A Theory of Totally Correct Logic Program Transformations

Alberto Pettorossi

DISP, University of Roma Tor Vergata
Via del Politecnico 1
1-00133 Roma, Italy

adp@iasi.rm.cnr.it

ABSTRACT

We address the problem of proving total correctness of trans-
formation rules for definite logic programs. We consider
a general transformation rule, called clause replacement,
which consists in transforming a program P into a new pro-
gram @ by replacing a set I'1 of clauses occurring in P by a
new set ['s of clauses, provided that I'1 and I'» are equivalent
in the least Herbrand model M (P) of the program P.

We propose a general method for proving that clause re-
placement is totally correct, that is, M(P) = M(Q). Our
method consists in showing that the transformation of P
into @ can be performed by: (i) adding extra arguments
to predicates, thereby constructing from the given program
P an annotated program a(P), (ii) applying clause replace-
ments and transforming the annotated program a(P) into a
terminating annotated program 3(Q), and (iii) erasing the
annotations from £(Q), thereby getting Q.

Our method does not require that either P or) termi-
nates and it is parametric w.r.t. the annotations. By provid-
ing different definitions for these annotations, we can easily
prove the total correctness of many versions of the unfolding,
folding, and goal replacement rules proposed in the litera-
ture.

Categories and Subject Descriptors

F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs, Semantics
of Programming Languages; D.1.2 [Programming Tech-
niques]: Automatic Programming—Program Transforma-
tion; D.3.2 [Programming Languages|: Language Clas-
sification— Constraint and Logic Languages.

General Terms
Languages, Theory, Verification.

Keywords

Program transformation rules, logic programming, partial
and total correctness, well-founded orderings.

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguires prior specific
permission and/or a fee.

PEPM’ 04, August 24-26, 2004, Verona, Italy.

Copyright 2004 ACM 1-58113-835-0/04/000855.00.

Maurizio Proietti
IASI-CNR
Viale Manzoni 30
[-00185 Roma, Italy

proietti@iasi.rm.cnr.it

1. INTRODUCTION

Rules for program transformation can be viewed as condi-
tional rewritings of programs. Indeed the transformation of
a program P into a program () can be realized by using rules,
each of which rewrites a statement s; of the program P into
a new statement sz, provided that s1 and s are equivalent
w.r.t. a suitable semantics (see, for instance, [13]).

In this paper we consider definite logic programs together
with a general transformation rule, called clause replace-
ment, which is a conditional rewriting of programs of the
following form: a set I'; of clauses of a program P is rewrit-
ten into a new set I's of clauses, provided that a suitable
logical equivalence between I'1 and I'; holds in the least Her-
brand model M (P) of the program P. Most transformation
rules proposed in the literature, including the popular un-
folding and folding rules [5, 18], can be viewed as particular
cases of the clause replacement rule.

We will give the formal definition of the clause replace-
ment rule in Section 2. In this Introduction, we will use the
following particular instance of the clause replacement rule,
called goal replacement: a clause H < G, A Gi A Gr of a
program P is replaced by a new clause H < G AG2 A Gr,
provided that goals G1 and G2 are equivalent in the least
Herbrand model of P, that is, M(P) =V (G1 <> G2), where
V() denotes the universal closure of formula .

Much work has been devoted to the study of the cor-
rectness of program transformation rules for definite pro-
grams (see, for instance, [3, 8, 10, 11, 16, 18, 19]). Two
notions of correctness properties of the rules have been con-
sidered: partial correctness and total correctness. A rule
which transforms a program P into a program () is said to
be partially correct iff M(P) 2 M(Q), and it is said to be
totally correct iff M(P) = M(Q).

We will show in Section 2 that the partial correctness of
the clause replacement rule is a straightforward consequence
of the fact that this rule is based on a logical equivalence.
However, the application of logical equivalences does not
ensure the opposite inclusion, i.e., M (P) C M(Q). Indeed,
in general, clause replacement is not totally correct. We
show this point in the particular case of goal replacement,
by means of the following example.

Ezample 1. Let us consider the transformation of pro-
gram P into program @, where P and @ are as follows:
P: p<+gq Q: pep
q < q <
The transformation of P into @ is an application of the goal
replacement rule defined above, which is justified because

M(P) = p < q holds. This goal replacement is not to-
tally correct, because we have that M(P) = {p,q} D {q} =
|

M(Q).

Since the pioneering work by Tamaki and Sato [18], var-
ious authors have proposed suitable extra conditions which
ensure the total correctness of the unfolding, folding, and
goal replacement rules [8, 10, 16, 18, 19]. However, the
verification of these conditions requires the proof of some
invariants of the transformation of program P into program
@, and these invariants refer to complex measures of the
proofs of the atoms which are in M (P).

For instance, Tamaki and Sato proved that the replace-
ment of goal G1 by goal G is totally correct if, in addition
to the condition M(P) | V(G1 ¢ G2), we have that for
all ground instances G119 and G229 of G1 and G32, respec-
tively, if G199 has a proof in P then also G29 has a proof in
P and this proof of G»¥ has a measure which is not larger
than the one of G19. The measure of a proof is defined in
terms of the number of nodes in the proof tree [18]. More
sophisticated measures are defined in [16, 19]. However, no
general methodology is given in [16, 18, 19] for comparing
proof measures and checking the conditions which ensure
the total correctness of goal replacements.

The main contribution of this paper is a method for prov-
ing the total correctness of the clause replacement rule and
its particular cases consisting of the unfolding, folding, and
goal replacement rules. By our method we can express the
conditions which ensure total correctness of clause replace-
ment as first order formulas that can be checked by standard
deductive techniques.

Let us briefly describe our method in the particular case
of the goal replacement rule presented above. In order to
show the partial correctness of the replacement of goal G
by goal G thereby program P is transformed into program
Q, that is, to show that M(P) O M(Q), it suffices to prove
that M(P) = V(G1 + G2) (and, thus, M(P) = V((H +
G ANGiANGRr) — (H <+ G ANG2 A GRr))).

In order to show the total correctness of the replacement
of G1 by G2, we may use the unique fizpoint principle, which
can be formulated as follows: if M (P) =V (G1 — G2) and
the immediate consequence operator T associated with @
has a unique fixpoint, then M(P) C M(Q) [6, 15]. A suffi-
cient (but not necessary) condition ensuring that T has
a unique fixpoint is that, for all ground goals, @ termi-
nates with success or failure [2]. However, this condition
based on the existence of a unique fixpoint is too restrictive
in practice, because for many useful non-terminating logic
programs the immediate consequence operator T¢ does not
have a unique fixpoint.

