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Abstract

In this paper some operations are described that transform every graph into a perfect graph
by replacing nodes with sets of new nodes. The transformation is done in such a way that
every stable set in the perfect graph corresponds to a stable set in the original graph. These
operations can be used in an augmentation procedure for finding a maximum weighted stable
set in a graph. Starting with a stable set in a given graph one defines a simplex type tableau
whose associated basic feasible solution is the incidence vector of the stable set. In an iterative
fashion, nonbasic columns that would lead to pivoting into nonintegral basic feasible solutions,
are replaced by new columns that one can read off from special graph structures such as odd
holes, odd antiholes, and various generalizations. Eventually, either a pivot leading to an integral
basic feasible solution is performed, or the optimality of the current solution is proved.

Key words: Stable set problem, perfect graphs, primal integer programming.
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1. Introduction

The stable set problem (or node packing problem) is one of the most studied problems in com-
binatorial optimization. It can be defined as follows: Let (G,c) be a weighted graph, where
G = (V, E) is a graph with n = |V| nodes and m = |E| edges and ¢ € RY is a node function that
assigns a weight to each node of G. A set S C V is called stable if its nodes are pairwise nonad-
jacent in G. The problem is to find a stable set S* in G of maximum weight ¢(S*) =) . co.
The value ¢(S*) is called the c-weighted stability number a.(G) of the graph G.

This problem is equivalent to maximizing the linear function ) s c,z, over the stable set
polytope Pg, the convex hull of the incidence vectors of all the stable sets of G. Thus linear
programming techniques can be used to solve the problem, provided that an explicit description
of the polytope is given. It is nowadays well known that, the stable set problem being NP-hard,
it is very unlikely that such a description can be found for instances of arbitrary size. Moreover,
even if a partial description is at hand, due to the enormous number of inequalities, it is not
obvious how to turn this knowledge into a useful algorithmic tool.

Despite these difficulties, the literature in combinatorial optimization of the last thirty years
abounds with successful studies where nontrivial instances of NP-hard problems were solved with
a cutting plane procedure based on the generation of strong cuts obtained from inequalities that
define facets of certain polytopes.

The idea of using facet-defining inequalities in a cutting plane algorithm was proposed by
Padberg in [20] and pursued in many other papers of his. His contribution goes much beyond
the advances in the knowledge of the stable set problem and its polytope, as it influenced the
developments of the following three decades in polyhedral combinatorics and in computational
combinatorial optimization.

The basic integer linear programming formulation of the problem is obtained by adding the
integrality requirement on the variables to the following system:

Zy +x, <1 for each edge (u,v) in G

(1)

Ty >0 for each node v € V.

Such a system is called the edge-node formulation and provides a relaxation of Pg that has been
studied in depth in [20] where it is proved that its solutions have values in the set {0,1/2,1}.

A set @ CV is called a clique if its nodes are pairwise adjacent in G. In [20] it is proved that
for every clique @ of G the clique inequality

va <1
vER

defines a facet of P; as long as @) is maximal with respect to set inclusion. If in (1) instead
of one inequality per edge we have a clique inequality per maximal clique, we obtain the clique
formulation:

Y weg®v <1 for each clique @ in G

zy € {0,1} for each node v € V,

which provides a tighter relaxation of Pg.
Let C C V be a set of nodes such that G[C], the subgraph of G induced by C, is a cycle of
odd length. If the cycle is chordless, it is called an odd hole, and the inequality

S, < |0|2_ 1

veC




is called an odd-hole inequality. This inequality was proved in [20] to define a facet of Pgic)- In
the same paper a sequential lifting procedure is described that turns an odd-hole inequality, and
actually any inequality defining a facet of the polytope associated with a subgraph of G, into
an inequality facet-defining for Pg.

After the work of Padberg, several other results were produced on the structure of the stable set
polytope. Among the facet-defining inequalities that were characterized we mention the antihole
inequalities introduced by [19]; their definition is as for the hole inequalities, except that the
subgraph induced by C is not a chordless cycle but its complement (a so-called odd antihole).
For a list of references to further facet-defining inequalities for which a characterization is known,
we refer to, e.g., Borndorfer [5].

It is not a trivial task to exploit this vast amount of knowledge on the stable set polytope to
devise an effective cutting plane algorithm that is able to solve non trivial instances of large size.
Among the few attempts, we mention the ones of Nemhauser and Sigismondi [18] and of Balas et
al. [1]. Unlike the case of other NP-hard problems, polyhedrally based cutting plane algorithms
for the stable set problem have not yet shown their superiority over alternative methods. On the
other hand, several approaches have been tried to solve difficult instances. For a collection of
papers on algorithms for the stable set problem and for a recent survey on the subject, see [16]
and [4], respectively.

The cutting plane procedure mentioned before has a “dual flavor,” in the sense that the
current solution is infeasible until the end, when feasibility and hence optimality is reached. A
primal cutting plane procedure was first proposed by Young [22]: One starts with an integral
basic feasible solution, then either pivots leading to integral solutions are performed or cuts are
generated that are satisfied by the current solution at equality. Padberg and Hong [21] were the
first to propose a similar primal procedure based on strong polyhedral cutting planes. These
kinds of algorithms produce a path of adjacent vertices of the polytope associated with the
problem.

A profound study of the vertex adjacency for the polytope of the set partitioning problem
was produced by Balas and Padberg [2]. They provided the theoretical background for the
realization of a primal algorithm that produces a sequence of adjacent vertices of the polytope,
ending with the optimal solution. Their basic technique was to replace a column of the current
simplex tableau with a set of new columns in order to guarantee the next pivot to lead to an
integral basic feasible solution.

These ideas were generalized to the case of general integer programming by Haus, Koppe, and
Weismantel [13, 15], who called their method the “Integral Basis Method.” This method does
neither require cutting planes nor enumeration techniques. In each major step the algorithm
either returns an augmenting direction that is applicable at the given feasible point and yields a
new feasible point with better objective function value or provides a proof that the point under
consideration is optimal. This is achieved by iteratively substituting one column by columns
that correspond to irreducible solutions of a system of linear diophantine inequalities. A detailed
description of the method is given in the papers [14, 15].

The present paper provides some first graph theoretical tools for a primal algorithm for the
stable set problem in the same vein as the work of Balas and Padberg and of Haus, Képpe, and
Weismantel.

