Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to v.

edge-weighted digraph

4->5 0.35

5->4 0.35 (D—

4->7 0.37 w\@/r

5->7 0.28 ~—(2)

7->5 0.28 /@)"

5->1 0.32

0->4 0.38 =

0->2 0.26

]7-->§ 8 - Z’g shortest path from 0 to 6
-> 0

2->7 0.34 g:z; 8’%2

6->2 0.40 2.3 0.39
3->6 0.52 3-56 052

6->0 0.58 '

6->4 0.93

Google maps

o _ _ .
B\ Ol o [__Map][Satelite [Hybrid |
2 pen™ S EN o
3 % o >
[\ R
") =)) %
Medical Center - - 2 et PN
¢ s P 7N G LB,
At Princeton "¢ Z won RE %, Bainbrid®” o)
% o
[o
- @ ° AR -
Clay St~ > o BE ¢ 2
L z
12 S e <)
Ly 2 N
e e) 2
S Pringeton SO o2 N PrIAN
2 ac) 82 - 953 4 Q&
QLS Cemetory <\ WA B\ B\ @R
L o) - 4
\ - @ %%\ B\ BN %
.) ¢ & gy
qua = @ ¢ % N\ 2\ e
g 5 A ®
W RS \ 40 x g
ot (o
\Nu‘-‘“' Gf e) o), ald
o
. ‘o) A LN
1and Ln goeson P! % 2, .
O‘:qe and L oad R ,,_1‘27' % %) ‘33\“‘,
Latay,, > ek ot < %
7Olte 5 Gl A 2
o g \ ¥, - :
A » a3 A X \ % W
Q, T\\9 Q X
oope RS % o B3 o . - T, &)
aesd % 9. p @n Poaceton 2\) = o)
“ i) ¥ g2 = L o A e <9 s o
) oot @ P! ¢ e
_-'9 e e \ & .,.4
¢ 2 N AR
% g 3oamn Y
= 5N $
% = @G B
e 3 R A \
[
A
9,
e %
%
Y %, 2
“3 >
> D > o
> 2 N
¥e
@ 4
% Palmer Stadium-Princeten
= University e Dy
b
N
%
: X Princeton
:) . = :
S University-Main Campus
s S
§ 9 T
(s7 % &
&
&
| 1000 t | 5
Y £ Springdale
200 m & %

Golf Clab

©2005 Google - Map data ©@2005 NAVTEQ™ - T

Car navigation

A

T YRy

R TR AT A A A AL A

e VVV?VVVVVQVV\'V

v

r LB B A
fAlmaden Blvd [ty TR :
v vv L i @
I
A l

185 West San Carlos Street (CA-82)

Shortest path applications

« PERT/CPM.

e Map routing.

e Seam carving.

« Robot navigation.
« Texture mapping.

« Typesetting in TeX.

« Urban traffic planning.

« Optimal pipelining of VLSI chip.

« Telemarketer operator scheduling.

e Routing of telecommunications messages.
« Network routing protocols (OSPF, BGP, RIP).
« Exploiting arbitrage opportunities in currency exchange.

« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?
« Source-sink: from one vertex to another.
« Single source: from one vertex to every other.
« All pairs: between all pairs of vertices.

Restrictions on edge weights?
« Nonnegative weights.
« Arbitrary weights.
e Euclidean weights.

Cycles?

« No directed cycles.
« No "negative cycles.”

Simplifying assumption. Shortest paths from s to each vertex v exist.

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTol[]

o 0 null 0
o e 1 5->1 1.05
2 0->2 0.26
e e 3| 7-53 0.97
0 4] 0->4 0.38
51 4->5 0.73
o @ 6 3->6 1.49
7 2->7 0.60

shortest-paths tree from 0 parent-link representation

Edge relaxation

Relax edge e =v—w.
e distTo[v] is length of shortest known path from s to v.
e distTo[w] is length of shortest known path from s to w.

e edgeTo[w] is last edge on shortest known path from s to w.

e If e = v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

v—w successfully relaxes

black edges
are in edgeTo[]

Edge relaxation

Relax edge e =v—w.
e distTo[v] is length of shortest known path from s to v.
e distTo[w] is length of shortest known path from s to w.
e edgeTo[w] is last edge on shortest known path from s to w.
e If e = v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)

{

int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w]
edgeTo[w]

distTo[v] + e.weight();
€;

20

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:
« For each vertex v, distTo[v] is the length of some path from s to v.
e For each edge e = v—w, distTo[w] = distTo[v] + e.weight().