We overcome this limitation by introducing program an-
notations as we now indicate. For reasons of simplicity, let
us assume that every clause of P is of the form H + A,
where A; is an atom. When A; is true the clause H + A;
will also be written as H <. The general case where the
bodies are conjunctions of n atoms, with n>0, is analogous
and we will consider it in Sections 3 and 4. An annotation
for program P is a function a that associates with every
clause y: H + A; of P an annotated clause a(y) of the
form:

H(X) + ci(X,Y)AA(Y)
where: (i) X and Y are distinct annotation variables rang-
ing over a given set W, and (ii) ¢1(X,Y’) is an annotation

formula, denoting a binary relation on W x W. The an-
notation variables should be considered as extra arguments
of the atoms in the clause . For instance, the annotated
atom p(a)(Y) should be considered identical to the atom
p(a,Y). Thus, by considering the annotation formulas as
constraints, the annotated program «(P) is a constraint
logic program for which we can define a least model, de-
noted by M (a(P)) [9].

Now, let us suppose that we replace A; in the body of
clause v by a new atom A, thereby deriving a new pro-
gram). Our method for proving M(P) C M(Q) consists
in showing the following three properties.

(1) The program annotation « is enhancing, that is, for every
ground atom A € M (P) there exists w € W such that
A(w) € M (a(P)).
(2) For some annotation formula c2(X,Y’), we have that:
M(a(P)) £ VX BY (e1(X,Y) A A1 (1))

= FY (c2(X,Y) A Ax(Y))).
(3) Let 8(Q) be the annotated program obtained by replac-
ing c1(X,Y) A Ai{(Y) by c2(X,Y) A A>2(Y). We have that
B is a well-founded annotation for @), that is, for every an-
notated clause K(X) < d(X,Y) A B(Y) in 3(Q), the im-
plication VX VY (d(X,Y) — X > Y) holds, where > is a
well-founded ordering on W (that is, no infinite descending
sequence wi > ... > Wy = ... exists in W).

Let us briefly explain the reasons why Properties (1)—
(3) ensure that M(P) C M(Q). Let us take A € M(P).
By Property (1) there exists w € W such that A(w) €
M(a(P)). In Section 3 we will prove that if o is a well-
founded annotation for a program P, then T, (p) has a unique
fixpoint. Thus, by Properties (2) and (3), and by the unique
fixpoint principle, we have that M («a(P)) C M(3(Q)) and,
hence, A(w) € M(B(Q)). (To see that Property (2) is an
instance of M(«a(P)) E V(G1 — G2), we observe that the
variables occurring in the body of a clause and not occur-
ring in the head, can be considered as variables which are
existentially quantified in front of the body.) Finally, since
for every annotated atom A(w), if A(w) € M(B(Q)) then
A € M(Q), we conclude that A € M(Q).

In practice, in order to prove Property (3), that is, the
well-foundedness of 3, we usually start from an annota-
tion a for P which is well-founded, and then we prove that
the goal replacement preserves well-foundedness. Then, to
prove that goal replacement preserves well-foundedness it is
enough to show that the following implication holds:

(3%) VX VY (c2(X,Y) = X=Y)

Thus, starting from an annotated program «(P) where
is enhancing and well-founded, at every transformation step
we only need to prove that Properties (2) and (3*) hold, and
these proofs, as already mentioned, can be made by using
standard deductive techniques. In particular, many power-
ful well-founded orderings can be axiomatized as first order
theories, and their properties can be proved by using tech-
niques developed in the field of term rewriting systems [7].

Notice also that the property that « is an enhancing, well-
founded annotation for P is, in fact, independent of the
program P and can be proved in advance for many program
annotations. We will give examples of these annotations in
Section 3.

Finally, we would like to stress the fact that, when ap-
plying our method for proving the total correctness of the

transformation of program P into program @, neither P nor
Q is required to terminate.

Now we present a simple example which shows that our
method can be applied also for proving the total correctness
of transformations realized by applications of the unfolding
and folding rules.

Ezample 2. Let us consider the following program P:

1. g(a)

2. q(4) < q(4)

3. p+q(f(B))
In order to construct a totally correct transformation, we
first consider the following annotated program «(P):

la. g(a)(X) +

2a. q(A)X) «+ X>Y Aq(ANY)

3a. p(X) «— X>Y Aq(f(B))(Y)
where X and Y range over natural numbers and > is the
usual ‘greater than’ ordering on natural numbers. Then
we apply the unfolding and folding transformation rules to

the annotated program a(P). By unfolding clause 3a w.r.t.
q(f(B))(Y) we derive:

da. p(X) — X>Y AY>ZAq(f(B))(Z)
By folding clause 4a w.r.t. Y >Z A q(f(B))(Z) we derive:
fa. p(X) + X>Y Ap(Y)

The annotated program derived by the above applications of
the unfolding and folding rules is 3(Q) = {1a, 2a, 5a}. Let
us consider the program obtained by erasing the annotations
from 3(Q), that is, @ = {1, 2, 5}, where clause 5 is:

5. p+p
The partial correctness of the transformation of P into @ fol-
lows from the partial correctness of the usual unfolding and
folding transformations for non-annotated programs. In-
deed, P can be transformed into @) by applying the usual
unfolding and folding rules, in the same way as «(P) has
been transformed into 3(Q). Thus, M(P) O M(Q).

The total correctness of the transformation of P into @
can be proved by our method based on well-founded annota-
tions similarly to the case of goal replacement. In particular,
« is enhancing (and well-founded) and S is well-founded, be-
cause in every clause of 3(Q) the annotation of the head is
greater than the annotation of each atom in the body (for in-
stance, in clause 5a, we have X >Y"). Thus, M (P) C M(Q)
and the transformation of the given program P into the final
program () is totally correct, that is, M(P) = M(Q). a

Since our method is sound (see Section 3), it cannot be
used to prove the total correctness of the transformation of
Example 1 which, indeed, is not totally correct. Below we
show why this proof fails.

