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Abstract

This paper focuses on the outer description of the convex hull of all integer solutions to a
given system of linear inequalities. It is shown that if the given system contains lower and upper
bounds for the variables, then the convex hull can be produced by iteratively generating so-called
mod-2 cuts only. This fact is surprising and might even be counterintuitive, since many integer
rounding cuts exist that are not mod-2, i.e., representable as the zero- one-half combination of
the given constraint system. The key, however, is that in general many more rounds of mod-2
cut generation are necessary to produce the final description compared to the traditional integer
rounding procedure.
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1. Introduction

One of the fundamental results in the theory of linear integer programming states that the convex
hull of all integer points in the intersection of finitely many rational halfspaces is a polyhedron.
This polyhedron that we denote by P; in the following can be described by linear inequalities
that one obtains in finitely many steps by integer rounding [5]. A single step of the integer
rounding procedure consists of taking all inequalities o’z < 8 with a € Z" that are valid for a
relaxation P = PV of P; and adding the constraint a”z < |3] to obtain the next relaxation P!
to which we refer as the first closure of P.

It has been recently shown in [4] that optimizing over the first closure of a polyhedron is N'P-
hard. This explains that one cannot expect to turn this nice concept of integer rounding into an
effective and stand-alone algorithmic tool. The question emerges whether instead of considering
the first closure of a polyhedron one can resort to a weaker relaxation that is algorithmically
more tractable. One relaxation that appears particularly appealing for many combinatorial
optimization problems is defined as the closure of a polyhedron associated with a special family
of rounding cuts. These cuts have been introduced in [1] and are referred to as mod-2 cuts.

More precisely, if P = {z € R"|Az < b} with A € Z™*", then a mod-2 cut is an inequality of
the form %uTAx < [%uTbJ where u; € {0,1} for alli=1,...,m and %uTA €Z™ ie,ulA=0
mod 2.

Among the many important examples of mod-2 cuts we mention the blossom inequalities for
the matching problem, the comb inequalities for the traveling salesman problem, the odd-cycle
inequalities for the stable set problem or for the set covering problem, and the cycle inequalities
for the max cut problem.

Although the problem of separating mod-2 cuts is NP-hard in general, it can be solved in
polynomial time if the constraint matrix meets certain properties (see [1]). Interestingly, [2]
showed that there is a polynomial time algorithm for separating a subclass of mod-k cuts for
any prime number k.

These results suggest that mod-2 cuts are an interesting object to study into further depth.
Our paper contributes to this topic by showing that under mild assumptions a description of
the integer polyhedron can be obtained by iteratively generating mod-2 cuts only.

In the remainder of this paper we will focus on bounded integer programming problems in
inequality form. We will, in addition, assume that lower and upper bounds for the variables are
available. More precisely, for A € Z™*™ b € Z™ and v € Z", the feasible set of integer points is
described as

{reZ": Az <b, —Iz <0, Iz <wv}.

We define Pr = conv({z € Z" : Ax < b, —Iz <0, Iz < v}).

Definition 1.1. Let A € Z™<", b e Z™, v € 77,

} A R b
A= I and b= 0
I v

We denote an initial system with



The first mod-2 closure of the system S is

S(l) — Aa B 5 B 5
suTA, [3u”b] for allu € {0,1}"" st. wTAeZ™ )’
Fort € Zy, t > 2, we define recursively S® = (SEND) to be t-th mod-2 closure of S.

Given any system S = (4,b), then P(S) = {z € R" : Az < b} is the corresponding polyhedron.
The main result of this paper is a proof of the fact that by generating mod-2 cuts iteratively
we can produce the convex hull of the integer programming problem.

Theorem. There exists ¢ € Z, such that P(S®) = Py.

Our proof requires to make use of properties of the mod-2 closure that we summarize in
Section 2. Section 3 is devoted to the proof of the main theorem.

2. Properties of the mod-2 closure

This section develops structural properties of mod-2 closures of polyhedra. Starting with a
system S introduced in Definition 1.1 the iterative application of mod-2 cuts provides a
second copy of the inequality system Ax < b. For this to be true it is essential that explicit
upper bounds on the variables are part of the system S as we show in a subsequent example.

Lemma 2.1. Let S be a system as introduced in Definition 1.1. There exists t € Z such

that ( ﬁ’z ) is part of the system S®.

Proof: Let a’'z < 8 be an inequality of the system Az < b. We want to prove that after a finite

T
az<p\.
Tz < 3 ) is part of the system S().

The system S contains the inequality

= a; - a; —1 B
7 7
> far Y fas|f]. (1)
i=1 i=1
a; even a; odd

number of iterations, ¢ say, (

Then the system S contains two copies of inequality (1). If we consider the original inequality
a’z < B, the two copies of inequality (1) and the upper bounds constraints x; < v; for all 4 such
that a; is odd, and sum them up with multipliers %, we derive that an inequality of the form

29
aTz < B+ 0 where § € Z is contained in S©).
In subsequent rounds we generate mod-2 cuts with multipliers % from:
alz <p
a’z < B+6.

This gives

als < B+ {%5J .

Setting § := L%(SJ, the argument applies iteratively and shows that after [log,(d)] steps a second
copy of aTz < 8 is included in some system S®). O



Our next example illustrates that upper bounds on the variables are needed for Lemma 2.1
to be true.