Pf. < [necessary]
« Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.

e Then, e gives a path from s to w (through v) of length less than
distTo[w].

1

3.1 «—— distTo[vVv]
@<©\)O/Q

3
@ 72 «—— distTow]

21

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:
« For each vertex v, distTo[v] is the length of some path from s to v.

e For each edge e = v—w, distTo[w] = distTo[v] + e.weight().

Pf. = [sufficient]

Suppose that s =vo— vi— v2— ... - v = w is a shortest path from s to w.

Then, distTo[vi] < distTo[ve] + ei.weight()
. . . ei = ith edge on shortest
distTo[v2] =< distTo[vi] + e2.weight() Sl G S i

distTo[vk] < distTo[vk-1] + ek.weight()

Add inequalities; simplify; and substitute distTo[vo] = distTo[s] = O:

distTo[w] = distTo[vk] = ei.weight() + e2.weight() + .. + ex.weight()

weight of shortest path from s to w

Thus, distTo[w] is the weight of shortest path to w. =
\

weight of some path from s to w
22

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

« Throughout algorithm, distTo[v] is the length of a simple path from s
to v (and edgeTo[v] is last edge on path).

o Each successful relaxation decreases distTo[v] for some v.

e The entry distTo[v] can decrease at most a finite number of times. =

23

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

24

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

an edge-weighted digraph

0—1
0—4
0—7

12.
15.

11.

20.

13.

©O O O O O O O O O O O O o o o o

®

29

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

)

()

shortest-paths tree from vertex s

()

Y, distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

30

Computing spanning trees in graphs

Dijkstra’s algorithm seem familiar?
e Prim’s algorithm is essentially the same algorithm.
« Both are in a family of algorithms that compute a graph’s spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
e Prim’s: Closest vertex to the tree (via an undirected edge).
« Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

36

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V' delete-min, E decrease-key.

unordered array

binary heap log V log V log V E log V
d-way heap
d loga V d logd V logd V ElogevV
(Johnson 1975)
Fibonacci .heap - log V t - E+Vlog V
(Fredman-Tarjan 1984)
t amortized

Bottom line.
« Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.
« d-way heap worth the trouble in performance-critical situations.
« Fibonacci heap best in theory, but not worth implementing.

37

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

i Dijkstra selects vertex 3 immediately after O.

But shortest path from 0 to 3 is 0—1—2—3.
Y
% -9

Re-weighting. Add a constant to every edge weight doesn’t work.

Adding 9 to each edge weight changes the
11 15 shortest path from 0—=1—-2—3 to 0—3.

Conclusion. Need a different algorithm.

57

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.
digraph
4->5 0.35 < c
5->4 -0.66
47 0.37 G ©
5->7 0.28 ! ‘\® @
7->5 0.28 * Q
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29 negative cycle (-0.66 + 0.37 + 0.28)
2->70.34 5->4->7->5
6->2 0.40
3->6 0.52
6->0 0.58 shortest path from 0 to 6
6->4 0.93 0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

AN

assuming all vertices reachable from s

58

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (int i = 0; i < G.VQ; i++)
for (int v = 0; v < G.VO; v++)
for (DirectedEdge e : G.adj(v)) |«
relax(e);

pass i (relax each edge)

59

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

an edge-weighted digraph

© O O O O O O O O O O o o o o o

60

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

O

Q

shortest-paths tree from vertex s

Y, distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

61

Bellman-Ford algorithm visualization

passes

13

SPT

10

62

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to £ x V.

Pf idea. After pass i, found shortest path containing at most i edges.

63

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass 1,
no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

1

be careful to keep at most one copy
of each vertex on queue (why?)

Overall effect.
 The running time is still proportional to £ x VVin worst case.
« But much faster than that in practice.

64

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

t I I ¢ no directed
opological sor cycles
-Dukstra no nggatlve E log V E log V
(binary heap) weights
Bellman-Ford EV EV
no negative
_ cycles
Bellman-Ford Ly iy

(queue-based)

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

65

Shortest paths summary

Dijkstra’s algorithm.
e Nearly linear-time when weights are nonnegative.
e Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.
e Arise in applications.
« Faster than Dijkstra’s algorithm.
« Negative weights are no problem.

Negative weights and negative cycles.
« Arise in applications.

« If no negative cycles, can find shortest paths via Bellman-Ford.

 If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

