
A Theory of Totally Correct Logic Program Transformations

Alberto Pettorossi
DISP, University of Roma Tor Vergata

Via del Politecnico 1
I-00133 Roma, Italy

adp@iasi.rm.cnr.it

Maurizio Proietti
IASI-CNR

Viale Manzoni 30
I-00185 Roma, Italy

proietti@iasi.rm.cnr.it

ABSTRACT
We address the problem of proving total
orre
tness of trans-

formation rules for de�nite logi
 programs. We
onsider

a general transformation rule,
alled
lause repla
ement,

whi
h
onsists in transforming a program P into a new pro-

gram Q by repla
ing a set �

1

of
lauses o

urring in P by a

new set �

2

of
lauses, provided that �

1

and �

2

are equivalent

in the least Herbrand model M(P) of the program P .

We propose a general method for proving that
lause re-

pla
ement is totally
orre
t, that is, M(P) = M(Q). Our

method
onsists in showing that the transformation of P

into Q
an be performed by: (i) adding extra arguments

to predi
ates, thereby
onstru
ting from the given program

P an annotated program �(P), (ii) applying
lause repla
e-

ments and transforming the annotated program �(P) into a

terminating annotated program �(Q), and (iii) erasing the

annotations from �(Q), thereby getting Q.

Our method does not require that either P or Q termi-

nates and it is parametri
 w.r.t. the annotations. By provid-

ing di�erent de�nitions for these annotations, we
an easily

prove the total
orre
tness of many versions of the unfolding,

folding, and goal repla
ement rules proposed in the litera-

ture.

Categories and Subject Descriptors
F.3.1 [Logi
s and Meaning of Programs℄: Spe
ifying

and Verifying and Reasoning about Programs, Semanti
s

of Programming Languages; D.1.2 [Programming Te
h-

niques℄: Automati
 Programming|Program Transforma-

tion; D.3.2 [Programming Languages℄: Language Clas-

si�
ation|Constraint and Logi
 Languages.

General Terms
Languages, Theory, Veri�
ation.

Keywords
Program transformation rules, logi
 programming, partial

and total
orre
tness, well-founded orderings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

1. INTRODUCTION
Rules for program transformation
an be viewed as
ondi-

tional rewritings of programs. Indeed the transformation of

a program P into a programQ
an be realized by using rules,

ea
h of whi
h rewrites a statement s

1

of the program P into

a new statement s

2

, provided that s

1

and s

2

are equivalent

w.r.t. a suitable semanti
s (see, for instan
e, [13℄).

In this paper we
onsider de�nite logi
 programs together

with a general transformation rule,
alled
lause repla
e-

ment, whi
h is a
onditional rewriting of programs of the

following form: a set �

1

of
lauses of a program P is rewrit-

ten into a new set �

2

of
lauses, provided that a suitable

logi
al equivalen
e between �

1

and �

2

holds in the least Her-

brand model M(P) of the program P . Most transformation

rules proposed in the literature, in
luding the popular un-

folding and folding rules [5, 18℄,
an be viewed as parti
ular

ases of the
lause repla
ement rule.

We will give the formal de�nition of the
lause repla
e-

ment rule in Se
tion 2. In this Introdu
tion, we will use the

following parti
ular instan
e of the
lause repla
ement rule,

alled goal repla
ement: a
lause H G

L

^ G

1

^ G

R

of a

program P is repla
ed by a new
lause H G

L

^G

2

^G

R

,

provided that goals G

1

and G

2

are equivalent in the least

Herbrand model of P , that is, M(P) j= 8 (G

1

$ G

2

), where

8(') denotes the universal
losure of formula '.

Mu
h work has been devoted to the study of the
or-

re
tness of program transformation rules for de�nite pro-

grams (see, for instan
e, [3, 8, 10, 11, 16, 18, 19℄). Two

notions of
orre
tness properties of the rules have been
on-

sidered: partial
orre
tness and total
orre
tness. A rule

whi
h transforms a program P into a program Q is said to

be partially
orre
t i� M(P) � M(Q), and it is said to be

totally
orre
t i� M(P) =M(Q).

We will show in Se
tion 2 that the partial
orre
tness of

the
lause repla
ement rule is a straightforward
onsequen
e

of the fa
t that this rule is based on a logi
al equivalen
e.

However, the appli
ation of logi
al equivalen
es does not

ensure the opposite in
lusion, i.e., M(P) � M(Q). Indeed,

in general,
lause repla
ement is not totally
orre
t. We

show this point in the parti
ular
ase of goal repla
ement,

by means of the following example.

Example 1. Let us
onsider the transformation of pro-

gram P into program Q, where P and Q are as follows:

P : p q Q: p p

q q

The transformation of P into Q is an appli
ation of the goal

repla
ement rule de�ned above, whi
h is justi�ed be
ause

M(P) j= p $ q holds. This goal repla
ement is not to-

tally
orre
t, be
ause we have that M(P) = fp; qg � fqg =

M(Q). �

Sin
e the pioneering work by Tamaki and Sato [18℄, var-

ious authors have proposed suitable extra
onditions whi
h

ensure the total
orre
tness of the unfolding, folding, and

goal repla
ement rules [8, 10, 16, 18, 19℄. However, the

veri�
ation of these
onditions requires the proof of some

invariants of the transformation of program P into program

Q, and these invariants refer to
omplex measures of the

proofs of the atoms whi
h are in M(P).

For instan
e, Tamaki and Sato proved that the repla
e-

ment of goal G

1

by goal G

2

is totally
orre
t if, in addition

to the
ondition M(P) j= 8 (G

1

$ G

2

), we have that for

all ground instan
es G

1

and G

2

of G

1

and G

2

, respe
-

tively, if G

1

has a proof in P then also G

2

has a proof in

P and this proof of G

2

has a measure whi
h is not larger

than the one of G

1

#. The measure of a proof is de�ned in

terms of the number of nodes in the proof tree [18℄. More

sophisti
ated measures are de�ned in [16, 19℄. However, no

general methodology is given in [16, 18, 19℄ for
omparing

proof measures and
he
king the
onditions whi
h ensure

the total
orre
tness of goal repla
ements.

The main
ontribution of this paper is a method for prov-

ing the total
orre
tness of the
lause repla
ement rule and

its parti
ular
ases
onsisting of the unfolding, folding, and

goal repla
ement rules. By our method we
an express the

onditions whi
h ensure total
orre
tness of
lause repla
e-

ment as �rst order formulas that
an be
he
ked by standard

dedu
tive te
hniques.

Let us brie
y des
ribe our method in the parti
ular
ase

of the goal repla
ement rule presented above. In order to

show the partial
orre
tness of the repla
ement of goal G

1

by goal G

2

thereby program P is transformed into program

Q, that is, to show that M(P) �M(Q), it suÆ
es to prove

that M(P) j= 8 (G

1

 G

2

) (and, thus, M(P) j= 8 ((H

G

L

^G

1

^G

R

) ! (H G

L

^G

2

^G

R

))).

In order to show the total
orre
tness of the repla
ement

of G

1

by G

2

, we may use the unique �xpoint prin
iple, whi
h

an be formulated as follows: if M(P) j= 8 (G

1

! G

2

) and

the immediate
onsequen
e operator T

Q

asso
iated with Q

has a unique �xpoint, then M(P) � M(Q) [6, 15℄. A suÆ-

ient (but not ne
essary)
ondition ensuring that T

Q

has

a unique �xpoint is that, for all ground goals, Q termi-

nates with su

ess or failure [2℄. However, this
ondition

based on the existen
e of a unique �xpoint is too restri
tive

in pra
ti
e, be
ause for many useful non-terminating logi

programs the immediate
onsequen
e operator T

Q

does not

have a unique �xpoint.