Ezample 3. Let us consider the following program a(P),
which is an annotated version of the program P presented
in Example 1:

la. p(X)+ X>Y Ag(Y)

2a. ¢(X) «

The annotation « is enhancing and well-founded.
By clause 1la we have that:

M(a(P)) EVX (AY (X >YAq(Y)) = (BY X =Y Ap(Y)))
Thus, Property (2) of our method for the total correct-
ness of goal replacement is satisfied. However, if we replace

X>Y Aq(Y) by X=Y Ap(Y) in clause la, we get a new
annotated program whose annotation is not well-founded,
because X =Y does not imply that X > Y for any well-
founded ordering >, and thus, Property (3) of our method
is not satisfied. g

The paper is structured as follows. In Section 2 we intro-
duce the clause replacement transformation rule, which gen-
eralizes the unfolding, folding, and goal replacement trans-
formations. We prove the partial correctness of clause re-
placement, as well as other relevant properties. In Sec-
tion 3 we introduce program annotations and, in particular,
well-founded annotations. Then we prove a sufficient condi-
tion for ensuring the total correctness of clause replacement
based on well-founded annotations. In Section 4 we present
variants of the unfolding, folding, and goal replacement rules
for annotated programs and we use the results of Section 3
for showing that these rules are totally correct. In Section 5
we present an extended example of application of the unfold-
ing, folding, and goal replacement rules. Finally, in Section 6
we compare our method to related techniques for proving
total correctness of program transformations. In particu-
lar, we argue that by our method we can easily prove total
correctness of the various versions of the unfolding/folding
rules proposed in the literature (see, for instance, [8, 10, 16,
18, 19]).

2. CLAUSE REPLACEMENT

In this section we introduce the clause replacement trans-
formation rule. All usual program transformation rules,
such as unfolding, folding, and goal replacement, are in-
stances of this clause replacement rule. Indeed, we prove
that clause replacement is the most general program trans-
formation rule, in the sense that, any totally correct pro-
gram transformation can be obtained by applying this rule
(see Theorem 1). Then we study the partial and total cor-
rectness of clause replacement (see Theorems 2 and 3). In
particular, we give a sufficient condition for the total correct-
ness of clause replacement, which is based on the uniqueness
of the fixpoint of the immediate consequence operator of the
annotated transformed program (see Corollary 1).

In order to define the clause replacement rule we introduce
the following implications and equivalences between sets of
clauses’.

Definition 1. Let I be a Herbrand interpretation and let
I'1,T» be two sets of clauses. We write I = I'y = Iy iff
for every ground instance H < G» of a clause in ' such
that I = G2 there exists a ground instance H <+ G, of a
clause in I'; such that I = Gi. We write I Ty < 'y iff
I':F2:>F1 andwewrite[l:F1<:>F2 IHI':F1=>F2
and I 'Z 't < Ts.

For every Herbrand interpretation I and sets of clauses
I, T1,T2, '3 the following properties hold:
Reflexivity: IET =T
Transitivity: if I =T1 =Ty and I ETy = T3
then I 'Z I'n="I3

!The notions we introduce in the following Definitions 1
and 2 are symmetric w.r.t. those introduced in [15]. The
reason is that here we deal with implications between sets
of clauses, while in [15] we deal with implications between
sets of bodies of clauses.

Monotonicity: if I Ty = Ty then I T UL = T UT.

Definition 2. A clause replacement is a pair (P, Q) of pro-
grams, denoted P~ @, such that, for some sets I'1 and T's
of clauses with I'y C P, we have: Q = (P — I'1) U I's.
Program (@ is also denoted P[['1/I'z]. A clause replace-
ment P — P[['1 /2] is said to be: (i) implication-based iff
M(P) E Ty = I's, (ii) reverse-implication-based iff M (P)
I'y < TI'y, and (iii) equivalence-based iff M(P) =T < Ts.
A clause replacement P — @ is said to be: (iv) partially
correct iff M(P) D M(Q), (v) increasing iff M(P) C M(Q),
and (vi) totally correct iff M(P) = M(Q).

By monotonicity, we have the following property which will
be useful in the proofs of (partial and total) correctness of
clause replacement.

LEMMA 1. Let P — Q be a clause replacement.
(i) P — Q is implication-based iff M (P) = P=Q.
(1i) P — Q is reverse-implication-based iff M (P) |E P<Q.

The following theorem, whose proof is left to the reader,
shows that equivalence-based clause replacement is a com-
plete transformation rule for the derivation of equivalent
programs, in the sense that, for any two programs P and
Q@ such that M(P) = M(Q), there exists an equivalence-
based clause replacement P +— Q.

THEOREM 1. (Completeness of Equivalence-Based Clause
Replacement) Given two programs P and Q, if M(P) =
M(Q) then M(P) =P <& Q.

Now we present some sufficient conditions for ensuring that a
clause replacement is partially correct and increasing. Given
a program P, we denote its associated immediate conse-
quence operator by Tp [1]. We denote the least and greatest
fixpoint of Tp by Ifp(Tp) and gfp(Tp), respectively. Recall
that M (P) = ifp(Tp).

First we show that every implication-based clause replace-
ment is partially correct.

THEOREM 2. (Partial Correctness) Given two programs
P and Q, if P — Q is an implication-based clause replace-
ment then M(P) D M(Q).

PRrRoOOF. We first show that M (P) is a prefixpoint of Tp,
that is, To(M(P)) C M(P). Let A be a ground atom in
To(M(P)). By definition of T there exists a ground in-
stance A < G2 of a clause in @ such that M(P) E G>.
Since P — (@ is an implication-based clause replacement,
by Lemma 1 M(P) E P = Q. Thus, by Definition 1,
there exists a ground instance A < G of a clause in P
such that M(P) = G:. Hence, by definition of Tp, A €
Tp(M(P)). Since M(P) is a prefixpoint of Tp, we have
that Tp(M(P)) C M(P) and, therefore, A € M(P). Thus,
we have proved that M(P) is a prefixpoint of Tp. Since
M(Q) = ifp(To) and Ifp(To) is the least prefixpoint of To
(see, for instance, [1]), we have that M(P) D M(Q). O

Since every equivalence-based clause replacement is an
implication-based clause replacement, Theorem 2 proves also
that equivalence-based clause replacements are partially cor-
rect.

In order to prove that a clause replacement is increasing
we propose a method based on the unique fizpoint princi-
ple [6, 15].

A program P is said to be univocal iff Tp has a unique
fixpoint, that is, ifp(Tr) = gfp(Tp). A sufficient condition
for a program to be univocal is that it is terminating [2].

THEOREM 3. (Increasingness) Given two programs P and
Q, if P = Q is a reverse-implication-based clause replace-
ment and Q is univocal then M(P) C M(Q).

ProoF. We first show that M (P) is a postfixpoint of T,
that is, To(M(P)) D M(P). Let A be a ground atom in
M (P). Since M (P) is a fixpoint of T, that is, Tp(M(P)) =
M (P), we have that there exists a ground instance A + G,
of a clause in P such that M(P) E G,. By Lemma 1,
M(P) E P < @ and, therefore, by Definition 1, there
exists a ground instance A < G2 of a clause in @ such
that M(P) = G2. By definition of Ty, we have that A €
To(M(P)). Thus, we have proved that M(P) is a postfix-
point of To. Since gfp(To) is the greatest postfixpoint of
To (see, for instance, [1]), we have that M (P) C gfp(Tq).
Finally, by the hypothesis that @ is univocal, we get that
M(P)C M(Q). D

As a consequence of Theorems 2 and 3 we have the fol-
lowing result.