Example 2.1. Consider the feasible set described as
{(z1,79) € Z%| — 321 + 5y < 8}, (2)

where the inequality —2z; + 3z2 < 4 can be derived from multiplying —3z; + 5z2 < 8 by 3/5,
adding 1/5 times the inequality —z; < 0 and rounding the right-hand-side. One may observe
that, using only lower bounds and the initial inequality, it is not possible to derive a copy
of —3xz1 + 5xz2 < 8. The reason is that both numbers —3 and 5 are odd. Therefore, all the
inequalities belonging to any mod-2 closure attain a ratio of the two coefficients strictly less
than —3/5. O

Resorting to Lemma, 2.1 we are now ready to prove that every mod-k cut with k& prime can
be obtained by generating mod-2 cuts iteratively.

Lemma 2.2. Let SO be a system as introduced in Definition 1.1. Let a’z < B be a mod-k
cut for P(S), i.e., a¥ = %uTA €Z" and B = %uTbJ with u € {0,1,...,k — 1}™2" There
exists a number t € Z, such that a®z < B is part of the system S,

Proof: W.l.o.g. we may assume that k is prime. By Lemma 2.1, there exists a number ¢’ €
Z 4 such that wTAz < uTh is part of the system S®). The inequality uTAz < uTb can be
represented as

ka'x <kB+r (3)

where r € {0,1,...,k—1}.

Then [JuTA]z < L%UTEJ is part of S¢t1). The latter inequality dominates |k/2]a’z <
L%uTI;J, since |k/2)a”z < |k/2a"] = |4uTA]. Therefore, we assume in the following that
|k/2)a”z < [Lu"b] is contained in the system S(+1).

Let m € Z4 such that £k —1 = 2% and 7 odd. Then after « steps the inequality

malz < 7B+ (4)

with § = | 27| is contained in S¢+1+9).
In the next iterations, by considering mod-2 cuts obtained from inequalities (3) and (4) with

multipliers 3, we will produce a mod-2 inequality of the form n'a’z < 7'8 + &', where =’ 20 —
(k+m) with o/ € Z, 7 € Zy, 7' 0dd, and & = [T |,
The crucial observation here is that if § > «, then % + ﬁ < g. In fact, since r < k — 1 and

k > m, we derive this relation with the following simple computations:

0 & _ 8 fr+dr |16 r4d
r 7w k+m o T 7 k4+w”
>§_k—1+5:5k—k7r+7r>
o k+m w(k+m)
>7Tk—k7r+7r 1 1

m(k + m) :k+7r>ﬂ'



Therefore, after a finite number of iterations we will produce a system S (") that contains the
inequalities

ka"z <kB+r and

malz < 7B +4 with §/m < 1.

By Lemma 2.1 there exists a number ) such that S contains i copies of ka”x < kB +r
and j copies of malz < 7B + § where ik + jm = 27, i.e., ik + jr is a power of 2.
Then S¢®+7) contains the inequality

ik +jm o ik + g ir+ 70
Ty G TS T B+ 2 |-

Sincer <k—1and 6 <7 —1, L"‘;—f‘sj = 0. This completes the proof. O
Example 2.2. Consider the feasible set described as
{(z1,22) € Z2%|Tz1 + 1429 < 20}.

The inequality z; + 2z2 < 2 can be derived from multiplying 7z; + 1429 < 20 by 1/7 and
rounding the right-hand-side. Following Lemma 2.2, with one mod-2 operation, we obtain the
first inequality of type (4)

3r1 + 62 < 10.

We then produce the next inequality by using the previous two
5z + 10z < 15.
Tterating the procedure we generate
3z1 + 6x2 < 8,

that is another inequality of type (4) where 7 = 3, § = 2, and ¢ = 2, that is, /7 < 1. Finally,
we consider one copy of 7x1 + 14z2 < 20 and three copies of 3xz1 + 6z5 < 8, we divide by 16
(corresponding to 4 consecutive mod-2 operations), and obtain ;1 + 2z9 < 2.

O

3. Proof of the main theorem

Theorem 3.1. Let S be a system as introduced in Definition 1.1. There exists t € Z, such
that P(S®) = Py.

Proof: Tt suffices to show that there exists ¢’ € Z such that the inequalities describing the first
Chvétal-Gomory closure P! are part of the system S(*"). The polyhedron P! is described by the
Gomory cuts

P! = {z e R"|u" Az < |u"b], for all u > 0,u” A € Z"}.

Every such inequality v Az < |u?b| with v = (p1/q1,-..,Pm/qm) and p; € Zy, ¢; € Z, \ {0}
is a mod-k cut with k = [[, ¢;- In fact, there is a finite representation for P! (see [6]) as
Pl = {z e R*| vl Az < |u'b], for all w € H(C)}, where H(C) is the Hilbert basis of the cone
C = {uAlueR?}.



By Lemma 2.2 every inequality u” Az < |u”b| with v € H(C) is contained in S®) for some
t' € Z,. Therefore, there exists t; € Z, such that S*1) contains all the inequalities ul Az <
|uTb| for all u € H(C), i.e., P(S®)) C P,

By a theorem of Chvétal [3], P = P7 for some integer 7 € Z. Therefore, we can repeat the
same argument for P2,...,P7 by finding systems $(*2), ..., §(¢) guch that P(S (t")) C P* for all
1 =2,...,7. This gives the result. O

Our proof of Theorem 3.1 strongly relies on Lemma 2.1. As Example 2.1 illustrates, Lemma 2.1
is not true if upper bounds on the variables are not present. As a consequence, the proof of
Theorem 3.1 does not apply to systems without upper bounds. It is, however, straightforward
to extend the proof to the case we allow multipliers {0, %, 1} for generating cuts as opposed to
having {0, 1} multipliers only. We also remark that even though in Example 2.1 Lemma 2.1 is
not applicable, one can still show that the inequality —2z1 + 3x2 < 4 is representable as a mod-2
cut in some system S®. This fact might indicate that even an extension of Theorem 3.1 to the

unbounded integer programming case could be true.
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