The cardinality of the largest stable set of a graph G = (V, E) is called the stability number
of G and denoted by a(G). The minimum number of cliques of G whose union coincides with V'
is called the clique covering number of G and denoted by X(G). A graph G is perfect if and
only if a(G") = X(G'") for all subgraphs G’ of G induced by subsets of its node set V. For the



fundamentals on perfect graphs and balanced matrices and on their connections, which will be
used throughout the paper, we refer to, e.g., [6].

A graph is perfect if and only if its clique formulation defines an integral polytope. Moreover,
for perfect graphs the stability number can be computed in polynomial time [10]; thus, also
the separation problem for Pg is polynomially solvable in this case. Therefore, one can devise
a primal cutting plane algorithm for the stable set problem for perfect graphs. We start, for
example, with the edge formulation and with a basic feasible solution corresponding to a stable
set. Then we perform simplex pivots until either we reach optimality or we produce a fractional
solution. In the latter case we add clique inequalities to the formulation that make the fractional
solution infeasible, we step back to the previous (integral) basic feasible solution, and we iterate.

Suppose now that the graph is not perfect. We assume that at hand is a graph transformation
that in a finite number of “steps to perfection” transforms the original graph into a possibly
larger graph that is perfect. Then it may be possible to apply again the previous primal cutting
plane procedure as follows: As soon as the fractional solution cannot be cut off by clique
inequalities, because other valid inequalities for Pz would be necessary, we make one or more
“steps to perfection” until the clique formulation of the current graph makes the fractional
solution infeasible. This procedure eventually finds an optimal stable set in the latest generated
graph. It can be used for solving the original problem as long as the graph transformation is
such that the optimal stable set in this graph can be mapped into an optimal stable set in the
original graph.

This procedure provides a motivation for this paper where in Section 2 we define valid trans-
formations that have the desired properties mentioned above; in Section 3 we translate the graph
transformations into algebraic operations on the simplex tableaux; finally, in Section 4, we give
some properties of the proposed transformations that may be useful when the primal algorithm
sketched above is implemented.

2. Valid Graph Transformations

Throughout this section, we will denote by G = (V% E°) and ® the graph and node-weight
function of the original weighted stable set problem, respectively. The purpose of this section is to
devise several types of transformations (G, c¢) — (G', ) with the property a.(G) = a«(G'), i.e.,
transformations maintaining the weighted stability number. After a sequence of those transfor-
mations, a perfect graph G* with a node-weight function ¢* will be produced. In perfect graphs
the stability number can be computed in polynomial time [10]. Moreover, the c*-weighted stable
set problem in G* can be solved with linear programming over the maximal-clique formulation
of G*.

Typically, one is not only interested in the weighted stability number of a graph but also in
a stable set where the maximum is attained. Thus, once the c*-weighted stable set problem
in G* is solved, one would like to recover a corresponding maximum c’-weighted stable set in
the original graph GY. For this purpose, we shall attach a node labeling o: V — 2V° to each
graph G = (V, E). This labeling assigns a stable set o(v) € V? in the original graph to each
node v € V. The label of a node also determines its weight by the setting

c(v) = Z A(u) forveV. (2)
u€o(v)

Thus, each node represents a partial stable set configuration in the original graph. For brevity
of notation, we shall define 60: V0 — 2V° by ¢%(v) = {v} for v € VO.



Now, given a stable set S C V in G with labeling o, we intend to reconstruct a stable
set S C V0 in G° by
SO ={Ja(s). (3)
s€S

For this to work, we need to impose some properties on a labeling.

Definition 1 (valid labeling). Let G = (V, E) be a graph. A mapping o: V — 2V% is called
a walid node labeling of G (with respect to G°) if the following conditions hold:

(a) For v € V, o(v) is a nonempty stable set in G°.

(b) For every two distinct nodes u,v € V with o(u) No(v) # 0, the edge (u,v) is in Ej i.e.,
nodes with nondisjoint labels cannot be in the same stable set.

(c) Let u,v € V be distinct nodes. If there exists an edge (u’,v°) € E° with u® € o(u) and
vY € o(v), then the edge (u,v) belongs to E.

Note that for a valid labeling o the union in equation (3) is disjoint, and it gives a stable set

in GY.

Lemma 2. Let o be a valid labeling of a graph G = (V, E) and let c: V — R, be defined by (2).
Let S be a stable set in G. Then S° = J,.g0(s) is a stable set in G° with °(5°) = ¢(S).

Proof. Assume that u®,v° € SO are distinct nodes with (u°,v°) € EV. There exist u,v € S such
that 4 € o(u) and v° € o(v). If u # v, condition (c) of Definition 1 implies that (u,v) € E,
thus S is not stable in G, contrary to the assumption. Otherwise, if u = v, the set o(u) is not
stable in G°, contradicting condition (a) of Definition 1. Hence, S° is a stable set in GO.
Finally, note that the union (J,.g0(s) is disjoint due to condition (b) of Definition 1. There-

fore, ¢(S) = Y55 ¢(8) = Dses Dosoea(s) A(s%) = 2(99).

Definition 3 (faithful labeling). Let o be a valid labeling of a graph G = (V, E) with respect
to G® and let ¢: V — R, be defined by (2). We call o a faithful labeling of G if for every stable
set S in G that has maximum weight with respect to ¢, the stable set S° = [J,.g0(s) in G°
has maximum weight with respect to . A faithfully labeled graph (G,c,o) is a weighted graph
(G, ¢) with a faithful labeling o.

Definition 4 (valid transformation). A valid graph transformation is a transformation that
turns a faithfully labeled graph (G, ¢, o) into a faithfully labeled graph (G',d,d’).

Throughout this paper, we shall only make use of a simple type of valid graph transformation,
which can be characterized with the following lemma:

Lemma 5. Let G = (V, E) be a graph with a faithful labeling o: V — 2V° with respect to GO.
Let G' = (V',E") be a graph with a valid labeling 7: V' — 2V with respect to G, such that for
every stable set S in G, there is a stable set S’ in G’ with S = yce 7(s"). Then o': V' — 2V’
defined by o' (v') = Uver(u') o(v) for v' € V', is a faithful labeling of G' with respect to G°, and
(G,c,0) — (G',c,d") is a valid graph transformation.