CoroLLARY 1. (Total Correctness via Unique Fixpoint)
Given two programs P and Q, if P — @ is an equivalence-
based clause replacement and @Q is univocal then M(P) =

M(Q).

Corollary 1 gives us a useful method for proving the total
correctness of clause replacements. However, from a prac-
tical point of view, this method has the following two lim-
itations: (1) the property that a program is univocal is,
in general, undecidable, and (2) the method cannot be ap-
plied when the program derived by clause replacement, is
not univocal. In the next section we will present a method
that partly overcomes these limitations.

3. WELL-FOUNDED ANNOTATIONS

In this section we present our method based on the notion
of program annotation for proving the total correctness of
clause replacements. In particular, we will introduce the so
called well-founded annotations, that is, annotations which
generate terminating (and, thus, univocal) annotated pro-
grams. First, we present the syntax and the semantics of
annotated programs and then we introduce the notion of
clause replacement for the class of annotated programs. Fi-
nally, we prove the main result of this paper, that is, a suf-
ficient condition for ensuring the total correctness of clause
replacements (see Theorem 6 below).

The syntax of annotated programs is defined as follows.
We consider a first order language La for writing annota-
tions. We assume that L4 is disjoint from the first order
language Lp for writing programs. We also assume that
in the set of predicate symbols of L4 there is the symbol
>, which is interpreted as a well-founded ordering relation
on a suitable domain. Variables, terms, and formulas of
L4 are called annotation variables, annotation terms, and
annotation formulas, respectively. For reasons of simplic-
ity, we assume that annotation formulas do not have bound
variables. An annotated atom is of the form A(w), where A
is an atom of Lp and w is an annotation term of La. An
annotated clause is of the form:

H(w) <~ cNAi{wi) A... AN Ap{wy)

where (i) w,w1,...,w, are annotation terms, (ii) c is an
annotation formula, and (iii) H(w), Ai{(w1),...,An{wy) are
annotated atoms. An annotated program is a set of anno-
tated clauses. Annotated atoms, conjunctions of annotated
atoms, and annotated programs are denoted by overlined
metavariables, such as 4, G, and P.

The definition of the semantics of annotated programs is
similar to the one of constraint logic programs [9] and it is
given as follows. We fix an interpretation W for L4, whose
carrier is a set W. We assume that the predicate symbol
> is interpreted as a well-founded ordering relation on W
which, by abuse of language, we will also denote by >. For
any annotation formula ¢, the satisfaction relation W |= ¢ is
defined as usual in first order logic. The interpretation W
will also be referred to as the well-founded ordering (W, >).
A Wh-interpretation is a subset of

Byy = {A(w)| A is a ground atom and
w is a ground annotation term}

Given a W-interpretation I, a ground annotation formula
¢, and a ground conjunction Ai A ... NA, of annotated
atoms, the satisfaction relation I = cA A1 A... A A, holds
if Wk cand, fori =1,...,n, A; € I. A ground annotated
clause H < ¢ A G, where G is a conjunction of annotated
atoms, is true in a W-interpretation I iff I = ¢ A G implies
H € I. An annotated clause is true in a W-interpretation
I iff all its ground instances are true in I. A W-model of
an annotated program P is a W-interpretation such that
all annotated clauses in P are true. It can be shown that
every annotated program P has a least W-model which is
denoted by M (P) (this is the same notation which is used
for the least Herbrand model of definite logic programs).
Similarly to the case of definite logic programs, the least
W-model of an annotated program can be computed as the

least fixpoint of a particular operator over WW-interpretations.

With every annotated program P we associate an tmmeds-
ate consequence operator T from P(Byw) to P(Byy), where
P(Bw) denotes the powerset of Byy, such that for every
Ie P(Bw),

T5(I) = {H | there exists a ground instance H+cANG
of an annotated clause in P such that
IEcAG}
Similarly to the case of definite logic programs (see, for in-
stance, [1]), we have the following result.

THEOREM 4. For every annotated program P, Ts is a
continuous function from P(Bw) to P(Bw) and Iifp(Tp) =
M(P).

In the next definition we introduce the main notion of
this paper. In this definition we consider the following four
sets: Clauses, AClauses, Programs, and APrograms, which
consist of all clauses, annotated clauses, programs, and an-
notated programs, respectively. We will also use the follow-
ing notations. Given two annotated atoms A, = Ai{wr)
and A = As(w»), the formula w; > wo is also written as
A=A, Moreover, given an annotated atom H and an an-
notated goal A1 A...AA,, the formula H>A;A...AH> 4,
is also written as H> A1 A ... A A,.

Definition 3. An annotation over W is a function « :
Clauses — AClauses such that, for every clause v of the

form H + Ay A ... A A,, the annotated clause «a(y) is
of the form H(X) < c¢ A Ai(X1) A ... AN Ap(X,,), where
X, X1,...,X, are annotation variables. An annotation « :
Clauses — AClauses can be extended to a function, also
denoted by «, from Programs to APrograms, by stipulat-
ing that, for every program {vi,...,vn}, ({71, ..., 7n}) is
{a(y11),-..,a(yn)}. Let P be a program in Programs.

(i) An annotation « is said to be well-founded (for P) iff for
every annotated clause a(y): H + cAA1A...AA, of a(P),
we have that:

WEVY(e— (H=AA...AA4)).
(ii) An annotation « is said to be enhancing (for P) iff for

every A € M(P) there exists a ground annotation term w
such that A(w) € M(a(P)).

Now we give some examples of annotations.

Ezample 4. Let N be the well-founded ordering (Nat, >),
where Nat is the set of the natural numbers and > is the
usual ‘greater than’ ordering on Nat.

(i) The annotation a; over N is defined as follows: for every
clause v: H < A1 A...AA,, the annotated clause oy () is

H(X) X>Xi AN . ANX>Xp ANA (XA ANAR(XD)
(ii) The annotation as over A is defined as follows: for every
clause v: H < A1 A...AA,, the annotated clause a2 () is

where + is interpreted in A as the addition of natural num-
bers. The annotations a1 and a2 are enhancing and well-
founded. In particular, we have that:

N EVXVX, .. VX, (X>X1+...+X,
SX>XIA..AX>X,). O

In the following example we present a well-founded annota-
tion which is not enhancing.

