Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to v.

edge-weighted digraph

4->5 0.35

5->4 0.35 (D—

4->7 0.37 w\@/r

5->7 0.28 ~—(2)

7->5 0.28 /@)"

5->1 0.32

0->4 0.38 =

0->2 0.26

]7-->§ 8 - Z’g shortest path from 0 to 6
-> 0

2->7 0.34 g:z; 8’%2

6->2 0.40 2.3 0.39
3->6 0.52 3-56 052

6->0 0.58 '

6->4 0.93

Google maps

o _ _ .
B\ Ol o [__Map][Satelite [Hybrid |
2 pen™ S EN o
3 % o >
[\ R
") =)) %
Medical Center - - 2 et PN
¢ s P 7N G LB,
At Princeton "¢ Z won RE %, Bainbrid®” o)
% o
[o
- @ ° AR -
Clay St~ > o BE ¢ 2
L z
12 S e <)
Ly 2 N
e e) 2
S Pringeton SO o2 N PrIAN
2 ac) 82 - 953 4 Q&
QLS Cemetory <\ WA B\ B\ @R
L o) - 4
\ - @ %%\ B\ BN %
.) ¢ & gy
qua = @ ¢ % N\ 2\ e
g 5 A ®
W RS \ 40 x g
ot (o
\Nu‘-‘“' Gf e) o), ald
o
. ‘o) A LN
1and Ln goeson P! % 2, .
O‘:qe and L oad R ,,_1‘27' % %) ‘33\“‘,
Latay,, > ek ot < %
7Olte 5 Gl A 2
o g \ ¥, - :
A » a3 A X \ % W
Q, T\\9 Q X
oope RS % o B3 o . - T, &)
aesd % 9. p @n Poaceton 2\) = o)
“ i) ¥ g2 = L o A e <9 s o
) oot @ P! ¢ e
_-'9 e e \ & .,.4
¢ 2 N AR
% g 3oamn Y
= 5N $
% = @G B
e 3 R A \
[
A
9,
e %
%
Y %, 2
“3 >
> D > o
> 2 N
¥e
@ 4
% Palmer Stadium-Princeten
= University e Dy
b
N
%
: X Princeton
:) . = :
S University-Main Campus
s S
§ 9 T
(s7 % &
&
&
| 1000 t | 5
Y £ Springdale
200 m & %

Golf Clab

©2005 Google - Map data ©@2005 NAVTEQ™ - T

Car navigation

A

T YRy

R TR AT A A A AL A

e VVV?VVVVVQVV\'V

v

r LB B A
fAlmaden Blvd [ty TR :
v vv L i @
I
A l

185 West San Carlos Street (CA-82)

Shortest path applications

« PERT/CPM.

e Map routing.

e Seam carving.

« Robot navigation.
« Texture mapping.

« Typesetting in TeX.

« Urban traffic planning.

« Optimal pipelining of VLSI chip.

« Telemarketer operator scheduling.

e Routing of telecommunications messages.
« Network routing protocols (OSPF, BGP, RIP).
« Exploiting arbitrage opportunities in currency exchange.

« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path variants

Which vertices?
« Source-sink: from one vertex to another.
« Single source: from one vertex to every other.
« All pairs: between all pairs of vertices.

Restrictions on edge weights?
« Nonnegative weights.
« Arbitrary weights.
e Euclidean weights.

Cycles?

« No directed cycles.
« No "negative cycles.”

Simplifying assumption. Shortest paths from s to each vertex v exist.

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.
Observation. A shortest-paths tree (SPT) solution exists. Why?
Consequence. Can represent the SPT with two vertex-indexed arrays:

e distTo[v] is length of shortest path from s to v.
e edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTol[]

o 0 null 0
o e 1 5->1 1.05
2 0->2 0.26
e e 3| 7-53 0.97
0 4] 0->4 0.38
51 4->5 0.73
o @ 6 3->6 1.49
7 2->7 0.60

shortest-paths tree from 0 parent-link representation

Edge relaxation

Relax edge e =v—w.
e distTo[v] is length of shortest known path from s to v.
e distTo[w] is length of shortest known path from s to w.

e edgeTo[w] is last edge on shortest known path from s to w.

e If e = v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

v—w successfully relaxes

black edges
are in edgeTo[]

Edge relaxation

Relax edge e =v—w.
e distTo[v] is length of shortest known path from s to v.
e distTo[w] is length of shortest known path from s to w.
e edgeTo[w] is last edge on shortest known path from s to w.
e If e = v—w gives shorter path to w through v,
update both distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)

{

int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w]
edgeTo[w]

distTo[v] + e.weight();
€;

20

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:
« For each vertex v, distTo[v] is the length of some path from s to v.
e For each edge e = v—w, distTo[w] = distTo[v] + e.weight().

Pf. < [necessary]
« Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.

e Then, e gives a path from s to w (through v) of length less than
distTo[w].

1

3.1 «—— distTo[vVv]
@<©\)O/Q

3
@ 72 «—— distTow]

21

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:
« For each vertex v, distTo[v] is the length of some path from s to v.

e For each edge e = v—w, distTo[w] = distTo[v] + e.weight().

Pf. = [sufficient]

Suppose that s =vo— vi— v2— ... - v = w is a shortest path from s to w.