Proof. Obviously, o’ is a valid labeling of G’ with respect to G°. Now let S’ be a stable set in G
that has maximum weight with respect to ¢’. Let S = [J,cg 7(s"). Since 7 is a valid labeling
of G’ with respect to G, the set S is stable in G, and we have

=2 2 =3 > D A=) D el 4

s'eS!' sVea’ () s'eS! ser(s’) sP€a(s) s'eS! ser(s’)

Suppose that there is a stable set S with ¢(S) > ¢(S). Then there exists a stable set S in G' with
S=U. e 7(s"). Since (4) also holds when S’ and S are replaced by S’ and S, respectively, we

have ¢/(S') > ¢/(S'), which is a contradiction to the assumption. Hence, o’ is a faithful labeling
of G' with respect to G°.
We first consider a very simple transformation. Take an odd path of nodes in G,

P = (vi,v2,...,v9,V2141)

that together with the edge (v9;4+1,v1) forms an odd hole (see Figure 1). Let S be a stable set
in G with v1 € S. Since there are at most [ elements of S in P, there exists an index i such
that both ve; and vg;4+1 are not in S. Therefore, if we replace v; by [ pairwise adjacent copies
w1, ...,w;, where w; is adjacent to both wve; and wo;41, for : = 1,...,1, it is not difficult to see
that any stable set in G corresponds to a stable set in the new graph. The advantage of applying
such an operation is, as will be made clear in the following, that in the new graph the odd hole
has disappeared. This observation motivates the following definition.
The set of all nodes in G adjacent to a node v is denoted by Ng(v).

Definition 6 (node-path substitutions). Let G = (V, E) be a graph with a valid node
labeling o: V' — 2%, For some [ > 0, let

P= (UlaUZa .. 7102l,102l—|—1)

be a sequence of nodes of V such that v; is adjacent to v;41 for 1 =1,...,2]. We call P an odd
path of nodes; see Figure 1. A node-path substitution along P that transforms a graph G with
a valid labeling into a graph G’ with a labeling o’ is obtained in the following way:

e replace v by the clique W of new nodes, defined by

W {wi,...,wy}  if v1 and vg41 are adjacent in G,
| {w1,...,w,t} otherwise;

e for w € W connect w to all nodes of Ng(v1);
e fori € {1,...,l} connect w; to both ve; and vy; 11, then set o’ (w;) = o(v1);

e connect node ¢ (if it is present in W) to vg;+1 and all nodes of N¢(vg;41), then set o' (t) =
o(v1) Uo(vay1).

The following definition gives a generalization of the node-path substitution.

Definition 7 (clique-path substitutions). Let G = (V, E) be a graph with a valid node
labeling o: V' — 2%, For some [ > 0, let

= (Ql = {Ul}aQQa .. '7Q2l+1)



V2 U4 Vot

~o U3 Us _ -7 Vor41

Figure 1: An odd path of nodes
be a sequence of cliques of G such that Q; ;1 := Q; UQi41 is a clique in G for all 4 € {1,...,2[},
and Q; NQ; =0 fori=j+1 mod 2l + 1. We call P an odd path of cliques. Let
R ={v € Qg1 : v is not adjacent to vy in G }. (5)

A clique-path substitution along P that transforms a graph G with a valid labeling into a graph G’
with a labeling ¢’ is obtained in the following way:

e replace v by the clique of new nodes

W = {wy,we,...,w}U{t,:r € R};

e for w € W connect w to all nodes of Ng(v1);
o for i € {1,...,1} connect w; to all the nodes of Q; 2i+1, then set o' (w;) = o(v1);
e for r € R connect ¢, to r and all the nodes of Ng(r), then set o'(t,) = o(v1) Uo(r).

In Figure 2 an odd path of cliques is shown. In Figure 3, the graph G’ that is obtained by the
clique-path substitution for the case R = () is shown. Note that, to unclutter the picture, some
edges have been omitted, in fact all nodes w; are connected with the nodes in Q2 and Q941 \ R.

Figure 2: An odd path of cliques

Definition 7 does not require the cliques ); to be pairwise disjoint; non-consecutive cliques may
share nodes. Obviously, when |Q;| =1 for i = 2,...,2] + 1 Definition 7 reproduces Definition 6.
The labeling ¢’ obtained in a clique-path substitution is a valid labeling; indeed, it turns faithful
labelings into faithful labelings:

Proposition 8. Clique-path substitutions are valid graph transformations.



Figure 3: Clique-path substitution with R = ()

Proof. Let o be a faithful labeling of G. We shall make use of Lemma 5 to show that ¢’ is a
faithful labeling of G'.

To this end, let 7: V! — 2" be defined by 7(w;) = {v,} for i € {1,...,1}, 7(t,) = {vy,r} for
r € R and 7(v) = {v} otherwise. Since v; is not adjacent to r for r € R, we have that 7 is a
valid labeling of G’ with respect to G. Moreover, it is easy to see that o’(v') = U,¢ () o(v) for
v eV

Now let S be a stable set in G. If v; ¢ S, the set S is stable in G’ as well. Suppose that
v1 € S. Since vy is connected to all nodes of the clique @2, we have that Qo NS = 0. If also
Q3N S =0, the set S =8\ {v1} U{w;} is stable in G'. Otherwise, Q4 N S is empty, and we
can repeat the argument until we reach the end of the path P. If finally Q9.1 NS = (), the set
S" =8\ {v1} U{w} is stable in G'. Otherwise, since the nodes in Q911 \ R are adjacent to v;
in G, there is a node r € RN S. Thus, S = S\ {v1,7} U {¢} is stable in G'.

By this construction, for every stable set S in G we obtain a stable set S’ in G’ such that
S =Uycg 7(s'). Hence, by Lemma 5, ¢’ is a faithful labeling of G'.

In certain cases, a clique-path substitution converts an imperfect graph G into a perfect
graph G'.

Lemma 9. If G is either an odd hole or an odd antihole, then there exists a mode-path substi-
tution such that the resulting graph G' is perfect.

Proof. Let G be an odd hole with 2k 4+ 1 nodes denoted by v1,...,v9,1+1. Pick node v; and
consider the path P from v; to vor41 through all nodes. Apply the node-path substitution of
node v; along P, and call the resulting graph G’. In Figure 4 both the original graph G and the
transformed graph G’ are shown for k = 2.