Ezample 5. Let us consider the following program P:
p<q
q
Let us also consider the annotation a3 over N that associates
with P the following annotated program:

p(1) < q(0)

q(1)
We have that M(P) = {p,q}, while M(a3(P)) = {q(1)}
and, thus, a3 is not enhancing. a

In order to erase annotations from annotated clauses we
use the projection function « : AClauses — Clauses such
that, for every clause v and annotation o, we have 7(a(7y)) =
. The function 7 : AClauses — Clauses can be extended to
a function, also denoted by 7, from A Programs to Programs,
by stipulating that, for every program P and annotation «,
we have w(a(P)) = P.

We have the following straightforward property of the pro-
jection function.

PROPOSITION 1. For every annotated program P and

ground annotated atom A{w), if A(w) € M(P) then

A€ M(x(P)).

Similarly to programs which are not annotated, we have the
following definition of the = relation.

Definition 4. Let I be a W-interpretation and let I'y,T'»
be sets of annotated clauses. We write I | I'y = T'y iff
for every ground instance H < c» A G» of an annotated
clause in T's such that I = c2 A G- there exists a ground
instance H < ¢1 A Gy of an annotated clause in I'; such
that I '2(21 /\61. We write I 'Z I'n <y iff I ':FQ =1
and we also write I =Ty & Iy iff I E TI't = I'> and
I ': I'y < Ts.

The notion of clause replacement for annotated programs
can be introduced by a definition similar to Definition 2
of Section 2, where one considers ‘annotated programs’; in-
stead of ‘programs’. Analogously, one can also introduce the
notions of: (i) implication-based, (ii) reverse-implication-
based, (iii) equivalence-based, (iv) partially correct, (v) in-
creasing, and (vi) totally correct clause replacement for an-
notated programs. We have that the properties stated by
Theorems 1, 2, 3, and Corollary 1 of Section 2, hold for
annotated programs as well.

THEOREM 5. Let a be a well-founded annotation over W.
Then, for every program P, the annotated program a(P) is
untvocal, that is, Ifp(Topy) = 9fp(Ta(py), and M(a(P)) is
the unique fizpoint of To(py.

PrOOF. Let W be the well-founded ordering (W,). As-
sume that I and J are fixpoints of T, (py. By well-founded
induction on > we prove that: for every ground annotated
atom A, A € I iff A € J. The inductive hypothesis is:
for every ground annotated atom B, if W = A > B then
A€liff A€ J. Assume that A € I. Since I = T,(py(I),
we have that there exists a clause, say -, of the form A «
cANA; A...NA, in a(P) such that W k= ¢ and, for i =
1,...,n, A; € I. Since « is well-founded, we have that, for
i=1,....,n, W E A = A;. Therefore, by the inductive
hypothesis, for i = 1,...,n, we have that A; € J. Since J
is a fixpoint of T, (py and W [= ¢, we get that A € J. Thus,
we have proved that if A € I then A € J. Similarly, we can
prove that if A € .J then A€ 1. O

We are now able to show the main result of this paper.

THEOREM 6. (Total Correctness via Well-Founded Anno-
tations) Let P, @ be programs which are not annotated. Let
P — Q be a clause replacement, and «, 3 be annotations
such that:

(i) P — Q is implication-based, that is, M(P) = P = Q,
(ii) a(P) — B(Q) is a reverse-implication-based clause re-
placement, that is, M(a(P)) = a(P) < 5(Q),

(iii) « is enhancing, and

(iv) B is well-founded.

Then P +— @ is totally correct, that is, M(P) = M(Q).

PRrROOF. By Hypothesis (i) and Theorem 2, P — Q is
partially correct, that is, M (P) D M(Q). Let us now prove
that P — @ is increasing, that is, M(P) C M(Q). Let
A be a ground atom in M(P). Since « is enhancing (see
Hypothesis (iii)), there exists a ground annotation term w
such that A(w) belongs to M (a(P)). Since 3 is well-founded
(see Hypothesis (iv)), by Theorem 5 8(Q) is univocal and,
since a(P) — B(Q) is a reverse-implication-based clause re-
placement (see Hypothesis (ii)), by Theorem 3, M (a(P)) C
M(B(Q)). Thus, A{w) belongs to M (a(Q)) and, by Propo-
sition 1, A belongs to M(Q). O

Y

a(P) | B(Q)

Figure 1: Program Transformation via Well-
Founded Annotations.

Notice that the annotation « is required to be enhancing,
but not well-founded, while 3 is required to be well-founded,
but not enhancing. In practice, however, it is often useful to
start from an enhancing, well-founded annotation « and ap-
ply clause replacements that preserve the well-foundedness
of annotations, so that the annotation 3 is well-founded by
construction.

Thus, Theorem 6 supports a methodology for program
transformation which consists of the following steps (see also
Figure 1). Given an initial program P, in order to construct
a totally correct transformation starting from P:

(1) first, we choose an annotation « which is enhancing and
well-founded;

(2) then, we apply to a(P) a clause replacement
a(P)— B(Q) such that:

)8

() M(P) F P =Q,

(i) M(e(P)) k= a(P) <= B(Q), and
(iii) B is well-founded; and

(3) finally, we apply the projection m and we erase the an-
notations from 3(Q).

Notice that neither P nor @ is required to be univocal (and
in particular, they are not required to be terminating).

4. UNFOLD/FOLD TRANSFORMATION
RULES WITH ANNOTATIONS

Step 2 of the methodology presented at the end of the
previous section, whereby we derive the annotated program
B(Q) from the annotated program «(P), may be realized by
a sequence of applications of transformation rules. These
rules, which we will present below, transform annotated pro-
grams rather than programs, and are variants of the usual
unfolding, folding, and goal replacement rules for definite
logic programs. Given the program P and the annotation
a, by n applications of these rules we construct a sequence
ao(Py), - ..,an(Py) of annotated programs such that ap=a,
Py=P, an, =0, and P, =Q. We assume that ao is an en-
hancing, well-founded annotation. Moreover, we will show
that the applicability conditions of the transformation rules
ensure that if ag is a well-founded annotation, then a,, is a
well-founded annotation. The total correctness of the trans-
formation of the program Py into program P, follows from
Theorem 6 because, for K = 0,...,n — 1, we have that:
(1) M(Po) 'Z P, = Pk-+1 and (11) M(ao(Po)) 'Z ak(Pk) =
@k+1(Pr+1). Thus, by transitivity of = and <, the se-
quence of applications of the unfolding, folding, and goal
replacement rules can be viewed as a single clause replace-
ment ao(Po) — an(Py,) such that: (i) M(Po) |E Po = Py,

and (ii) M(ao(Po)) = ao(Po) < an(Pr).

The rules presented in this section are parametric w.r.t. the
annotation ap chosen for the initial program Pp.