We over
ome this limitation by introdu
ing program an-

notations as we now indi
ate. For reasons of simpli
ity, let

us assume that every
lause of P is of the form H A

1

,

where A

1

is an atom. When A

1

is true the
lause H A

1

will also be written as H . The general
ase where the

bodies are
onjun
tions of n atoms, with n�0, is analogous

and we will
onsider it in Se
tions 3 and 4. An annotation

for program P is a fun
tion � that asso
iates with every

lause
: H A

1

of P an annotated
lause �(
) of the

form:

HhXi

1

(X;Y) ^ A

1

hY i

where: (i) X and Y are distin
t annotation variables rang-

ing over a given set W , and (ii)

1

(X;Y) is an annotation

formula, denoting a binary relation on W �W . The an-

notation variables should be
onsidered as extra arguments

of the atoms in the
lause
. For instan
e, the annotated

atom p(a)hY i should be
onsidered identi
al to the atom

p(a; Y). Thus, by
onsidering the annotation formulas as

onstraints, the annotated program �(P) is a
onstraint

logi
 program for whi
h we
an de�ne a least model, de-

noted by M(�(P)) [9℄.

Now, let us suppose that we repla
e A

1

in the body of

lause
 by a new atom A

2

, thereby deriving a new pro-

gram Q. Our method for proving M(P) � M(Q)
onsists

in showing the following three properties.

(1) The program annotation � is enhan
ing, that is, for every

ground atom A 2 M(P) there exists w 2 W su
h that

Ahwi 2M(�(P)).

(2) For some annotation formula

2

(X;Y), we have that:

M(�(P)) j= 8X (9Y (

1

(X;Y) ^A

1

hY i)

! 9Y (

2

(X;Y) ^A

2

hY i)).

(3) Let �(Q) be the annotated program obtained by repla
-

ing

1

(X;Y) ^ A

1

hY i by

2

(X;Y) ^ A

2

hY i. We have that

� is a well-founded annotation for Q, that is, for every an-

notated
lause KhXi d(X;Y) ^ BhY i in �(Q), the im-

pli
ation 8X 8Y (d(X;Y) ! X � Y) holds, where � is a

well-founded ordering on W (that is, no in�nite des
ending

sequen
e w

1

� : : : � w

n

� : : : exists in W).

Let us brie
y explain the reasons why Properties (1){

(3) ensure that M(P) � M(Q). Let us take A 2 M(P).

By Property (1) there exists w 2 W su
h that Ahwi 2

M(�(P)). In Se
tion 3 we will prove that if � is a well-

founded annotation for a program P , then T

�(P)

has a unique

�xpoint. Thus, by Properties (2) and (3), and by the unique

�xpoint prin
iple, we have that M(�(P)) � M(�(Q)) and,

hen
e, Ahwi 2 M(�(Q)). (To see that Property (2) is an

instan
e of M(�(P)) j= 8 (G

1

! G

2

), we observe that the

variables o

urring in the body of a
lause and not o

ur-

ring in the head,
an be
onsidered as variables whi
h are

existentially quanti�ed in front of the body.) Finally, sin
e

for every annotated atom Ahwi, if Ahwi 2 M(�(Q)) then

A 2M(Q), we
on
lude that A 2M(Q).

In pra
ti
e, in order to prove Property (3), that is, the

well-foundedness of �, we usually start from an annota-

tion � for P whi
h is well-founded, and then we prove that

the goal repla
ement preserves well-foundedness. Then, to

prove that goal repla
ement preserves well-foundedness it is

enough to show that the following impli
ation holds:

(3*) 8X 8Y (

2

(X;Y)! X�Y)

Thus, starting from an annotated program �(P) where �

is enhan
ing and well-founded, at every transformation step

we only need to prove that Properties (2) and (3*) hold, and

these proofs, as already mentioned,
an be made by using

standard dedu
tive te
hniques. In parti
ular, many power-

ful well-founded orderings
an be axiomatized as �rst order

theories, and their properties
an be proved by using te
h-

niques developed in the �eld of term rewriting systems [7℄.

Noti
e also that the property that � is an enhan
ing, well-

founded annotation for P is, in fa
t, independent of the

program P and
an be proved in advan
e for many program

annotations. We will give examples of these annotations in

Se
tion 3.

Finally, we would like to stress the fa
t that, when ap-

plying our method for proving the total
orre
tness of the

transformation of program P into program Q, neither P nor

Q is required to terminate.

Now we present a simple example whi
h shows that our

method
an be applied also for proving the total
orre
tness

of transformations realized by appli
ations of the unfolding

and folding rules.

Example 2. Let us
onsider the following program P :

1. q(a)

2. q(A) q(A)

3. p q(f(B))

In order to
onstru
t a totally
orre
t transformation, we

�rst
onsider the following annotated program �(P):

1a. q(a)hXi

2a. q(A)hXi X>Y ^ q(A)hY i

3a. phXi X>Y ^ q(f(B))hY i

where X and Y range over natural numbers and > is the

usual `greater than' ordering on natural numbers. Then

we apply the unfolding and folding transformation rules to

the annotated program �(P). By unfolding
lause 3a w.r.t.

q(f(B))hY i we derive:

4a. phXi X>Y ^ Y >Z ^ q(f(B))hZi

By folding
lause 4a w.r.t. Y >Z ^ q(f(B))hZi we derive:

5a. phXi X>Y ^ phY i

The annotated program derived by the above appli
ations of

the unfolding and folding rules is �(Q) = f1a, 2a, 5ag. Let

us
onsider the program obtained by erasing the annotations

from �(Q), that is, Q = f1, 2, 5g, where
lause 5 is:

5. p p

The partial
orre
tness of the transformation of P intoQ fol-

lows from the partial
orre
tness of the usual unfolding and

folding transformations for non-annotated programs. In-

deed, P
an be transformed into Q by applying the usual

unfolding and folding rules, in the same way as �(P) has

been transformed into �(Q). Thus, M(P) �M(Q).

The total
orre
tness of the transformation of P into Q

an be proved by our method based on well-founded annota-

tions similarly to the
ase of goal repla
ement. In parti
ular,

� is enhan
ing (and well-founded) and � is well-founded, be-

ause in every
lause of �(Q) the annotation of the head is

greater than the annotation of ea
h atom in the body (for in-

stan
e, in
lause 5a, we have X>Y). Thus, M(P) �M(Q)

and the transformation of the given program P into the �nal

program Q is totally
orre
t, that is, M(P) =M(Q). �

Sin
e our method is sound (see Se
tion 3), it
annot be

used to prove the total
orre
tness of the transformation of

Example 1 whi
h, indeed, is not totally
orre
t. Below we

show why this proof fails.

Example 3. Let us
onsider the following program �(P),

whi
h is an annotated version of the program P presented

in Example 1:

1a. phXi X>Y ^ qhY i

2a. qhXi

The annotation � is enhan
ing and well-founded.

By
lause 1a we have that:

M(�(P)) j= 8X (9Y (X>Y ^qhY i)! (9Y X=Y ^phY i))

Thus, Property (2) of our method for the total
orre
t-

ness of goal repla
ement is satis�ed. However, if we repla
e

X >Y ^ qhY i by X =Y ^ phY i in
lause 1a, we get a new

annotated program whose annotation is not well-founded,

be
ause X=Y does not imply that X � Y for any well-

founded ordering �, and thus, Property (3) of our method

is not satis�ed. �

The paper is stru
tured as follows. In Se
tion 2 we intro-

du
e the
lause repla
ement transformation rule, whi
h gen-

eralizes the unfolding, folding, and goal repla
ement trans-

formations. We prove the partial
orre
tness of
lause re-

pla
ement, as well as other relevant properties. In Se
-

tion 3 we introdu
e program annotations and, in parti
ular,

well-founded annotations. Then we prove a suÆ
ient
ondi-

tion for ensuring the total
orre
tness of
lause repla
ement

based on well-founded annotations. In Se
tion 4 we present

variants of the unfolding, folding, and goal repla
ement rules

for annotated programs and we use the results of Se
tion 3

for showing that these rules are totally
orre
t. In Se
tion 5

we present an extended example of appli
ation of the unfold-

ing, folding, and goal repla
ement rules. Finally, in Se
tion 6

we
ompare our method to related te
hniques for proving

total
orre
tness of program transformations. In parti
u-

lar, we argue that by our method we
an easily prove total

orre
tness of the various versions of the unfolding/folding

rules proposed in the literature (see, for instan
e, [8, 10, 16,

18, 19℄).