Let W = {wy,ws,...,wy} be the set of nodes replacing node v;. Consider the following clique
formulation associated with G':
Q1: Zleyi‘}‘ngl

Q2: Zf:1 Yi + Topy1 <1
Q2i+1:  Yit Do+ 1241 <1 fori=1,...k
Q9;: Toi1+x9; <1 fori=2,...,k

where variables 1; correspond to nodes w; and variables z; to nodes v;. We show that the
constraint matrix M of such a formulation is balanced. This implies the perfectness of G (see,

e.g., [6]).



10.

Figure 4: Substitution of node 1 in an odd hole on 5 nodes

We consider the row-column bipartite graph of the matrix M (see Figure 5), i.e., a graph
constructed by taking a node for each row and each column of M, and an edge for each nonzero
entry of M connecting the nodes corresponding to its row and column. It is well known that M
is balanced if and only if the length of all holes of this graph is divisible by 4. It is easy to verify
that this is the case for M. Hence the matrix is balanced and the claim follows.

Q2k+1
Figure 5: Bipartite graph associated with the clique matrix of graph G’

Let G be an odd antihole with 2k +1 nodes, then we number the nodes in such a fashion that
the edge set of the complement G of G is the odd hole

{(1,2),(2,3),...,(2k,2k +1),(2k +1,1)}.
Consider the cycle of length five in G,
{(173)7 (37 2k + ]‘)7 (2k + ]" 2)’ (2’ 4)’ (1’4)} °

We select node 1 and perform the node-path substitution along (1, 3,2k + 1,2,4). That is, we
replace node 1 by two adjacent nodes 1’ and 1”. Node 1’ will be connected to all neighbors of
the old node 1 and to the node 2k + 1, while node 1” will be connected to the neighbors of the
old node 1 and to the node 2. The resulting graph is called G'. Its complement G’ only contains



11.

the simple path
{(1",2),(2,3),...,(2k,2k + 1), (2k + 1,1")} .

Hence, G is perfect. By Lovéasz’s Perfect Graph Theorem [17], G’ is perfect, too.

Note that Lemma 9 implies that, if the Strong Perfect Graph Conjecture [3] is true, then we
can transform every minimally imperfect graph into a perfect graph with a single clique-path
substitution.

The following example gives an alternative substitution of a node in an antihole structure,
which illustrates the more general clique-path substitution.

Example 10. Consider an odd antihole Cyy1 = (V, E) with 2k + 1 nodes, labeled from 1
to 2k + 1. Pick node 1, then it is easy to verify that the set V' \ {1} can be partitioned into
two cliques: Qoqd and Qeven- The former contains all nodes with an odd label (except node 1),
the latter contains all nodes with an even label. So we can consider the following odd path of
cliques:

P = ({1}, Qeven \ {2},{2}; Qoaa \ {3}, {3})

Figure 6 shows the 7-antihole Cy; the edges of the complete subgraphs induced by the relevant
cliques in P are shown with thick lines. The graph G’ resulting from the clique-path substitution

Figure 7: A T-antihole after a clique-path transformation

along P has two new nodes 1’ and 1” replacing node 1; node 1’ is connected to all nodes but 2,
while node 1” is connected to all nodes but 2k + 1. The graph G’ is shown in Figure 7. The
edges introduced by the clique-path substitution are drawn with dashed lines, whereas edges
merely inherited from node 1 are drawn with a dotted line. The resulting graph is the same as
the one obtained by the node-path substitution of Lemma 9, hence it is perfect.



12.

For any graph, it is easy to construct a finite sequence of clique-path substitutions leading to
a graph that is the disjoint union of complete graphs, hence to a perfect graph:

Lemma 11 (Finiteness). Let G = (V, E) be a graph. There exists a finite sequence of clique-
path substitutions leading to a perfect graph G* = (V, E).

Proof. Since clique-path substitutions work within one component, we may assume that G is
connected. Let @ C V be a clique in G that is maximal with respect to inclusion. If @ =V, we
are done. Otherwise, let v; € V'\ @ such that Q2 := Q N Ng(v1) # 0. Let Q3 := Q \ Q2. Now
P = (v1,Q2,Q3) is an odd path of cliques in G. The clique-path substitution along P leads to
a graph G', where all the new nodes have been adjoined to the clique Q. We continue with G’
and a maximal clique in G’ containing the enlarged clique. Since |V \ Q| decreases in each step
by at least one, the procedure terminates with a complete graph.

However, we cannot expect that an arbitrarily chosen sequence of clique-path substitutions
terminates, as the following example shows.

Example 12. Let us consider the graph G° shown in Figure 8(a). The node-path substitution
along the odd path of nodes (1,2,3,4,5), shown with bold edges, leads to the validly labeled
graph G! shown in Figure 8(b). As G° is an induced subgraph of G' after renaming node 1/
to 1, the same node-path substitution can be performed ad infinitum, adding two nodes (copies
of 1” and 1|5) in each step.

(a)
Figure 8: The node-path substitution along the odd path of nodes (1,2, 3,4, 5)

Remark 13 (The struction of Ebenegger et al.). In the paper [8], Ebenegger, Hammer,
and de Werra describe a construction that reduces the stability number of a graph by 1; in the
subsequent papers [7, 11, 12] this is called a struction. Here, we shall present a variant of the
struction that is a valid graph transformation, i.e., it maintains the weighted stability number
rather than reducing it. Let G = (V, E) be a graph. Let vy € V be an arbitrary node and let
N(vg) ={v1,...,vp}. The idea of the construction is the following: For each stable set S in G
not containing vg but some of the nodes v1,...,v,, there is a minimum index 7 € {1,...,p}
with v; € S. For each such minimum index 4, in G’ there is a layer of copies of those nodes
Vi, Vi1, - - - , Up that are not adjacent to v; in G; these copies are called v; ;,v; 11, ..., V;p. These
copies replace the original nodes v1,...,v,. Within one layer, the v; ; inherits all the edges from
both v; and v; in G, whereas nodes of different layers are all connected by edges. Figure 9
illustrates the transformation; note that only edges between adjacent layers have been drawn
here and that node vy, which is connected to all new nodes, has been omitted. The algorithmic
idea is to perform a sequence of structions, yielding a graph whose stability number can be
computed easily. In the papers [7, 11, 12], it is shown that, for certain classes of graphs, the
number of operations necessary is polynomially bounded. In the general case, however, one
cannot expect similar results to hold, since the number of nodes in the problem may grow very
fast. We are not aware of a thorough computational study of an algorithm based on structions.
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Figure 9: A variant of the struction of a graph

Remark 14 (Comparison to LP-based branch-and-bound procedures). We use a simple
example to illustrate the possible advantage of a method based on valid graph transformations,
compared to LP-based branch-and-bound procedures. For k € {1,2,...} and [ € {2,3,...}, let
the graph Cgl 41 be the disjoint union of £ odd holes Cg; 1. The maximal clique formulation of
the stable set problem in C%_, is

k 20+1
max izt Z];l Li,j

s. t. Tij+ T4 <1 fori e {1,...,k} and j € {1,...,2}, (6)
i1+ xio41 <1 fori e {1,...,k},
z;; € {0,1} fori€ {l,...,k} and j € {1,...,2] + 1}.