An annotated transformation sequence ﬁo, . ,ﬁn is a se-
quence of annotated programs constructed as follows. Sup-
pose that we have constructed the transformation sequence
Po,...,Pr. Then, for 0 <k <n—1, program Py, is de-
rived from program P} by the application of one of the
three transformation rules R1, R2, and R3 defined below.
Notice that among the transformation rules here we do not
include the definition introduction rule [18]. This rule is use-
ful in practice, but its absence is not a limitation when we
study the correctness of program transformations. Indeed,
we may assume that the definitions of the predicates which
are needed during a transformation sequence, are introduced
at the beginning of its construction and, thus, they can be
considered to be already present in the initial program Pj.
This simplifying assumption is also made in [8, 16, 19].

R1. Unfolding. Let v: H + ¢cAGr AAAGRr be a clause

in the annotated program P, and let ﬁ’o be a variant of Py
without common variables with Pj. Let

Y1t ﬁl(—01/\61

Ym : H, < cm AGn
with m > 0, be all clauses of program ﬁ’o such that, for
i = 1,...,m, A is unifiable with H; via a most general
unifier ¥;. By unfolding clause v w.r.t. the atom A we derive
the clauses

m: (H<cAet AGL AG1 AGR)Y:

Mm: (H&cAem AGL AGm AGR)Om

and from program P}, we derive the program Py1; = (Py —
HHu{n,. . mm}

Basically, the unfolding rule for annotated programs is
like the usual unfolding rule for definite logic programs. No-
tice, however, that we cannot unfold an annotated program
w.r.t. an annotation formula, but only w.r.t. an annotated
atom. In the following rules the set of variables occurring in
an expression e is denoted by wvars(e).

R2. Folding. Let P, be a variant of Py without common
variables with Pj. Let

o1 : ? —di A 61
Om: K+ dmAGpnp

with m>1, be clauses in ﬁg and, for a substitution ¥, let
yi: H+ci AGLAG1IAGRr

Ym: H—cm ANGrL AGnd AGr

be clauses in Pj.
hold:

Suppose that the following conditions

1. no clause in ﬁ{) —{61,...
with K,

,0m } has its head unifiable

2. there exists an annotation formula ¢ such that, for i =
1,...,m, we have: W = VX ((IY ¢;) — 3Z (c A d;9)),
where X = vars({H,Gr,Gi9,Gr}),Y = vars(c;)—X,
and Z = vars(c A d;9) — X

3. for ¢ = 1,...,m and for every variable U in the set
vars(d; A G) —wars(K): (i) UY is a variable not oc-
curring in {H,c,Gr,Gr}, and (ii) U¥ does not occur
in the term V4, for any variable V occurring in d; A G;
and different from U; and

4. WEV(c— (H>=Gr, ANK9 AGRr)).

By folding clauses v1,...,7ym using clauses d1,...,0m we
derive the clause : H < ¢cAGr AK9AGr and from program
P}, we derive the program Pyi1 = (Pr—{71,---,ym })U{n}.

The difference between the folding rule for annotated pro-
grams and the usual folding rule for definite logic programs
consists in the extra Conditions 2 and 4. However, as already
mentioned, the usual folding rule ensures partial correctness
only. The following example illustrates an application of the
folding rule R2.

Ezample 6. Let us consider the following annotated pro-
gram Py, where we use the well-founded annotation a over
N of Example 4:
p(a)(X> “

(b)()

(ANX) « X>X1 Ar(A){(Xy)

(ANX) « X>XiANX>XoNt(A,B)(X1)ANq(B){X2)
s(A)X) «+ X > X1 Ap(A)(X1)

S(ANX) + X > X1 Aq(A)(X1)

By unfolding clause 6 w.r.t. p(A)(X:) and by renaming vari-
ables, we get:

8. s(a{Y)y«Y>Y;
9. s(CY) < Y>Y1 AY1>Ya AY1>Y3 At(C,D)(Y2)
Ap(D)(Ys)

By two applications of the unfolding rule and by renaming
variables, from clause 7 we derive:

10. s(b){(Y) <+ Y >Y;
11. S(C)(Y) —Y>SZNZ>YTAY1>Y2AY1>Y3
At(C, D)(Y2) A q(D)(Y3)

Now, Conditions 1-4 of the folding rule are verified by tak-
ing: (i) ¥ to be the substitution {X/Y1, X1/Ys, A/D}, and
(ii) ¢ to be the annotation formula Y >Z A Z>Y>AY >V
By folding clauses 9 and 11 using clauses 6 and 7 we derive
the clause:

12. s(CYY)Y Y >ZANZ>Y> ANY >Y At(C,D)(Y>)
A s(D){Y1). O

q
q
r

."F”P‘PP’!\:’!—‘

In order to introduce the goal replacement rule, we need
the following definition of replacement law.

Definition 5. (Replacement Law) Let P be a program, «
be a program annotation, G; and G>» be annotated conjunc-
tions, X C wars({G1,G2}) be a set of variables, and d be
an annotation formula. We say that the replacement law
c1AG1 =x c2AG> holds in a(P) iff the following conditions
hold:

(i) M(a(P)) EVX (3Y (c1 AG1) = 3Z (c2 A G>)) and
(i) M(P) EVX (AY G1 « 3Z G»)

where (1) Y = vars(c1 AG1) — X, (2) Z = vars(caAG2) — X,
and (3) G1 and G are the conjunctions obtained by erasing
the annotation terms from G and G, respectively.

R3. Goal Replacement. Lety : H < cAciAGLAG1AGR
be a clause of the annotated program ﬁk and let G2 be
an annotated conjunction such that the following replace-
ment law ¢t AG:1 =x c2 AG> holds in Py, where X =
vars({H,c,Gr,Gr}) Nvars({ci,G1,c2,G2}). Suppose also
that:

WEVY((cAc2) = (H= G AG> AGR)))

By goal replacement from clause v we derive the clause 7 :
H « cAca NG, AG2 AGr and from program Py, we derive
the program P41 = (Px — {7}) U {n}.

The goal replacement rule R3 for annotated programs dif-
fers from the usual (partially correct) goal replacement rule
for definite logic programs because of Condition (}). We will
see an example of application of the goal replacement rule
in the next section.

By using the results of Section 3 we can prove the total
correctness of the transformation rules.

THEOREM 7. (Total Correctness of the Transformation
Rules) Let ao(Po), ..., an(Prn) be an annotated transforma-
tion sequence such that ao is an enhancing, well-founded
annotation. Then M(Py) = M(P,).