2. CLAUSE REPLACEMENT
In this se
tion we introdu
e the
lause repla
ement trans-

formation rule. All usual program transformation rules,

su
h as unfolding, folding, and goal repla
ement, are in-

stan
es of this
lause repla
ement rule. Indeed, we prove

that
lause repla
ement is the most general program trans-

formation rule, in the sense that, any totally
orre
t pro-

gram transformation
an be obtained by applying this rule

(see Theorem 1). Then we study the partial and total
or-

re
tness of
lause repla
ement (see Theorems 2 and 3). In

parti
ular, we give a suÆ
ient
ondition for the total
orre
t-

ness of
lause repla
ement, whi
h is based on the uniqueness

of the �xpoint of the immediate
onsequen
e operator of the

annotated transformed program (see Corollary 1).

In order to de�ne the
lause repla
ement rule we introdu
e

the following impli
ations and equivalen
es between sets of

lauses

1

.

De�nition 1. Let I be a Herbrand interpretation and let

�

1

;�

2

be two sets of
lauses. We write I j= �

1

) �

2

i�

for every ground instan
e H G

2

of a
lause in �

2

su
h

that I j= G

2

there exists a ground instan
e H G

1

of a

lause in �

1

su
h that I j= G

1

. We write I j= �

1

(�

2

i�

I j= �

2

) �

1

and we write I j= �

1

, �

2

i� I j= �

1

) �

2

and I j= �

1

(�

2

.

For every Herbrand interpretation I and sets of
lauses

�;�

1

;�

2

;�

3

the following properties hold:

Re
exivity : I j= �) �

Transitivity : if I j= �

1

) �

2

and I j= �

2

) �

3

then I j= �

1

) �

3

1

The notions we introdu
e in the following De�nitions 1

and 2 are symmetri
 w.r.t. those introdu
ed in [15℄. The

reason is that here we deal with impli
ations between sets

of
lauses, while in [15℄ we deal with impli
ations between

sets of bodies of
lauses.

Monotoni
ity : if I j= �

1

) �

2

then I j= �

1

[�) �

2

[�.

De�nition 2. A
lause repla
ement is a pair (P;Q) of pro-

grams, denoted P 7!Q, su
h that, for some sets �

1

and �

2

of
lauses with �

1

� P , we have: Q = (P � �

1

) [�

2

.

Program Q is also denoted P [�

1

=�

2

℄. A
lause repla
e-

ment P 7! P [�

1

=�

2

℄ is said to be: (i) impli
ation-based i�

M(P) j= �

1

) �

2

, (ii) reverse-impli
ation-based i�M(P) j=

�

1

(�

2

, and (iii) equivalen
e-based i� M(P) j= �

1

, �

2

.

A
lause repla
ement P 7! Q is said to be: (iv) partially

orre
t i�M(P) �M(Q), (v) in
reasing i�M(P) �M(Q),

and (vi) totally
orre
t i� M(P) =M(Q).

By monotoni
ity, we have the following property whi
h will

be useful in the proofs of (partial and total)
orre
tness of

lause repla
ement.

Lemma 1. Let P 7! Q be a
lause repla
ement.

(i) P 7! Q is impli
ation-based i� M(P) j= P)Q.

(ii) P 7! Q is reverse-impli
ation-based i� M(P) j= P(Q.

The following theorem, whose proof is left to the reader,

shows that equivalen
e-based
lause repla
ement is a
om-

plete transformation rule for the derivation of equivalent

programs, in the sense that, for any two programs P and

Q su
h that M(P) = M(Q), there exists an equivalen
e-

based
lause repla
ement P 7! Q.

Theorem 1. (Completeness of Equivalen
e-Based Clause

Repla
ement) Given two programs P and Q, if M(P) =

M(Q) then M(P) j= P , Q.

Now we present some suÆ
ient
onditions for ensuring that a

lause repla
ement is partially
orre
t and in
reasing. Given

a program P , we denote its asso
iated immediate
onse-

quen
e operator by T

P

[1℄. We denote the least and greatest

�xpoint of T

P

by lfp(T

P

) and gfp(T

P

), respe
tively. Re
all

that M(P) = lfp(T

P

).

First we show that every impli
ation-based
lause repla
e-

ment is partially
orre
t.

Theorem 2. (Partial Corre
tness) Given two programs

P and Q, if P 7! Q is an impli
ation-based
lause repla
e-

ment then M(P) �M(Q).

Proof. We �rst show that M(P) is a pre�xpoint of T

Q

,

that is, T

Q

(M(P)) � M(P). Let A be a ground atom in

T

Q

(M(P)). By de�nition of T

Q

there exists a ground in-

stan
e A G

2

of a
lause in Q su
h that M(P) j= G

2

.

Sin
e P 7! Q is an impli
ation-based
lause repla
ement,

by Lemma 1 M(P) j= P) Q. Thus, by De�nition 1,

there exists a ground instan
e A G

1

of a
lause in P

su
h that M(P) j= G

1

. Hen
e, by de�nition of T

P

, A 2

T

P

(M(P)). Sin
e M(P) is a pre�xpoint of T

P

, we have

that T

P

(M(P)) � M(P) and, therefore, A 2 M(P). Thus,

we have proved that M(P) is a pre�xpoint of T

Q

. Sin
e

M(Q) = lfp(T

Q

) and lfp(T

Q

) is the least pre�xpoint of T

Q

(see, for instan
e, [1℄), we have that M(P) �M(Q).

Sin
e every equivalen
e-based
lause repla
ement is an

impli
ation-based
lause repla
ement, Theorem 2 proves also

that equivalen
e-based
lause repla
ements are partially
or-

re
t.

In order to prove that a
lause repla
ement is in
reasing

we propose a method based on the unique �xpoint prin
i-

ple [6, 15℄.

A program P is said to be univo
al i� T

P

has a unique

�xpoint, that is, lfp(T

P

) = gfp(T

P

). A suÆ
ient
ondition

for a program to be univo
al is that it is terminating [2℄.

Theorem 3. (In
reasingness) Given two programs P and

Q, if P 7! Q is a reverse-impli
ation-based
lause repla
e-

ment and Q is univo
al then M(P) �M(Q).

Proof. We �rst show thatM(P) is a post�xpoint of T

Q

,

that is, T

Q

(M(P)) � M(P). Let A be a ground atom in

M(P). Sin
eM(P) is a �xpoint of T

P

, that is, T

P

(M(P)) =

M(P), we have that there exists a ground instan
e A G

1

of a
lause in P su
h that M(P) j= G

1

. By Lemma 1,

M(P) j= P (Q and, therefore, by De�nition 1, there

exists a ground instan
e A G

2

of a
lause in Q su
h

that M(P) j= G

2

. By de�nition of T

Q

, we have that A 2

T

Q

(M(P)). Thus, we have proved that M(P) is a post�x-

point of T

Q

. Sin
e gfp(T

Q

) is the greatest post�xpoint of

T

Q

(see, for instan
e, [1℄), we have that M(P) � gfp(T

Q

).

Finally, by the hypothesis that Q is univo
al, we get that

M(P) �M(Q).

As a
onsequen
e of Theorems 2 and 3 we have the fol-

lowing result.

Corollary 1. (Total Corre
tness via Unique Fixpoint)

Given two programs P and Q, if P 7! Q is an equivalen
e-

based
lause repla
ement and Q is univo
al then M(P) =

M(Q).