The unique optimal solution to the LP relaxation of (6) is given by z; ; = 5 for i € {1,...,k}
and j € {1,...,2l + 1}. An LP-based branch-and-bound procedure would now select one node
variable, z1, say, and consider the two subproblems obtained from (6) by fixing z1 1 at 0 and 1,
respectively. The graph-theoretic interpretation of this variable fixing is that the copy of Cy41
corresponding to the node variables z1. is turned into a perfect graph in both branches, see
Figure 10. Hence, the optimal basic solutions to the LP relaxations of the subproblems attain

1
2

Figure 10: Graph-theoretic interpretation of the branch operation on a fractional node variable
in an LP-based branch-and-bound procedure. The numbers shown aside the nodes are the node
variable values in an optimal solution to the LP relaxation. (a) One of the copies of C5 in the
graph C¥. (b) Fixing the first node variable at zero. (c) Fixing the first node variable at one.
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integral values there. Since there remain & — 1 odd holes in both subproblems, the branch-and-
bound procedure clearly visits a number of subproblems exponential in k.

On the other hand, a method using clique-path substitutions, which performs the whole enu-
meration implicitly, can turn the graph Cgl 41 into a perfect, validly labeled graph (G, c, o) by
performing only k substitution steps of the type shown in Figure 4. The optimal solution to the
LP relaxation of this formulation is integral, and the corresponding maximum stable set in the
original graph Cgl 41 can be computed by means of the node labeling o.

3. Optimizing Over Stable Sets

Since graph transformations transform weighted stable set problems to weighted stable set prob-
lems, they can be used as a tool within any optimization algorithm for the stable set problem.

In this section, we will deal with weighted stable set problems in a specific algorithmic frame-
work, namely in a primal integer programming setting in the vein of work of Balas and Pad-
berg [2] and of Haus, Koppe, and Weismantel [13, 15]. It will turn out that the graph trans-
formations discussed in the previous section can be re-interpreted as column operations in an
integral simplex tableau.

First we need to fix an integer-programming formulation. We note that the problem of finding
a maximum stable set in G = (V,E) with respect to the weight function ¢ € RY can be
formulated as the following integer program:

max 'z : Ty + Ly + 29 = 1 for (v,w) € E, z € {0,1}", z € {0,1}7. (7)

Note that in this formulation z,, is the slack variable of the edge (v,w) € E. A better integer
programming formulation is achieved when edges are replaced by cliques of larger size. Let
Q1,...,Qy be cliques in G that cover all the edges of G, i.e., for every edge (v,w) € E there is
an index ¢ € {1,...,k} such that {v,w} C @Q;. Note that this set of cliques may not coincide
with all the maximal cliques of the complete clique formulation and that the cliques may not be
maximal. Introducing a slack variable zg, for each clique @);, the weighted stable set problem is
formulated as

maxc'z : va—l—zQi:l forie{l,...,k}, x>0,2z2>0, (8)
vEQ;
zeZV, ze k. (9)

This integer program is the starting point of our further investigations. We call (8) a mazimal-
clique formulation if all cliques Q;, i = {1,...,k}, are maximal. Moreover, if the set {Q;}i—{1,... x}
includes all maximal cliques of G, (8) is called the complete mazimal-clique formulation.

Now let S C V be a stable set in G. To construct a basic feasible solution associated with S
we select for each of the rows in the program (8) a basic variable as follows:

e For every v € S, let i, be a row index such that v € @Q);, . We select x, as the basic variable
associated with the row i, of the tableau.

e For each of the remaining clique constraints 7 we select the slack variable zg, as the
corresponding basic variable.

Note that the indices i, are all distinct, and hence the construction yields a basis corresponding
to S. As usual, let B and N denote the sets of basic and nonbasic variables, respectively. We
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can now rewrite (8) in tableau form

yp + A Anyn = b
(yB,yn) € ZT]C-
The variables y; correspond to node variables x,, or slack variables zg,. We will henceforth call a
tableau obtained by this procedure a canonical tableau for S. Realizing the fact that the original

objective function was nonnegative on the nodes and zero on the slack variables, the following
observation is immediate.

Observation 15. Let N be the set of nonbasic variables in a canonical tableau for a stable set S
in the graph G. Then the reduced cost of a nonbasic slack variable zg, is always nonpositive.
The reduced cost of a nonbasic node variable x;, may be zero, negative or positive.

Example 16. Let C5 be an odd hole on five nodes. The problem of finding a stable set of
maximum size in Cy is formulated as the following integer program:

max =i+ x2+x3+ T4+ x5

s.t.  x1 4+ x9 + 219 =
z2 + T3 + 203 =1

T3 + Ta + z34 =
4+ 5 + 245 =1
1 + x5 +z15=1

The construction described above for the stable set S = {3,5} in C5 yields the following tableau
for S:

max T1 — 223 — 245
s.t. x3 + 9 + Zo3 =1
x5 + x4 +245=1
234 —Zy+ 14 — %93 =0
Z15 — T4+ 21 — 245 =10
219 + x9 + =1

Starting from a basic feasible integer solution, the Balas—Padberg procedure [2] and the In-
tegral Basis Method by Haus, Koppe and Weismantel [13, 15] proceed as follows. As long as
nondegenerate integral pivots are possible, such steps are performed, improving the current ba-
sic feasible integer solution. When a solution is reached that would only permit a degenerate
integral pivot, a “column-generation procedure” replaces some nonbasic columns by new “com-
posite” columns, which are nonnegative integral combinations of nonbasic columns in the current
tableau. In this way, eventually columns are generated that allow nondegenerate integral pivots,
or optimality of the current basic feasible solution is proved.