PrOOF. (Sketch) For k =0,...,n—1, let apy1(Pr41) be
the annotated program derived from a(Ps) by the appli-
cation of a transformation rule in R1-R3. Then, for some
sets of annotated clauses a;(I'y) and ak4+1(Tk+1), we have
that ak+1(Pk+1) = (ak(Pk) — ak(Fk)) U ak+1(1“k+1). We
have the following properties: (P1) M(FPo) = 'ty = iy,
(P2) M(ao(Po)) E ar(Tk) < akt1(Trt1), and (P3) if ay, is
well-founded then a1 is well-founded. The proofs of prop-
erties P1-P3 are straightforward applications of the defini-
tions, and they are left to the reader. Notice that in the
proof of P3 we use Condition 4 of the folding rule and Con-
dition () of the goal replacement rule.

Now let us consider the clause replacement Py — P,. The
following properties hold.

(i) Po — P, is an implication-based clause replacement.
Indeed, by Property P1, Lemma 1, and transitivity of = we
have: M(Po) 'Z Py = P,.

(ii) ao(Po) = an(Py) is a reverse-implication-based clause
replacement. Indeed, by Property P2, Lemma 1, and tran-
sitivity of <= we have: M(ao(Po)) = ao(Po) < an(Pn).

(iii) o is enhancing (by hypothesis).

(iv) an is well-founded (by the hypothesis that ap is well-
founded and Property P3).

Thus, by Theorem 6 Py — P, is totally correct, that is,
M(Py) =M(P,). O

5. AN EXTENDED EXAMPLE

In this section we revisit an example of program trans-
formation taken from [16]. In that paper the proof of total
correctness of the transformation rules is rather intricate.
On the contrary we show that the total correctness of this
transformation can be established by our well-founded an-
notation method in a very easy way. Let us consider the
following program P:

1. thm(X) < gen(X) A test(X)
2. gen([]) +
3. gen([0|X]) « gen(X)

4. test(X) + canon(X)

5. test(X) < trans(X,Y) A test(Y')
6. canon([]) <

7. canon([1|X]) < canon(X)

8. trans([0|X], [1|1X]) +

9. trans([1|X], [1]Y]) trans(X,Y")

where we have that thm(X) holds iff X is a list of 0’s that
can be transformed into a list of 1’s by repeated applications
of trans(X,Y). Given the list X, the predicate trans(X,Y)
generates the list Y by replacing the leftmost 0 in X by 1.

The formula VX (thm(X) <> gen(X)) is true in the least
Herbrand model of program P. As indicated in [16], the
truth of this formula can be established by constructing a
totally correct transformation of P into a program () where
the predicates thm and gen are defined by two sets of clauses
which are identical up to a predicate renaming. Let us see
how we construct this transformation by applying our rules
of Section 4.

Let A be the well-founded ordering (Nat,>), where Nat
is the set of the natural numbers and > is the usual ‘greater
than’ ordering on Nat. Let us consider the well-founded
annotation a that associates with every clause H < A; A

..\ A the annotated clause:

H(N) — N>Ni+...+N A Al(N1> A A Ak(Nk>
where the annotation variables N, Ni,..., N, range over
natural numbers. Thus, the annotated program a(P) is the
following one:

la. thm(X)(N) «+ N> N1+ N> A gen(X)(N1)

A test(X)(N2)
2. gen((])(N)
3a. gen([0|X])(N) + N>N; A gen(X){N:)
da. test(X)(N) <~ N> Ni A canon(X)(N1)
ba. test(X)(N) < N> N1+ N> A trans(X,Y)(N1)
A test(Y)(No)
6a. canon([])(N) +
Ta. canon([1|X])(IN) < N> Ni A canon(X){N1)
8a. trans([0|X], [1|X])(N) +
9a. trans([1|X], [1|Y])(N) + N> N1 A trans(X,Y)(N1)

Now, let us construct a totally correct transformation se-
quence by using our rules of Section 4. By applying several
times the unfolding rule, from clause la we derive:
10a. thm([]){(N) «+ N>3
11a. thm([0|X])(N) <~ N> Ni+N>+4 A gen(X)(N1)
A canon(X)(N2)
12a. thm([0|X])(N) < N> N;+Ny+Nz+4
A gen(X)(N1) A trans(X,Y)(Nz)
A test([1]Y])(N3)
The reader may verify that the replacement law
test([1|Y])(N3) :>{Y,N3} (Ng ZN4 A test(Y)(N4))
holds in a(P). Indeed, we have that:

(i) M(a(P)) = YYVN; (fest ([1[V])(N3)
— E|N4(N3 >Ny A test(Y)(N4))), and

(it) M(P) E VY (test([1|Y]) « test(Y)).
Moreover,

N EV(N>Ni+N2+N3+4 A Ns>Ny
— N>N1 AN>N> /\N>N4).
Thus, we may apply the goal replacement rule and we re-
place clause 12a by the following clause:

13a. thm([0|X])(N) — N>N;+Nao+Ns+4 A N3>Ny
A gen(X)(N1) A trans(X,Y)(N2)
A test(Y)(Ny)

By folding clauses 11la and 13a using clauses 4a and ba we
get:

14a. thm([0|X])(N) <~ N>N1+N5+3 A gen(X)(N1)
A test(X)(Ns)

Finally, by folding clause 14a using clause la, we derive:
15a. thm([0|X])(N) <~ N> Ns+3 A thm(X){Ne)

The final annotated program is (a(P) — {la}) U {10a, 15a}.
By applying the projection 7 we erase the annotations from
clauses 10a and 15a and we get:

10. thm([]) «

15. thm([0|X]) « thm(X)
Thus, the final program is @ = (P — {1}) U {10,15}. By
Theorem 7 of Section 4 the transformation of P into @ is
totally correct. In @ the predicates thm and gen are defined
by sets of clauses which are equal up to predicate renam-
ing (namely, clauses 10, 15 and clauses 2, 3, respectively)
and, therefore, as mentioned above, we may conclude that
VX (thm(X) ¢ gen(X)) is true in the least Herbrand model
of P.

6. RELATED WORK AND CONCLUSIONS

We have studied the correctness of a general transforma-
tion rule, called clause replacement, which is an adaptation
to the case of definite logic programs of the rule replacement
transformation for inductive definitions introduced in [15].
Clause replacement generalizes the familiar unfolding, fold-
ing, and goal replacement transformations of definite logic
programs. The clause replacement rule generalizes also the
simultaneous replacement operation (when restricted to def-
inite programs), which simultaneously replaces n(>0) con-
junctions of literals each of which occurs in the body of a
clause [4]. Moreover, clause replacement strictly general-
izes simultaneous replacement, because the unfolding rule
is not an instance of simultaneous replacement. We have
shown that, in fact, clause replacement is the most general
transformation rule, in the sense that every correct trans-
formation can be expressed as an equivalence-based clause
replacement (see Theorem 1 of Section 2).