Corollary 1 gives us a useful method for proving the total

orre
tness of
lause repla
ements. However, from a pra
-

ti
al point of view, this method has the following two lim-

itations: (1) the property that a program is univo
al is,

in general, unde
idable, and (2) the method
annot be ap-

plied when the program derived by
lause repla
ement, is

not univo
al. In the next se
tion we will present a method

that partly over
omes these limitations.

3. WELL-FOUNDED ANNOTATIONS
In this se
tion we present our method based on the notion

of program annotation for proving the total
orre
tness of

lause repla
ements. In parti
ular, we will introdu
e the so

alled well-founded annotations, that is, annotations whi
h

generate terminating (and, thus, univo
al) annotated pro-

grams. First, we present the syntax and the semanti
s of

annotated programs and then we introdu
e the notion of

lause repla
ement for the
lass of annotated programs. Fi-

nally, we prove the main result of this paper, that is, a suf-

�
ient
ondition for ensuring the total
orre
tness of
lause

repla
ements (see Theorem 6 below).

The syntax of annotated programs is de�ned as follows.

We
onsider a �rst order language L

A

for writing annota-

tions. We assume that L

A

is disjoint from the �rst order

language L

P

for writing programs. We also assume that

in the set of predi
ate symbols of L

A

there is the symbol

�, whi
h is interpreted as a well-founded ordering relation

on a suitable domain. Variables, terms, and formulas of

L

A

are
alled annotation variables, annotation terms, and

annotation formulas, respe
tively. For reasons of simpli
-

ity, we assume that annotation formulas do not have bound

variables. An annotated atom is of the form Ahwi, where A

is an atom of L

P

and w is an annotation term of L

A

. An

annotated
lause is of the form:

Hhwi
 ^A

1

hw

1

i ^ : : : ^A

n

hw

n

i

where (i) w;w

1

; : : : ; w

n

are annotation terms, (ii)
 is an

annotation formula, and (iii) Hhwi; A

1

hw

1

i; : : : ;A

n

hw

n

i are

annotated atoms. An annotated program is a set of anno-

tated
lauses. Annotated atoms,
onjun
tions of annotated

atoms, and annotated programs are denoted by overlined

metavariables, su
h as A, G, and P .

The de�nition of the semanti
s of annotated programs is

similar to the one of
onstraint logi
 programs [9℄ and it is

given as follows. We �x an interpretation W for L

A

, whose

arrier is a set W . We assume that the predi
ate symbol

� is interpreted as a well-founded ordering relation on W

whi
h, by abuse of language, we will also denote by �. For

any annotation formula
, the satisfa
tion relation W j=
 is

de�ned as usual in �rst order logi
. The interpretation W

will also be referred to as the well-founded ordering (W;�).

A W-interpretation is a subset of

B

W

= fAhwi jA is a ground atom and

w is a ground annotation termg

Given a W-interpretation I, a ground annotation formula

, and a ground
onjun
tion A

1

^ : : : ^ A

n

of annotated

atoms, the satisfa
tion relation I j=
 ^A

1

^ : : : ^A

n

holds

i� W j=
 and, for i = 1; : : : ; n, A

i

2 I. A ground annotated

lause H
 ^ G, where G is a
onjun
tion of annotated

atoms, is true in a W-interpretation I i� I j=
 ^G implies

H 2 I. An annotated
lause is true in a W-interpretation

I i� all its ground instan
es are true in I. A W-model of

an annotated program P is a W-interpretation su
h that

all annotated
lauses in P are true. It
an be shown that

every annotated program P has a least W-model whi
h is

denoted by M(P) (this is the same notation whi
h is used

for the least Herbrand model of de�nite logi
 programs).

Similarly to the
ase of de�nite logi
 programs, the least

W-model of an annotated program
an be
omputed as the

least �xpoint of a parti
ular operator overW-interpretations.

With every annotated program P we asso
iate an immedi-

ate
onsequen
e operator T

P

from P(B

W

) to P(B

W

), where

P(B

W

) denotes the powerset of B

W

, su
h that for every

I 2 P(B

W

),

T

P

(I) = fH j there exists a ground instan
e H
 ^G

of an annotated
lause in P su
h that

I j=
 ^Gg

Similarly to the
ase of de�nite logi
 programs (see, for in-

stan
e, [1℄), we have the following result.

Theorem 4. For every annotated program P , T

P

is a

ontinuous fun
tion from P(B

W

) to P(B

W

) and lfp(T

P

) =

M(P).

In the next de�nition we introdu
e the main notion of

this paper. In this de�nition we
onsider the following four

sets: Clauses , AClauses , Programs , and APrograms , whi
h

onsist of all
lauses, annotated
lauses, programs, and an-

notated programs, respe
tively. We will also use the follow-

ing notations. Given two annotated atoms A

1

= A

1

hw

1

i

and A

2

= A

2

hw

2

i, the formula w

1

� w

2

is also written as

A

1

�A

2

. Moreover, given an annotated atom H and an an-

notated goal A

1

^ : : :^A

n

, the formula H�A

1

^ : : :^H�A

n

is also written as H�A

1

^ : : : ^ A

n

.

De�nition 3. An annotation over W is a fun
tion � :

Clauses ! AClauses su
h that, for every
lause
 of the

form H A

1

^ : : : ^ A

n

, the annotated
lause �(
) is

of the form HhXi
 ^ A

1

hX

1

i ^ : : : ^ A

n

hX

n

i, where

X;X

1

; : : : ; X

n

are annotation variables. An annotation � :

Clauses ! AClauses
an be extended to a fun
tion, also

denoted by �, from Programs to APrograms , by stipulat-

ing that, for every program f

1

; : : : ;

n

g, �(f

1

; : : : ;

n

g) is

f�(

1

); : : : ; �(

n

)g. Let P be a program in Programs .

(i) An annotation � is said to be well-founded (for P) i� for

every annotated
lause �(
): H
^A

1

^ : : :^A

n

of �(P),

we have that:

W j= 8 (
! (H�A

1

^ : : : ^ A

n

)).

(ii) An annotation � is said to be enhan
ing (for P) i� for

every A 2 M(P) there exists a ground annotation term w

su
h that Ahwi 2M(�(P)).

Now we give some examples of annotations.

Example 4. Let N be the well-founded ordering (Nat ; >),

where Nat is the set of the natural numbers and > is the

usual `greater than' ordering on Nat .

(i) The annotation �

1

over N is de�ned as follows: for every

lause
: H A

1

^ : : :^A

n

, the annotated
lause �

1

(
) is

HhXi X>X

1

^ : : :^X>X

n

^A

1

hX

1

i ^ : : :^A

n

hX

n

i

(ii) The annotation �

2

over N is de�ned as follows: for every

lause
: H A

1

^ : : :^A

n

, the annotated
lause �

2

(
) is

HhXi X>X

1

+ : : : +X

n

^A

1

hX

1

i ^ : : : ^A

n

hX

n

i

where + is interpreted in N as the addition of natural num-

bers. The annotations �

1

and �

2

are enhan
ing and well-

founded. In parti
ular, we have that:

N j= 8X 8X

1

: : : 8X

n

(X>X

1

+ : : :+X

n

! X>X

1

^ : : : ^X>X

n

). �

In the following example we present a well-founded annota-

tion whi
h is not enhan
ing.

Example 5. Let us
onsider the following program P :

p q

q

Let us also
onsider the annotation �

3

overN that asso
iates

with P the following annotated program:

ph1i qh0i

qh1i

We have that M(P) = fp; qg, while M(�

3

(P)) = fqh1ig

and, thus, �

3

is not enhan
ing. �

In order to erase annotations from annotated
lauses we

use the proje
tion fun
tion � : AClauses ! Clauses su
h

that, for every
lause
 and annotation �, we have �(�(
)) =

. The fun
tion � : AClauses ! Clauses
an be extended to

a fun
tion, also denoted by �, from APrograms to Programs ,

by stipulating that, for every program P and annotation �,

we have �(�(P)) = P .