The Balas—Padberg procedure has not proven to be an efficient algorithm for set partitioning
problems. Also the implementation of the Integral Basis Method as described in [14] shows a
rather weak computational performance when applied to stable set problems. The reason is that
both algorithms generate the composite columns to add to the tableau without making use of
the graph-theoretic properties of the problem.

The idea to improve the performance is to use “strong”, “combinatorial” composite columns
whenever possible, rather than the general composite columns derived from the tableau. This
is where clique-path substitutions come into play. In the following, we show how they can be
dealt with in the integer programming setting.
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Definition 17 (odd alternating path of cliques). Let G = (V, E) be a graph, o a faithful
labeling of G and let the node-weight function c¢: V' — R, be defined by (2). Fix an integral
simplex tableau for a formulation of the c-weighted stable set problem in G. Let z,, be a
nonbasic variable of positive reduced cost, and let P = ({v1},Q2,...,Q2+1) be an odd path of
cliques in G. Again we denote by R the set

R ={v € Qg1 : v is not adjacent to v; in G }.

Fori € {1,...,1}, assume there is a nonbasic slack variable z; for the clique Q2; 2i+1 = Q2;UQ2i+1,
and there is z;, = 1 with j; € Q2;. Moreover, presume that all variables x,, for v € R are nonbasic.
In this setting, we call

({v1},Q23,Qu5,---,Quo1+1)

an odd alternating path of cliques. If |Q;| =1 for i € {2,...,2l + 1}, we call it an odd alternating
path of nodes.

In this setting, we are going to remove the column of the nonbasic variable z,, from the
tableau and replace it by nonbasic integral combinations of other columns of the tableau. We
shall use the notation z, A x,, for a new variable associated with a column that is the sum of
the columns for z, and z,,.

Definition 18. For an odd alternating path of cliques

({v1},Q23,Qus5,---, Quoi+1)

we define the corresponding alternating-path substitution in the tableau as follows: substitute z,,
by new binary variables according to the following column operations:

o u, =1z, ANz, forall reR,
o yi=xy Nz forall ie{l,... I},
where all new variables are nonbasic and 0/1.

Observation 19. Let £ and Z denote the variables z and z, respectively, in the formulation
obtained after the substitution. Then we can map a solution of the new formulation back into
a solution of the old formulation via the following relations:

Ly, = Zi’:l yi + ZT‘ER Uy, (10&)
Ty = Ty + Uy for all r € R, (10Db)
2, = Zi +Y; for all 1 € {1,...,[}. (10C)

For all other variables, we have x, = Z, and z; = Z;. In the following we will denote by F a
generic formulation of type (8), by Sp(F) the formulation obtained by applying an alternating-
path substitution along P to F. Moreover, given a formulation F' = Sp(F), we will denote
by Rp(F') the formulation obtained by applying the mapping (10a)-(10c) to F'.

Lemma 20. The integer program obtained by a sequence of alternating-path substitutions is an
integer programming formulation of the stable set problem in G; the optimal solutions translate
into the mazimum stable sets in G via the iterated mapping (10).
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Proof. Let (G',c,0") denote the labeled graph obtained from (G, ¢, ) by performing the clique-
path substitution along

P= ('Ula Q27 Q3a s 7Q2laQ2l+1)'

As in Definition 7, let t, for r € R and w; for i € {1,...,l} denote the new nodes arising from
the substitution. We show that the problem resulting from the above column operations is a
formulation of the ¢-weighted stable set problem in G'.

The key is to realize that the new variables correspond to the new nodes in the following way:

(i) For i € {1,...,1}, variable y; = z,, A z; corresponds to the new node w;.
(ii) For r € R, variable u, = z,, A z, corresponds to the new node t,.

To verify (i), let i € {1,...,l} and note that the original formulation of the c-weighted stable
set problem in G implies the following inequalities and equations:

Ty, + Ty <1 forv € Ng(v1),
ZUEQ2¢,2i+1 Ty + 2 < 1.

By (10), we obtain:

Zézl Yi+ D pertr +Ty <1 for v € Ng(v1),
ZvEQ2z‘,2i+1 Ty + Zvein,ziﬂﬂR Uy +2i +yi = 1.

Hence, for all variables z; corresponding to the neighbors t € N/ (w;), as given by Definition 7,
the new formulation implies an inequality z; + y; < 1. The correspondence (ii) can be verified
analogously.

Example 21 (Example 16 continued). For the stable set problem introduced in Example 16,
the path

P =(1,{2,3},{4,5})

is an alternating path of cliques. The slack variables zo3 and z45 are both nonbasic. Now 7
is the variable in the tableau with positive reduced cost. Since the edge (1,5) is present in G,
we substitute variable z; by the two variables 7} = z1 A 293 and # = z; A z45 corresponding
to the two sums of column 1 and the columns associated with z93 and z45, respectively. Note
that in this example the reduced cost of the two new nonbasic columns are 0. Hence, we have
a certificate that S is indeed optimal.

This illustrates the most fortunate situation for our algorithmic framework: The alternating-
path substitution has not only turned the graph G into a perfect graph, as shown in Lemma 9,
but we also obtain an integral tableau with a linear-programming certificate for optimality.

4. Properties of Alternating-Path Substitutions

The destruction of one odd hole via our column substitution procedure has the price that we
need to enlarge the original stable set problem significantly. One might argue that because of
this enlargement of the graph it might algorithmically be more tractable to add just one odd-
hole cutting plane to the initial formulation. The drawback of the latter approach is, however,
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that odd-hole cuts define facets for the stable set polytope associated with a graph that is the
odd hole itself. For an arbitrary graph that contains an odd hole as an induced subgraph lifting
becomes necessary to strengthen an odd hole cut. However, it is not known how to separate
each lifted inequality in polynomial time. Therefore, cutting-plane procedures apply heuristic
techniques (exact or heuristic sequential lifting) to strengthen an odd hole cut. In contrast, our
procedure automatically deals with graph structures where a cut approach would need lifting,
as the following example shows.

