
Given an edge-weighted digraph, find the shortest path from s to t.

2

Shortest paths in an edge-weighted digraph

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

Google maps

3

Car navigation

4

・PERT/CPM.

・Map routing.

・Seam carving.

・Robot navigation.

・Texture mapping.

・Typesetting in TeX.

・Urban traffic planning.

・Optimal pipelining of VLSI chip.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Exploiting arbitrage opportunities in currency exchange.

・Optimal truck routing through given traffic congestion pattern.

5

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

・Source-sink: from one vertex to another.

・Single source: from one vertex to every other.

・All pairs: between all pairs of vertices.

Restrictions on edge weights?

・Nonnegative weights.

・Arbitrary weights.

・Euclidean weights.

Cycles?

・No directed cycles.

・No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.
6

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

17

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation

Relax edge e = v!w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v!w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

19

Edge relaxation

black edges
are in edgeTo[]

s

3.1

7.2 4.4

v→w successfully relaxes

1.3

v

w

20

Edge relaxation

Relax edge e = v!w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v!w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)

 {

 int v = e.from(), w = e.to();

 if (distTo[w] > distTo[v] + e.weight())

 {

 distTo[w] = distTo[v] + e.weight();

 edgeTo[w] = e;

 }

 }

21

Shortest-paths optimality conditions!

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v!w, distTo[w] ! distTo[v] + e.weight().

Pf. " [necessary]

・Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v!w.

・Then, e gives a path from s to w (through v) of length less than

distTo[w].

s

3.1

7.2 distTo[w]

1.3

v

w

distTo[v]

22

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v!w, distTo[w] ! distTo[v] + e.weight().

Pf. # [sufficient]

・Suppose that s = v0 ! v1 ! v2 ! … ! vk = w is a shortest path from s to w.

・Then,

・Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

 distTo[w] = distTo[vk] ! e1.weight() + e2.weight() + … + ek.weight()

・Thus, distTo[w] is the weight of shortest path to w. !

weight of shortest path from s to w

weight of some path from s to w

distTo[v1] ! distTo[v0] + e1.weight()

distTo[v2] ! distTo[v1] + e2.weight()

...

distTo[vk] ! distTo[vk-1] + ek.weight()

ei = ith edge on shortest
path from s to w

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

・Throughout algorithm, distTo[v] is the length of a simple path from s

to v (and edgeTo[v] is last edge on path).

・Each successful relaxation decreases distTo[v] for some v.

・The entry distTo[v] can decrease at most a finite number of times. !

23

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = $ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

24

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = $ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

29

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0%1 5.0

0%4 9.0

0%7 8.0

1%2 12.0

1%3 15.0

1%7 4.0

2%3 3.0

2%6 11.0

3%6 9.0

4%5 4.0

4%6 20.0

4%7 5.0

5%2 1.0

5%6 13.0

7%5 6.0

7%2 7.0

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

30

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0%1

2 14.0 5%2

3 17.0 2%3

4 9.0 0%4

5 13.0 4%5

6 25.0 2%6

7 8.0 0%7

3

shortest-paths tree from vertex s

s

Computing spanning trees in graphs

Dijkstra’s algorithm seem familiar?

・Prim’s algorithm is essentially the same algorithm.

・Both are in a family of algorithms that compute a graph’s spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

・Prim’s: Closest vertex to the tree (via an undirected edge).

・Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
36

37

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・d-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap
(Johnson 1975)

d logd V d logd V logd V E log E/V V

Fibonacci heap
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn’t work.

Conclusion. Need a different algorithm.
57

Shortest paths with negative weights: failed attempts

0

3

1

2

4

2-9

6
Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0%1%2%3.

0

3

1

11

13

20

15

Adding 9 to each edge weight changes the
shortest path from 0%1%2%3 to 0%3.

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.

Proposition. A SPT exists iff no negative cycles.

58

Negative cycles

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

assuming all vertices reachable from s

s

for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

59

Bellman-Ford algorithm

pass i (relax each edge)

Initialize distTo[s] = 0 and distTo[v] = " for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

60

0%1 5.0

0%4 9.0

0%7 8.0

1%2 12.0

1%3 15.0

1%7 4.0

2%3 3.0

2%6 11.0

3%6 9.0

4%5 4.0

4%6 20.0

4%7 5.0

5%2 1.0

5%6 13.0

7%5 6.0

7%2 7.0

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

61

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0%1

2 14.0 5%2

3 17.0 2%3

4 9.0 0%4

5 13.0 4%5

6 25.0 2%6

7 8.0 0%7

3

shortest-paths tree from vertex s

s

62

Bellman-Ford algorithm visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Dynamic programming algorithm computes SPT in any edge-

weighted digraph with no negative cycles in time proportional to E # V.

Pf idea. After pass i, found shortest path containing at most i edges.

63

Bellman-Ford algorithm: analysis

Initialize distTo[s] = 0 and distTo[v] = " for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

64

Observation. If distTo[v] does not change during pass i,

no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

Overall effect.

・The running time is still proportional to E # V in worst case.

・But much faster than that in practice.

Bellman-Ford algorithm: practical improvement

be careful to keep at most one copy
of each vertex on queue (why?)

65

Single source shortest-paths implementation: cost summary

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

algorithm restriction typical case worst case extra space

topological sort
no directed

cycles E + V E + V V

Dijkstra
(binary heap)

no negative
weights E log V E log V V

Bellman-Ford
no negative

cycles

E V E V V

Bellman-Ford
(queue-based)

cycles
E + V E V V

Shortest paths summary

Dijkstra’s algorithm.

・Nearly linear-time when weights are nonnegative.

・Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

・Arise in applications.

・Faster than Dijkstra’s algorithm.

・Negative weights are no problem.

Negative weights and negative cycles.

・Arise in applications.

・If no negative cycles, can find shortest paths via Bellman-Ford.

・If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