We have the following straightforward property of the pro-

je
tion fun
tion.

Proposition 1. For every annotated program P and

ground annotated atom Ahwi, if Ahwi 2 M(P) then

A 2M(�(P)).

Similarly to programs whi
h are not annotated, we have the

following de�nition of the) relation.

De�nition 4. Let I be a W-interpretation and let �

1

;�

2

be sets of annotated
lauses. We write I j= �

1

) �

2

i�

for every ground instan
e H

2

^ G

2

of an annotated

lause in �

2

su
h that I j=

2

^ G

2

there exists a ground

instan
e H

1

^ G

1

of an annotated
lause in �

1

su
h

that I j=

1

^ G

1

. We write I j= �

1

(�

2

i� I j= �

2

) �

1

and we also write I j= �

1

, �

2

i� I j= �

1

) �

2

and

I j= �

1

(�

2

.

The notion of
lause repla
ement for annotated programs

an be introdu
ed by a de�nition similar to De�nition 2

of Se
tion 2, where one
onsiders `annotated programs', in-

stead of `programs'. Analogously, one
an also introdu
e the

notions of: (i) impli
ation-based, (ii) reverse-impli
ation-

based, (iii) equivalen
e-based, (iv) partially
orre
t, (v) in-

reasing, and (vi) totally
orre
t
lause repla
ement for an-

notated programs. We have that the properties stated by

Theorems 1, 2, 3, and Corollary 1 of Se
tion 2, hold for

annotated programs as well.

Theorem 5. Let � be a well-founded annotation over W.

Then, for every program P , the annotated program �(P) is

univo
al, that is, lfp(T

�(P)

) = gfp(T

�(P)

), and M(�(P)) is

the unique �xpoint of T

�(P)

.

Proof. Let W be the well-founded ordering (W;�). As-

sume that I and J are �xpoints of T

�(P)

. By well-founded

indu
tion on � we prove that: for every ground annotated

atom A, A 2 I i� A 2 J . The indu
tive hypothesis is:

for every ground annotated atom B, if W j= A � B then

A 2 I i� A 2 J . Assume that A 2 I. Sin
e I = T

�(P)

(I),

we have that there exists a
lause, say
, of the form A

 ^ A

1

^ : : : ^ A

n

in �(P) su
h that W j=
 and, for i =

1; : : : ; n, A

i

2 I. Sin
e � is well-founded, we have that, for

i = 1; : : : ; n, W j= A � A

i

. Therefore, by the indu
tive

hypothesis, for i = 1; : : : ; n, we have that A

i

2 J . Sin
e J

is a �xpoint of T

�(P)

and W j=
, we get that A 2 J . Thus,

we have proved that if A 2 I then A 2 J . Similarly, we
an

prove that if A 2 J then A 2 I.

We are now able to show the main result of this paper.

Theorem 6. (Total Corre
tness via Well-Founded Anno-

tations) Let P;Q be programs whi
h are not annotated. Let

P 7! Q be a
lause repla
ement, and �; � be annotations

su
h that:

(i) P 7! Q is impli
ation-based, that is, M(P) j= P) Q,

(ii) �(P) 7! �(Q) is a reverse-impli
ation-based
lause re-

pla
ement, that is, M(�(P)) j= �(P)(�(Q),

(iii) � is enhan
ing, and

(iv) � is well-founded.

Then P 7! Q is totally
orre
t, that is, M(P) =M(Q).

Proof. By Hypothesis (i) and Theorem 2, P 7! Q is

partially
orre
t, that is, M(P) �M(Q). Let us now prove

that P 7! Q is in
reasing, that is, M(P) � M(Q). Let

A be a ground atom in M(P). Sin
e � is enhan
ing (see

Hypothesis (iii)), there exists a ground annotation term w

su
h that Ahwi belongs toM(�(P)). Sin
e � is well-founded

(see Hypothesis (iv)), by Theorem 5 �(Q) is univo
al and,

sin
e �(P) 7! �(Q) is a reverse-impli
ation-based
lause re-

pla
ement (see Hypothesis (ii)), by Theorem 3, M(�(P)) �

M(�(Q)). Thus, Ahwi belongs to M(�(Q)) and, by Propo-

sition 1, A belongs to M(Q).

-

-

?

6

P Q

��

�(Q)�(P)

Figure 1: Program Transformation via Well-

Founded Annotations.

Noti
e that the annotation � is required to be enhan
ing,

but not well-founded, while � is required to be well-founded,

but not enhan
ing. In pra
ti
e, however, it is often useful to

start from an enhan
ing, well-founded annotation � and ap-

ply
lause repla
ements that preserve the well-foundedness

of annotations, so that the annotation � is well-founded by

onstru
tion.

Thus, Theorem 6 supports a methodology for program

transformation whi
h
onsists of the following steps (see also

Figure 1). Given an initial program P , in order to
onstru
t

a totally
orre
t transformation starting from P :

(1) �rst, we
hoose an annotation � whi
h is enhan
ing and

well-founded;

(2) then, we apply to �(P) a
lause repla
ement

�(P) 7!�(Q) su
h that:

(i) M(P) j= P) Q,

(ii) M(�(P)) j= �(P)(�(Q), and

(iii) � is well-founded; and

(3) �nally, we apply the proje
tion � and we erase the an-

notations from �(Q).

Noti
e that neither P nor Q is required to be univo
al (and

in parti
ular, they are not required to be terminating).

4. UNFOLD/FOLD TRANSFORMATION
RULES WITH ANNOTATIONS

Step 2 of the methodology presented at the end of the

previous se
tion, whereby we derive the annotated program

�(Q) from the annotated program �(P), may be realized by

a sequen
e of appli
ations of transformation rules. These

rules, whi
h we will present below, transform annotated pro-

grams rather than programs, and are variants of the usual

unfolding, folding, and goal repla
ement rules for de�nite

logi
 programs. Given the program P and the annotation

�, by n appli
ations of these rules we
onstru
t a sequen
e

�

0

(P

0

); : : : ; �

n

(P

n

) of annotated programs su
h that �

0

=�,

P

0

=P , �

n

= �, and P

n

=Q. We assume that �

0

is an en-

han
ing, well-founded annotation. Moreover, we will show

that the appli
ability
onditions of the transformation rules

ensure that if �

0

is a well-founded annotation, then �

n

is a

well-founded annotation. The total
orre
tness of the trans-

formation of the program P

0

into program P

n

follows from

Theorem 6 be
ause, for k = 0; : : : ; n � 1, we have that:

(i) M(P

0

) j= P

k

) P

k+1

and (ii) M(�

0

(P

0

)) j= �

k

(P

k

) (

�

k+1

(P

k+1

). Thus, by transitivity of) and (, the se-

quen
e of appli
ations of the unfolding, folding, and goal

repla
ement rules
an be viewed as a single
lause repla
e-

ment �

0

(P

0

) 7! �

n

(P

n

) su
h that: (i) M(P

0

) j= P

0

) P

n

,

and (ii) M(�

0

(P

0

)) j= �

0

(P

0

)(�

n

(P

n

).

The rules presented in this se
tion are parametri
 w.r.t. the

annotation �

0

hosen for the initial program P

0

.

An annotated transformation sequen
e P

0

; : : : ; P

n

is a se-

quen
e of annotated programs
onstru
ted as follows. Sup-

pose that we have
onstru
ted the transformation sequen
e

P

0

; : : : ; P

k

. Then, for 0 � k � n�1, program P

k+1

is de-

rived from program P

k

by the appli
ation of one of the

three transformation rules R1, R2, and R3 de�ned below.

Noti
e that among the transformation rules here we do not

in
lude the de�nition introdu
tion rule [18℄. This rule is use-

ful in pra
ti
e, but its absen
e is not a limitation when we

study the
orre
tness of program transformations. Indeed,

we may assume that the de�nitions of the predi
ates whi
h

are needed during a transformation sequen
e, are introdu
ed

at the beginning of its
onstru
tion and, thus, they
an be

onsidered to be already present in the initial program P

0

.