The main contribution of this paper is a method for prov-
ing the total correctness of the clause replacement rule. Our
method is based on program annotations, which are func-
tions that add suitable arguments to the predicates occur-
ring in a given program. In particular, we introduce well-
founded annotations, which ensure that the annotated pro-
gram is terminating and, thus, it has a unique fixpoint [2].
Annotated logic programs are a generalization of the instru-
mented SOS rules introduced in [17], because SOS rules [14]
can be considered as particular logic programs.

Our proof method uses well-founded annotations and the
unique fixpoint method [6, 15] to prove the total correctness
of clause replacement. However, our proof method is more
general than the unique fixpoint method. Indeed, in order to
prove the total correctness of the transformation of program
P into program @, in practice the unique fixpoint method
requires the proof of the termination of (), while according
to Theorem 6, we need only to construct a well-founded
annotation 3 for @ so that 3(Q) is terminating, but Q itself
need not be terminating.

Our proof method is also more general than the improve-
ment induction method [17] in the sense that our method
allows us to prove the total correctness of clause replace-
ments which are not improvements, as we now see in the
particular case where clause replacement is realized by the
goal replacement rule R3 (see Section 4). By adapting the
definitions of [17] to our context, here we say that, given a
program P, an annotated atom A;(X:) is improved by an
annotated atom A, (X5) iff for every ground instance ai{w1)
of A;(X1) belonging to M (P), there exists a ground instance
a2(w2) of A2(X») in M(P) such that wi > ws. The reader
may verify that the goal replacement rule R3 allows us to re-
place an annotated atom A;(X1) by a new annotated atom
A>(X>2) even if A1(X1) is not improved by As(X5).

We would like to stress that our unfolding, folding, and
goal replacement rules presented in Section 4 are parametric
w.r.t. the choice of suitable program annotations. Indeed,
these program annotations are specified only by the prop-
erties they should fulfill. By suitable choices of the annota-
tions we obtain transformation rules which are equivalent to
the different variants of the unfolding, folding, and goal re-
placement rules proposed in the literature [8, 10, 16, 18, 19].
For instance, the reader may verify that the rules presented
in [10] are a particular case of our rules where we choose the
annotation as of Example 4. Here we do not show in detail
how other existing transformation rules can be viewed as
instances of our rules of Section 4.

It should also be noticed that the use of our general proof
method based on well-founded annotations (see Theorem 6)
greatly simplifies the proofs of total correctness of the trans-
formation rules w.r.t. those presented in [8, 10, 16, 18, 19].

Finally, we would like to notice that the notion of total
correctness considered in this paper is different from the one
for imperative programs, where a program is said to be to-
tally correct w.r.t. a given specification iff its input-output
relation satisfies the specification and, moreover, the pro-
gram terminates (see, for instance, [12]). In fact, as already
mentioned, a clause replacement P — @ can be totally cor-
rect even if () is not terminating. However, in order to prove
that P — Q@ is totally correct we have to transform an anno-
tated program «(P) into a terminating annotated program
B(Q). In this sense we may say that program £(Q) is to-
tally correct w.r.t. the specification given by program «(P).
Similarly to the proofs of total correctness for imperative
programs based on the axiomatic approach [12], also the
derivation of the terminating program 3(Q) is performed by
applying first order logical inferences and proving suitable
well-founded ordering relations.

Acknowledgments

We thank the anonymous referees for useful comments and
suggestions.

7. REFERENCES

[1] K. R. Apt. Introduction to logic programming. In
J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-576. Elsevier, 1990.

[2] M. Bezem. Characterizing termination of logic
programs with level mappings. In E.L. Lusk and R.A.
Overbeek, editors, Proceedings of the North American
Conference on Logic Programming, Cleveland, Ohio
(USA), pages 69-80. MIT Press, 1989.

(3]

[7

8

A. Bossi, N. Cocco, and S. Etalle. On safe folding. In
Proceedings PLILP ’92, Leuven, Belgium, Lecture
Notes in Computer Science 631, pages 172-186.
Springer-Verlag, 1992.

A. Bossi, N. Cocco, and S. Etalle. Simultaneous
replacement in normal programs. Journal of Logic and
Computation, 6(1):79-120, 1996.

R. M. Burstall and J. Darlington. A transformation
system for developing recursive programs. Journal of
the ACM, 24(1):44-67, January 1977.

B. Courcelle. Infinite trees in normal form and
recursive equations having a unique solution.
Mathematical Systems Theory, 13:131-180, 1979.

N. Dershowitz. Termination of rewriting. Journal of
Symbolic Computation, 3(1-2):69-116, 1987.

M. Gergatsoulis and M. Katzouraki. Unfold/fold
transformations for definite clause programs. In

M. Hermenegildo and J. Penjam, editors, Proceedings
Sizth International Symposium on Programming
Language Implementation and Logic Programming
(PLILP ’94), Lecture Notes in Computer Science 844,
pages 340-354. Springer-Verlag, 1994.

J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The
semantics of constraint logic programming. Journal of
Logic Programming, 37:1-46, 1998.

T. Kanamori and H. Fujita. Unfold/fold
transformation of logic programs with counters.
Technical Report 179, ICOT, Tokyo, Japan, 1986.

M. J. Maher. Correctness of a logic program
transformation system. IBM Research Report RC
13496, T. J. Watson Research Center, 1987.

[12]

[13]

[14]

Z. Manna and A. Pnueli. Axiomatic approach to total
correctness of programs. Acta Informatica, 3:243-263,
1974.

H. A. Partsch. Specification and Transformation of
Programs. Springer-Verlag, 1990.

G. D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, Computer
Science Department, Aarhus University, Aarhus,
Denmark, 1981.

M. Proietti and A. Pettorossi. Transforming inductive
definitions. In D. De Schreye, editor, Proceedings of
the 1999 International Conference on Logic
Programming, pages 486-499. MIT Press, 1999.

A. Roychoudhury, K. Narayan Kumar, C.R.
Ramakrishnan, and I.V. Ramakrishnan. An
unfold/fold transformation framework for definite
logic programs. ACM Transactions on Programming
Languages and Systems, 26:264-509, 2004.

D. Sands. From SOS rules to proof principles: An
operational metatheory for functional languages. In
Proceedings of POPL 97, pages 428-441. ACM Press,
1997.

H. Tamaki and T. Sato. Unfold/fold transformation of
logic programs. In S.-A. Tarnlund, editor, Proceedings
of the Second International Conference on Logic
Programming, pages 127-138, Uppsala, Sweden, 1984.
H. Tamaki and T. Sato. A generalized correctness
proof of the unfold/fold logic program transformation.
Technical Report 86-4, Ibaraki University, Japan,
1986.