Example 22. Let G = (V, E) be an odd wheel involving 2k nodes. The first 2k — 1 nodes,
numbered from 1 to 2k — 1, form an odd hole. The additional node is called the hub and
is denoted by h. This node h is adjacent to all nodes on the hole. Associated with such a
configuration is an odd wheel inequality that can be seen as a lifted odd-hole inequality,

2%—1
Zwi—l-(k—l)xhgk—l.
=1

We will now show that “destroying” the odd hole by performing a node-path substitution makes
the fractional solutions that would be cut by the odd wheel inequality automatically infeasible.
This implies that in this situation a concept of inequality strengthening by lifting is not required
for the primal approach. We perform the same graph transformation as in the proof of Lemma 9
for the odd hole, i.e., a node-path substitution along the path

P=(1,23,...,2k—2,2k—1).

The resulting graph G’ is illustrated in Figure 11 for & = 3. Compared to the perfect graph
obtained in the proof of Lemma 9, G’ only has the extra node h, which is connected to all the
other nodes. Thus G’ is perfect as well.

223

Figure 11: Substitution of node (1) of the odd hole in an odd wheel of size 5

It has already been pointed out that a clique formulation (8) of the weighted stable set problem
is much stronger than the node-edge formulation (7). In fact, when the maximal cliques are
employed, the integrality constraints in (9) can be dropped if the underlying graph G is perfect.

Example 23 (Example 10, continued). Let us again consider the transformation of the odd
antihole Cyy41 carried out in Example 10. Let the problem be given in its complete maximal-
clique formulation, that is composed of 2k + 1 cliques of size k, among which are the cliques
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Qodd and Qeven from Example 10. Let a basis be fixed such that the node variable z; and
the clique slack variables zg_,, and zg,.., are nonbasic. Then the clique-path substitution of
Example 10 is equivalent to the column operation substituting z; by the variables:

® T =T1 N 2Quq45
¢ I =TI /\ zQeven‘

It is now easy to verify that in the formulation we obtain in this way all cliques are maximal in
the resulting perfect graph (actually, in this particular example we obtain the complete maximal-
clique formulation).

However, this desirable property does not hold in general.

The alternating-path substitution requires that the cliques Q2;UQ2;+1, ¢ € {1,...,1} be present
in the formulation F. In the case that these cliques are not maximal, to perform the alternating-
path substitution we have to add the corresponding inequalities, which are dominated.

Now we consider the identification problem for odd alternating paths of cliques. First we
show that an alternating-path substitution “cuts off” the fractional point (zf, z!") obtained by
a single pivoting step applied to a basic integer solution (z!,z'). Moreover, such an alternating
path with R = () can be found in polynomial time if it exists.

Definition 24. Let (z',2!) be a basic integer solution and let v; be a nonbasic variable. If the
basic solution obtained by pivoting in z,, is fractional, we call it a fractional neighbor of (z!, 1)
and denote it by (zf', 2F).

Lemma 25. Let F be a formulation for the graph G, (z!, 2') be a basic integer solution, and .,
a nonbasic variable. Assume that pivoting x,, into the basis would produce a fractional neigh-
bor (z',2F"). Consider an alternating-path substitution along P = (v1,Q23,...,Qa2+1) and
the corresponding formulation F' = Sp(F). Then the solution (z',2") is not feasible for the
mapping Rp(F') on the space of the initial variables (where R is the mapping defined in Obser-
vation 19).

Proof. Let y; = Ty A 2Qy; 5,4, fori € {1,...,1} and u, = z,, Az, for 7 € R be the new variables
obtained by substitution of v;. We denote by z and z the variables z and z, respectively,
in the formulation F'. The relations that define the mapping R are satisfied by all integer
solutions. We will show that they are violated by the fractional solution (z%, %), an so that
(z¥,2!") ¢ Rp(F'). First note that the variables z; for i € {1,...,1} and z, for r € R are
nonbasic both before and after the pivoting operation. From equations (10b), (10c) and the
nonnegativity of all variables, we obtain that the variables z; and y; for ¢ € {1,...,l}, and z,
and u, for all 7 € R must have value zero in the solution corresponding to (z%', 2f"). But at the
same time x,, > 0, that is at least one of the variables y; for ¢ € {1,...,l} or u, forallr € R
attains a positive value. This is a contradiction.

Observation 26. Lemma 25 is valid as long as the variables z; for i € {1,...,l} and z, for
r € R are equal to zero for both the solutions (z!,2') and (zf,2F"). Therefore, these variables
do not have to be necessarily nonbasic.
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In the following, we shall consider the alternating-path substitution in the case of R = (). In
this case the path of cliques is in fact a cycle, so an associated tableau has the following form:

Ej€Q1,2 Zj <1
J€Q2,3 I ta=1

ZjEQSA Zj <1

EJEQ21,21+1 Zj +2 =1
ZjEQzl+1U{vl} T <1

If we perform the substitution of z,,, the equations in the above system can be rewritten as

follows:
ZjEQz,s T + 2z + Y1 =1

ZJEQ21,21+1 Zj + 2z +y =1

where y; = z,, A z; for all s € {1,...,l}, and, therefore, z,, = 2522 y; and z; = z; + ;. By
substituting y; = z,, — 2522 y; in the first equation and then summing up all of them, we obtain

the relation l l

SO XY o) ron+d zm=t (11)
=1 jEQ2,2i+1 i=1

If the cliques Qq,...,Q9+1 are pairwise disjoint, this is a lifted odd-hole inequality resulting

from the odd hole of length 2/ + 1 of nodes v1,v2,v3,v4, ..., V9, V241, Where v; can be any node

in Q; for i € {2,...,2l + 1}. This means that performing the alternating-path substitution is at

least as strong as adding a lifted odd-hole cut to the problem.

Theorem 27. Let F be a formulation and let (z!,2') denote a basic integer solution. Suppose
that there exists an alternating-path substitution along

P = (v1,Q23,---,Q22+1)

such that the inequality corresponding to each of the cliques Q23 ..., Q2 2141 coincides with or is
dominated by one of the clique inequalities in F and R = (). Then one can find such a substitution
in polynomial time in the size of F. Moreover, the fractional neighbor (z¥,2") that would have
been obtained by pivoting x,, into the basis is infeasible for the formulation Rp(Sp(F)).