This simplifying assumption is also made in [8, 16, 19℄.

R1. Unfolding. Let
 : H
^G

L

^A^G

R

be a
lause

in the annotated program P

k

and let P

0

0

be a variant of P

0

without
ommon variables with P

k

. Let

1

: H

1

1

^G

1

: : :

m

: H

m

m

^G

m

with m � 0, be all
lauses of program P

0

0

su
h that, for

i = 1; : : : ;m, A is uni�able with H

i

via a most general

uni�er #

i

. By unfolding
lause
 w.r.t. the atom A we derive

the
lauses

�

1

: (H
 ^

1

^G

L

^G

1

^G

R

)#

1

: : :

�

m

: (H
 ^

m

^G

L

^G

m

^G

R

)#

m

and from program P

k

we derive the program P

k+1

= (P

k

�

f
g) [f�

1

; : : : ; �

m

g.

Basi
ally, the unfolding rule for annotated programs is

like the usual unfolding rule for de�nite logi
 programs. No-

ti
e, however, that we
annot unfold an annotated program

w.r.t. an annotation formula, but only w.r.t. an annotated

atom. In the following rules the set of variables o

urring in

an expression e is denoted by vars(e).

R2. Folding. Let P

0

0

be a variant of P

0

without
ommon

variables with P

k

. Let

Æ

1

: K d

1

^G

1

: : :

Æ

m

: K d

m

^G

m

with m�1, be
lauses in P

0

0

and, for a substitution #, let

1

: H

1

^G

L

^G

1

^ G

R

: : :

m

: H

m

^G

L

^G

m

^G

R

be
lauses in P

k

. Suppose that the following
onditions

hold:

1. no
lause in P

0

0

� fÆ

1

; : : : ; Æ

m

g has its head uni�able

with K#;

2. there exists an annotation formula
 su
h that, for i =

1; : : : ;m, we have: W j= 8X ((9Y

i

)! 9Z (
 ^ d

i

#)),

whereX = vars(fH;G

L

; G

i

#;G

R

g), Y = vars(

i

)�X,

and Z = vars(
 ^ d

i

#)�X;

3. for i = 1; : : : ;m and for every variable U in the set

vars(d

i

^ G

i

) � vars(K): (i) U# is a variable not o
-

urring in fH;
;G

L

; G

R

g, and (ii) U# does not o

ur

in the term V #, for any variable V o

urring in d

i

^G

i

and di�erent from U ; and

4. W j= 8 (
! (H�G

L

^K# ^G

R

)).

By folding
lauses

1

; : : : ;

m

using
lauses Æ

1

; : : : ; Æ

m

we

derive the
lause �: H
^G

L

^K#^G

R

and from program

P

k

we derive the program P

k+1

= (P

k

�f

1

; : : : ;

m

g)[f�g.

The di�eren
e between the folding rule for annotated pro-

grams and the usual folding rule for de�nite logi
 programs

onsists in the extra Conditions 2 and 4. However, as already

mentioned, the usual folding rule ensures partial
orre
tness

only. The following example illustrates an appli
ation of the

folding rule R2.

Example 6. Let us
onsider the following annotated pro-

gram P

0

, where we use the well-founded annotation �

1

over

N of Example 4:

1. p(a)hXi

2. p(A)hXi X>X

1

^X>X

2

^ t(A;B)hX

1

i^p(B)hX

2

i

3. q(b)hXi

4. q(A)hXi X>X

1

^ r(A)hX

1

i

5. r(A)hXi X>X

1

^X>X

2

^ t(A;B)hX

1

i^q(B)hX

2

i

6. s(A)hXi X>X

1

^ p(A)hX

1

i

7. s(A)hXi X>X

1

^ q(A)hX

1

i

By unfolding
lause 6 w.r.t. p(A)hX

1

i and by renaming vari-

ables, we get:

8. s(a)hY i Y >Y

1

9. s(C)hY i Y >Y

1

^ Y

1

>Y

2

^ Y

1

>Y

3

^ t(C;D)hY

2

i

^ p(D)hY

3

i

By two appli
ations of the unfolding rule and by renaming

variables, from
lause 7 we derive:

10. s(b)hY i Y >Y

1

11. s(C)hY i Y >Z ^ Z>Y

1

^ Y

1

>Y

2

^ Y

1

>Y

3

^ t(C;D)hY

2

i ^ q(D)hY

3

i

Now, Conditions 1{4 of the folding rule are veri�ed by tak-

ing: (i) # to be the substitution fX=Y

1

; X

1

=Y

3

; A=Dg, and

(ii)
 to be the annotation formula Y >Z ^ Z>Y

2

^ Y >Y

1

.

By folding
lauses 9 and 11 using
lauses 6 and 7 we derive

the
lause:

12. s(C)hY i Y >Z ^ Z>Y

2

^ Y >Y

1

^ t(C;D)hY

2

i

^ s(D)hY

1

i. �

In order to introdu
e the goal repla
ement rule, we need

the following de�nition of repla
ement law.

De�nition 5. (Repla
ement Law) Let P be a program, �

be a program annotation, G

1

and G

2

be annotated
onjun
-

tions, X � vars(fG

1

; G

2

g) be a set of variables, and d be

an annotation formula. We say that the repla
ement law

1

^G

1

)

X

2

^G

2

holds in �(P) i� the following
onditions

hold:

(i) M(�(P)) j= 8X (9Y (

1

^G

1

)! 9Z (

2

^G

2

)) and

(ii) M(P) j= 8X (9Y G

1

 9Z G

2

)

where (1) Y = vars(

1

^G

1

)�X, (2) Z = vars(

2

^G

2

)�X,

and (3) G

1

and G

2

are the
onjun
tions obtained by erasing

the annotation terms from G

1

and G

2

, respe
tively.

R3. Goal Repla
ement. Let
 : H
^

1

^G

L

^G

1

^G

R

be a
lause of the annotated program P

k

and let G

2

be

an annotated
onjun
tion su
h that the following repla
e-

ment law

1

^G

1

)

X

2

^G

2

holds in P

0

, where X =

vars(fH;
; G

L

; G

R

g) \ vars(f

1

; G

1

;

2

; G

2

g). Suppose also

that:

W j= 8 ((
 ^

2

)! (H� G

L

^G

2

^G

R

)) (y)

By goal repla
ement from
lause
 we derive the
lause � :

H
^

2

^G

L

^G

2

^G

R

and from program P

k

we derive

the program P

k+1

= (P

k

� f
g) [f�g.

The goal repla
ement rule R3 for annotated programs dif-

fers from the usual (partially
orre
t) goal repla
ement rule

for de�nite logi
 programs be
ause of Condition (y). We will

see an example of appli
ation of the goal repla
ement rule

in the next se
tion.

By using the results of Se
tion 3 we
an prove the total

orre
tness of the transformation rules.

Theorem 7. (Total Corre
tness of the Transformation

Rules) Let �

0

(P

0

); : : : ; �

n

(P

n

) be an annotated transforma-

tion sequen
e su
h that �

0

is an enhan
ing, well-founded

annotation. Then M(P

0

) =M(P

n

).

Proof. (Sket
h) For k = 0; : : : ; n�1, let �

k+1

(P

k+1

) be

the annotated program derived from �

k

(P

k

) by the appli-

ation of a transformation rule in R1{R3. Then, for some

sets of annotated
lauses �

k

(�

k

) and �

k+1

(�

k+1

), we have

that �

k+1

(P

k+1

) = (�

k

(P

k

) � �

k

(�

k

)) [�

k+1

(�

k+1

). We

have the following properties: (P1) M(P

0

) j= �

k

) �

k+1

,

(P2) M(�

0

(P

0

)) j= �

k

(�

k

)(�

k+1

(�

k+1

), and (P3) if �

k

is

well-founded then �

k+1

is well-founded. The proofs of prop-

erties P1{P3 are straightforward appli
ations of the de�ni-

tions, and they are left to the reader. Noti
e that in the

proof of P3 we use Condition 4 of the folding rule and Con-

dition (y) of the goal repla
ement rule.

