of optimizing over their stable set
polytope is polynomial time solvable [19]. By a well-known result of Grötschel, Lovász and Schrijver
(see [15]), this implies that the separation problem for claw-free graphs can be solved in polynomial
time. But up to now no explicit set of facet defining inequalities is known despite many research efforts
[11, 14, 17, 21, 24] and many disproved conjectures [14].

The recent results of Chudnovsky and Seymour on the structure of quasi-line graphs [6] led to the
settlement of a well-known conjecture on the linear description of STAB(G) whenG is quasi-line[9]
(a graph is quasi-line if the neighborhood of each node can bepartitioned into two cliques) and revived
the interest for the facial structure of the stable set polytope of claw-free graphs.

Claw-free graphs with stability number at least four seem tobe a good starting point to face the problem
of finding a defining linear system forSTAB(G); in fact, a result of Fouquet [10] states that claw-free
graphs withα(G) ≥ 4 do not contain odd antiholēC2p+1 with p ≥ 3, i.e., claw-free graphs with “large”
stability number which are not quasi-line contain only5-wheels. This result somehow supported the idea
that all non-rank facet defining inequalities ofSTAB(G) are produced by5-wheels and their neighbors,
the so calledlifted 5-wheel inequalities. Recently, Stauffer [25] proposed the following:

Conjecture 4.1. The stable set polytope of a claw-free but not quasi-line graph G with α(G) ≥ 4 is
given by: non-negativity inequalities, rank inequalitiesand lifted5-wheel inequalities.

Now, using the gear composition introduced in Section 2, we can build graphsG having the following
properties:
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G claw-free and not quasi-line,α(G) ≥ 4,

G produces non-rank facet defining inequalities withrhs greater than two

Examples of such graphs are shown in Fig. (3)-(5). The gearedinequalities produced by these graphs
are all counterexamples for Conjecture 4.1. This implies that rank inequalities and lifted5-wheels in-
equalities are not enough to describeSTAB(G) whenG is claw-free, not quasi-line and withα(G) ≥ 4.
Nevertheless the decomposition theorem for claw-free graphs of Chudnovsky and Seymour [5] strongly
suggests us that the inequalities presented in this paper suffice to give a linear description forSTAB(G).
Thus we can formulate the following:

Conjecture 4.2. The stable set polytope of a claw-free but not quasi-line graph G with α(G) ≥ 4 is
given by

• non-negativity inequalities

• rank inequalities

• lifted 5-wheel inequalities

• lifted geared inequalities.
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