Proof. Let { Qi:ieK } be cliques corresponding to the inequalities in F. We build a digraph H
where each node represents a clique QZ whose corresponding variable is nonbasic. We also have
an additional node associated with the column z,, to be substituted. For each clique Q; with
nonbasic slack variable, let x;, be the unique variable such that j; € @; and a:i = 1 in the

present basic integer solution. We have an arc labeled (i, m, k) from clique Q; to clique Qy if
there exists an index m € K such that:

Qi n Qm # 0 and Qm N Qk o Q); (1234)
ji & Qm whereas ji € Qm (12b)
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The node associated with the variable z,, is connected to the cliques following the same rules,
i.e., there exists an arc labeled (0, m, k) from z,, to a clique Q) not containing z,, if there exists
an index m € K such that:

Ty, € Qm and Qm N Qk 7é (b; (1334)
Jk € Q- (13b)

For arcs labeled (k,m,0) from a clique Q. to Zy, the last condition must be modified to

read ji & Qm.
Suppose there exists a directed cycle in Hy passing through z,,,

C= (x'ula (Oamla kl)a lea (k17m27 k?)a kaa ) lea (klaml—l—lao)axm)-

We can construct an odd path of cliques from C as follows. For i € {1,...,1}, let

Q2i = Qm; N Qk;,
Q2i+1 = le N Qmﬂ,l-

Since ji, € Qg; for i € {1,...,1}, the cliques Q2;2i+1 = Q2; U Q2;+1 are tight at (z!,27). Note
that each clique (Q2;2;1+1 coincides with or is dominated by the clique Qki that is present in
the formulation. After introducing nonbasic variables for the slacks of @Q2;2i+1 (unless already
present), the path P = (v1,Q23,...,Q22+1) clearly is an odd alternating path of cliques (see
Figure 12). Conversely, every odd alternating path of cliques that coincide with or are dominated

Figure 12: Constructing an odd alternating path of cliques

by cliques in the current formulation corresponds to a directed cycle C in Hy. Hence, we can
find them in polynomial time in the size of F by detecting directed cycles in the auxiliary
digraph Hy. By Lemma, 25, the fractional solution (2, z') obtained by pivoting ,, into the
basis is infeasible for Rp(Sp(F)).

Note that the digraph Hy defined in the proof of Theorem 27 can be replaced by a directed
multi-graph, where two cliques QZ and Qk are connected by parallel arcs (i, m, k) for each m € K
satisfying the above conditions.
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We have noted before that an alternating-path substitution is equivalent to adding a lifted
odd-hole cut (11). In a dual-type method, one is interested in finding the cut from a given class
that is most violated by the current solution. We can solve the analogous problem in our primal
setting:

Proposition 28. The problem of finding the alternating-path substitution of the type as in
Theorem 27, whose corresponding inequality (11) is the most violated by a fractional neighbor
(zF, 2" of a basic integral solution (z!,2z'), can be solved in polynomial time in the size of F.

Proof. We use the same notation as in the proof of Theorem 27. Let H be the graph constructed
following the same rules used for Hy, but with nodes associated with all clique inequalities that
are tight at (z',2’). Let us now define a digraph H' where the nodes are defined by all those
subcliques obtained by the intersections of all the cliques QZ that correspond to the nodes of H
with the cliques Q,, for all the arcs (i,m,k) and (k,m,1) of H. The graph H' inherits all the
arcs of H and has arcs between the pairs of subcliques of the same original clique Q;. We define
the weight on each arc e = (@', Q") as

we =1— fo (14)

jeQIUQH

Note that w, > 0 as Q"UQ" is a subset of a clique in the formulation. Now the minimum weight
directed odd cycle in H' passing through z,, yields the alternating-path substitution for z,,
corresponding to the most violated constraint (11).

Note that the algorithm described in the proof is in fact a modification of the standard
algorithm for separating odd-hole inequalities [9], but in this primal setting we have to deal with
directed graphs instead of undirected ones, and every cycle of H' passing through z,, is odd.

Observation 29. If F contains an inequality for each clique of G of size at most h, then
Proposition 28 gives an exact polynomial time primal separation procedure for all the inequalities
of type (11). Note that for h = 3, inequalities of type (11) include all the odd-hole and the odd-
wheel inequalities. The standard separation for these inequalities is also possible in polynomial
time with a minor change of the procedure given in Proposition 28.

Finally, we shall briefly mention a possible way to exploit a solution algorithm for the weighted
stable set problem. Suppose we are in the situation where an integral tableau for a maximum
weighted stable set is given, but the linear-programming certificate for optimality is still missing,
as in Example 21. The idea is to substitute columns with positive reduced cost along odd
alternating paths of cliques, until a tableau is obtained where each column has nonpositive
reduced cost. In line with this idea, a criterion for finding an alternating-path substitution,
alternative to the one of Proposition 28, is given by the following.

Problem 30 (Column substitution problem). Let G = (V,E) be a graph and S CV a
stable set in G. Let (z',2") be a basic feasible solution corresponding to S in a formulation F.
Let z,, be a nonbasic variable in N with positive reduced cost. Does there ezist an odd alternating
path of cliques P = (vi,Q23,...,Q2.2+1) in the given formulation, such that the substitution
along P yields a tableau where all the new columns have nonpositive reduced cost?

If such an odd path P exists, then we know that we can replace the nonbasic variable x; of
positive reduced cost by new columns, according to Lemma, 20, all having nonpositive reduced
cost.
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Corollary 31. Problem 30, restricted to the case R = (), can be solved in polynomial time.

Proof. We consider a variant of the construction in the proof of Proposition 28. After con-
structing H', we remove every arc e = (@', Q") that would give rise to a nonbasic variable of
positive reduced cost in the substitution. Then every directed odd cycle in H' passing through v,
corresponds to an odd alternating path of cliques with the required properties.

5. Conclusions

In this paper, we have presented graph theoretical transformations that, at the expense of
enlarging a given graph G, can produce a perfect graph, and a weight preserving map for each
of its stable sets to a stable set of G. The graph transformations have a natural analogue in an
integral tableau setting and result in replacing a column of the tableau with a set of new columns.
These results provide the foundations for a solution algorithm for the maximum weight stable set
problem based on a primal simplex method with all integral pivots. Identification procedures
that perform these operations in polynomial time in the tableau size are important building
blocks for such an algorithm. A number of them are presented in the paper.
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