Now let us
onsider the
lause repla
ement P

0

7! P

n

. The

following properties hold.

(i) P

0

7! P

n

is an impli
ation-based
lause repla
ement.

Indeed, by Property P1, Lemma 1, and transitivity of) we

have: M(P

0

) j= P

0

) P

n

.

(ii) �

0

(P

0

) 7! �

n

(P

n

) is a reverse-impli
ation-based
lause

repla
ement. Indeed, by Property P2, Lemma 1, and tran-

sitivity of (we have: M(�

0

(P

0

)) j= �

0

(P

0

)(�

n

(P

n

).

(iii) �

0

is enhan
ing (by hypothesis).

(iv) �

n

is well-founded (by the hypothesis that �

0

is well-

founded and Property P3).

Thus, by Theorem 6 P

0

7! P

n

is totally
orre
t, that is,

M(P

0

) =M(P

n

).

5. AN EXTENDED EXAMPLE
In this se
tion we revisit an example of program trans-

formation taken from [16℄. In that paper the proof of total

orre
tness of the transformation rules is rather intri
ate.

On the
ontrary we show that the total
orre
tness of this

transformation
an be established by our well-founded an-

notation method in a very easy way. Let us
onsider the

following program P :

1. thm(X) gen(X) ^ test(X)

2. gen([℄)

3. gen([0jX℄) gen(X)

4. test(X)
anon(X)

5. test(X) trans(X;Y) ^ test(Y)

6.
anon([℄)

7.
anon([1jX℄)
anon(X)

8. trans([0jX℄; [1jX℄)

9. trans([1jX℄; [1jY ℄) trans(X;Y)

where we have that thm(X) holds i� X is a list of 0's that

an be transformed into a list of 1's by repeated appli
ations

of trans(X;Y). Given the list X, the predi
ate trans(X;Y)

generates the list Y by repla
ing the leftmost 0 in X by 1.

The formula 8X (thm(X) $ gen(X)) is true in the least

Herbrand model of program P . As indi
ated in [16℄, the

truth of this formula
an be established by
onstru
ting a

totally
orre
t transformation of P into a program Q where

the predi
ates thm and gen are de�ned by two sets of
lauses

whi
h are identi
al up to a predi
ate renaming. Let us see

how we
onstru
t this transformation by applying our rules

of Se
tion 4.

Let N be the well-founded ordering (Nat ; >), where Nat

is the set of the natural numbers and > is the usual `greater

than' ordering on Nat . Let us
onsider the well-founded

annotation � that asso
iates with every
lause H A

1

^

: : : ^A

k

the annotated
lause:

HhNi N>N

1

+: : :+N

k

^A

1

hN

1

i ^ : : : ^A

k

hN

k

i

where the annotation variables N;N

1

; : : : ; N

k

range over

natural numbers. Thus, the annotated program �(P) is the

following one:

1a. thm(X)hNi N>N

1

+N

2

^ gen(X)hN

1

i

^ test(X)hN

2

i

2a. gen([℄)hNi

3a. gen([0jX℄)hNi N>N

1

^ gen(X)hN

1

i

4a. test(X)hNi N>N

1

^
anon(X)hN

1

i

5a. test(X)hNi N>N

1

+N

2

^ trans(X;Y)hN

1

i

^ test(Y)hN

2

i

6a.
anon([℄)hNi

7a.
anon([1jX℄)hNi N>N

1

^
anon(X)hN

1

i

8a. trans([0jX℄; [1jX℄)hNi

9a. trans([1jX℄; [1jY ℄)hNi N>N

1

^ trans(X;Y)hN

1

i

Now, let us
onstru
t a totally
orre
t transformation se-

quen
e by using our rules of Se
tion 4. By applying several

times the unfolding rule, from
lause 1a we derive:

10a. thm([℄)hNi N�3

11a. thm([0jX℄)hNi N>N

1

+N

2

+4 ^ gen(X)hN

1

i

^
anon(X)hN

2

i

12a. thm([0jX℄)hNi N>N

1

+N

2

+N

3

+4

^ gen(X)hN

1

i ^ trans(X;Y)hN

2

i

^ test([1jY ℄)hN

3

i

The reader may verify that the repla
ement law

test([1jY ℄)hN

3

i)

fY;N3g

(N

3

�N

4

^ test(Y)hN

4

i)

holds in �(P). Indeed, we have that:

(i) M(�(P)) j= 8Y 8N

3

(test([1jY ℄)hN

3

i

! 9N

4

(N

3

�N

4

^ test(Y)hN

4

i)), and

(ii) M(P) j= 8Y (test([1jY ℄) test(Y)).

Moreover,

N j= 8 (N>N

1

+N

2

+N

3

+4 ^N

3

�N

4

! N>N

1

^N>N

2

^N>N

4

).

Thus, we may apply the goal repla
ement rule and we re-

pla
e
lause 12a by the following
lause:

13a. thm([0jX℄)hNi N>N

1

+N

2

+N

3

+4 ^N

3

�N

4

^ gen(X)hN

1

i ^ trans(X;Y)hN

2

i

^ test(Y)hN

4

i

By folding
lauses 11a and 13a using
lauses 4a and 5a we

get:

14a. thm([0jX℄)hNi N>N

1

+N

5

+3 ^ gen(X)hN

1

i

^ test(X)hN

5

i

Finally, by folding
lause 14a using
lause 1a, we derive:

15a. thm([0jX℄)hNi N>N

6

+3 ^ thm(X)hN

6

i

The �nal annotated program is (�(P)� f1ag) [f10a; 15ag.

By applying the proje
tion � we erase the annotations from

lauses 10a and 15a and we get:

10. thm([℄)

15. thm([0jX℄) thm(X)

Thus, the �nal program is Q = (P � f1g) [f10; 15g. By

Theorem 7 of Se
tion 4 the transformation of P into Q is

totally
orre
t. In Q the predi
ates thm and gen are de�ned

by sets of
lauses whi
h are equal up to predi
ate renam-

ing (namely,
lauses 10, 15 and
lauses 2, 3, respe
tively)

and, therefore, as mentioned above, we may
on
lude that

8X (thm(X)$ gen(X)) is true in the least Herbrand model

of P .

6. RELATED WORK AND CONCLUSIONS
We have studied the
orre
tness of a general transforma-

tion rule,
alled
lause repla
ement, whi
h is an adaptation

to the
ase of de�nite logi
 programs of the rule repla
ement

transformation for indu
tive de�nitions introdu
ed in [15℄.

Clause repla
ement generalizes the familiar unfolding, fold-

ing, and goal repla
ement transformations of de�nite logi

programs. The
lause repla
ement rule generalizes also the

simultaneous repla
ement operation (when restri
ted to def-

inite programs), whi
h simultaneously repla
es n(> 0)
on-

jun
tions of literals ea
h of whi
h o

urs in the body of a

lause [4℄. Moreover,
lause repla
ement stri
tly general-

izes simultaneous repla
ement, be
ause the unfolding rule

is not an instan
e of simultaneous repla
ement. We have

shown that, in fa
t,
lause repla
ement is the most general

transformation rule, in the sense that every
orre
t trans-

formation
an be expressed as an equivalen
e-based
lause

repla
ement (see Theorem 1 of Se
tion 2).

The main
ontribution of this paper is a method for prov-

ing the total
orre
tness of the
lause repla
ement rule. Our

method is based on program annotations, whi
h are fun
-

tions that add suitable arguments to the predi
ates o

ur-

ring in a given program. In parti
ular, we introdu
e well-

founded annotations, whi
h ensure that the annotated pro-

gram is terminating and, thus, it has a unique �xpoint [2℄.

Annotated logi
 programs are a generalization of the instru-

mented SOS rules introdu
ed in [17℄, be
ause SOS rules [14℄

an be
onsidered as parti
ular logi
 programs.

Our proof method uses well-founded annotations and the

unique �xpoint method [6, 15℄ to prove the total
orre
tness

of
lause repla
ement. However, our proof method is more

general than the unique �xpoint method. Indeed, in order to

prove the total
orre
tness of the transformation of program

P into program Q, in pra
ti
e the unique �xpoint method

requires the proof of the termination of Q, while a

ording

to Theorem 6, we need only to
onstru
t a well-founded

annotation � for Q so that �(Q) is terminating, but Q itself

need not be terminating.

Our proof method is also more general than the improve-

ment indu
tion method [17℄ in the sense that our method

allows us to prove the total
orre
tness of
lause repla
e-

ments whi
h are not improvements, as we now see in the

parti
ular
ase where
lause repla
ement is realized by the

goal repla
ement rule R3 (see Se
tion 4). By adapting the

de�nitions of [17℄ to our
ontext, here we say that, given a

program P , an annotated atom A

1

hX

1

i is improved by an

annotated atom A

2

hX

2

i i� for every ground instan
e a

1

hw

1

i

of A

1

hX

1

i belonging toM(P), there exists a ground instan
e

a

2

hw

2

i of A

2

hX

2

i in M(P) su
h that w

1

�w

2

. The reader

may verify that the goal repla
ement rule R3 allows us to re-

pla
e an annotated atom A

1

hX

1

i by a new annotated atom

A

2

hX

2

i even if A

1

hX

1

i is not improved by A

2

hX

2

i.

We would like to stress that our unfolding, folding, and

goal repla
ement rules presented in Se
tion 4 are parametri

w.r.t. the
hoi
e of suitable program annotations. Indeed,

these program annotations are spe
i�ed only by the prop-

erties they should ful�ll. By suitable
hoi
es of the annota-

tions we obtain transformation rules whi
h are equivalent to

the di�erent variants of the unfolding, folding, and goal re-

pla
ement rules proposed in the literature [8, 10, 16, 18, 19℄.

For instan
e, the reader may verify that the rules presented

in [10℄ are a parti
ular
ase of our rules where we
hoose the

annotation �

2

of Example 4. Here we do not show in detail

how other existing transformation rules
an be viewed as

instan
es of our rules of Se
tion 4.

It should also be noti
ed that the use of our general proof

method based on well-founded annotations (see Theorem 6)

greatly simpli�es the proofs of total
orre
tness of the trans-

formation rules w.r.t. those presented in [8, 10, 16, 18, 19℄.

Finally, we would like to noti
e that the notion of total

orre
tness
onsidered in this paper is di�erent from the one

for imperative programs, where a program is said to be to-

tally
orre
t w.r.t. a given spe
i�
ation i� its input-output

relation satis�es the spe
i�
ation and, moreover, the pro-

gram terminates (see, for instan
e, [12℄). In fa
t, as already

mentioned, a
lause repla
ement P 7! Q
an be totally
or-

re
t even if Q is not terminating. However, in order to prove

that P 7! Q is totally
orre
t we have to transform an anno-

tated program �(P) into a terminating annotated program

�(Q). In this sense we may say that program �(Q) is to-

tally
orre
t w.r.t. the spe
i�
ation given by program �(P).

Similarly to the proofs of total
orre
tness for imperative

programs based on the axiomati
 approa
h [12℄, also the

derivation of the terminating program �(Q) is performed by

applying �rst order logi
al inferen
es and proving suitable

well-founded ordering relations.

Acknowledgments
We thank the anonymous referees for useful
omments and

suggestions.

7. REFERENCES
[1℄ K. R. Apt. Introdu
tion to logi
 programming. In

J. van Leeuwen, editor, Handbook of Theoreti
al

Computer S
ien
e, pages 493{576. Elsevier, 1990.

[2℄ M. Bezem. Chara
terizing termination of logi

programs with level mappings. In E.L. Lusk and R.A.

Overbeek, editors, Pro
eedings of the North Ameri
an

Conferen
e on Logi
 Programming, Cleveland, Ohio

(USA), pages 69{80. MIT Press, 1989.

[3℄ A. Bossi, N. Co

o, and S. Etalle. On safe folding. In

Pro
eedings PLILP '92, Leuven, Belgium, Le
ture

Notes in Computer S
ien
e 631, pages 172{186.

Springer-Verlag, 1992.

[4℄ A. Bossi, N. Co

o, and S. Etalle. Simultaneous

repla
ement in normal programs. Journal of Logi
 and

Computation, 6(1):79{120, 1996.

[5℄ R. M. Burstall and J. Darlington. A transformation

system for developing re
ursive programs. Journal of

the ACM, 24(1):44{67, January 1977.

[6℄ B. Cour
elle. In�nite trees in normal form and

re
ursive equations having a unique solution.

Mathemati
al Systems Theory, 13:131{180, 1979.

[7℄ N. Dershowitz. Termination of rewriting. Journal of

Symboli
 Computation, 3(1-2):69{116, 1987.

[8℄ M. Gergatsoulis and M. Katzouraki. Unfold/fold

transformations for de�nite
lause programs. In

M. Hermenegildo and J. Penjam, editors, Pro
eedings

Sixth International Symposium on Programming

Language Implementation and Logi
 Programming

(PLILP '94), Le
ture Notes in Computer S
ien
e 844,

pages 340{354. Springer-Verlag, 1994.

[9℄ J. Ja�ar, M. Maher, K. Marriott, and P. Stu
key. The

semanti
s of
onstraint logi
 programming. Journal of

Logi
 Programming, 37:1{46, 1998.

[10℄ T. Kanamori and H. Fujita. Unfold/fold

transformation of logi
 programs with
ounters.

Te
hni
al Report 179, ICOT, Tokyo, Japan, 1986.

[11℄ M. J. Maher. Corre
tness of a logi
 program

transformation system. IBM Resear
h Report RC

13496, T. J. Watson Resear
h Center, 1987.

[12℄ Z. Manna and A. Pnueli. Axiomati
 approa
h to total

orre
tness of programs. A
ta Informati
a, 3:243{263,

1974.

[13℄ H. A. Parts
h. Spe
i�
ation and Transformation of

Programs. Springer-Verlag, 1990.

[14℄ G. D. Plotkin. A stru
tural approa
h to operational

semanti
s. Te
hni
al Report DAIMI FN-19, Computer

S
ien
e Department, Aarhus University, Aarhus,

Denmark, 1981.

[15℄ M. Proietti and A. Pettorossi. Transforming indu
tive

de�nitions. In D. De S
hreye, editor, Pro
eedings of

the 1999 International Conferen
e on Logi

Programming, pages 486{499. MIT Press, 1999.

[16℄ A. Roy
houdhury, K. Narayan Kumar, C.R.

Ramakrishnan, and I.V. Ramakrishnan. An

unfold/fold transformation framework for de�nite

logi
 programs. ACM Transa
tions on Programming

Languages and Systems, 26:264{509, 2004.

[17℄ D. Sands. From SOS rules to proof prin
iples: An

operational metatheory for fun
tional languages. In

Pro
eedings of POPL '97, pages 428{441. ACM Press,

1997.

[18℄ H. Tamaki and T. Sato. Unfold/fold transformation of

logi
 programs. In S.-

�

A. T�arnlund, editor, Pro
eedings

of the Se
ond International Conferen
e on Logi

Programming, pages 127{138, Uppsala, Sweden, 1984.

[19℄ H. Tamaki and T. Sato. A generalized
orre
tness

proof of the unfold/fold logi
 program transformation.

Te
hni
al Report 86-4, Ibaraki University, Japan,

1986.