Then, distTo[vi] < distTo[ve] + ei.weight()
. . . ei = ith edge on shortest
distTo[v2] =< distTo[vi] + e2.weight() Sl G S i

distTo[vk] < distTo[vk-1] + ek.weight()

Add inequalities; simplify; and substitute distTo[vo] = distTo[s] = O:

distTo[w] = distTo[vk] = ei.weight() + e2.weight() + .. + ex.weight()

weight of shortest path from s to w

Thus, distTo[w] is the weight of shortest path to w. =
\

weight of some path from s to w
22

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.
Pf sketch.

« Throughout algorithm, distTo[v] is the length of a simple path from s
to v (and edgeTo[v] is last edge on path).

o Each successful relaxation decreases distTo[v] for some v.

e The entry distTo[v] can decrease at most a finite number of times. =

23

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

24

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

an edge-weighted digraph

0—1
0—4
0—7

12.
15.

11.

20.

13.

©O O O O O O O O O O O O o o o o

®

29

Dijkstra's algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges pointing from that vertex.

)

()

shortest-paths tree from vertex s

()

Y, distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

30

Computing spanning trees in graphs

Dijkstra’s algorithm seem familiar?
e Prim’s algorithm is essentially the same algorithm.
« Both are in a family of algorithms that compute a graph’s spanning tree.

Main distinction: Rule used to choose next vertex for the tree.
e Prim’s: Closest vertex to the tree (via an undirected edge).
« Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

36

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V' delete-min, E decrease-key.

unordered array

binary heap log V log V log V E log V
d-way heap
d loga V d logd V logd V ElogevV
(Johnson 1975)
Fibonacci .heap - log V t - E+Vlog V
(Fredman-Tarjan 1984)
t amortized

Bottom line.
« Array implementation optimal for dense graphs.
e Binary heap much faster for sparse graphs.
« d-way heap worth the trouble in performance-critical situations.
« Fibonacci heap best in theory, but not worth implementing.

37

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.
Is it easier to find shortest paths than in a general digraph?

A. Yes!

40

Acyclic shortest paths demo

« Consider vertices in topological order.
« Relax all edges pointing from that vertex.

an edge-weighted DAG

12.
15.

11.

20.

13.

O O O O O O O O O O O o o o o o

41

Acyclic shortest paths demo

« Consider vertices in topological order.

« Relax all edges pointing from that vertex.

O

Q

shortest-paths tree from vertex s

(3)

01 4 7 5 2 3 6
Y, distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

42

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-
weighted DAG in time proportional to £+ V. \

edge weights
can be negative!

Pf.
» Each edge e = v—w is relaxed exactly once (when v is relaxed),
leaving distTo[w] < distTo[v] + e.weight().
e Inequality holds until algorithm terminates because:
— distTo[w] cannot InCcrease <«—— distTo[] values are monotone decreasing

— distTo[Vv] will not Change <«<—— because of topological order, no edge pointing to v
will be relaxed after v is relaxed

« Thus, upon termination, shortest-paths optimality conditions hold. =

43

Shortest paths in edge-weighted DAGs

public class AcyclicSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;

public AcyclicSP(EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V(Q1];

distTo = new double[G.V()];

for (int v =0; v < G.VO; v++)
distTo[v] = Double.POSITIVE_ INFINITY;
distTo[s] = 0.0;

Topological topological = new Topological(G);
for (int v : topological.order())
for (DirectedEdge e : G.adj(v))
relax(e);

—

topological order

44

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for
display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

46

Content-aware resizing

To find vertical seam:
o Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = energy function of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

47

Content-aware resizing

To find vertical seam:
« Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = energy function of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

DIRDRI
LBREES

.

Content-aware resizing

To remove vertical seam:
e Delete pixels on seam (one in each row).

seam
[J] [] [] ./ []
[[[[[] [[]
o e [] [] [] ([e

49

Content-aware resizing

To remove vertical seam:
e Delete pixels on seam (one in each row).

50

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

e Negate all weights.
e Find shortest paths.

« Negate weights in result.

longest paths input

.35
.37
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

o

OO O OO OO OOO OO

shortest paths input

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

-0

-0.
-0.
-0.

.35
37
28
32
.38
.26
.39
.29
.34
.40
.52
.58
.93

equivalent: reverse sense of equality in reTax()

Key point. Topological sort algorithm works even with negative weights.

51

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence
constraints, schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time, while respecting the constraints.

job duration must complete

before
0 41.0 1 7 9
1 51.0 2
2 50.0
3 36.0
4 38.0
5 45.0 !
6 21.0 3 8 ! 3
7 32.0 3 8 0 ? 6 8 2
8 32.0 2 > 4
9 29.0 4 6 | | | | | |

Parallel job scheduling solution

52

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:
« Source and sink vertices.

b duration ~ Must complete
] before

« Two vertices (begin and end) for each job.

0 41.0 1 7 9
« Three edges for each job. 1 510 2
2 50.0
— begin to end (weighted by duration) 3 36.0
. . 4 38.0
— source to begin (0 weight) 5 45.0
. . 6 21.0 3 8
— end to sink (0 weight) o wma 5 g
. c 8 32.0 2
« One edge for each precedence constraint (0 weight). | - .
job start job finish precedence constraint
N\ i ' 4}@ 51 . / (zero weight)
: \ 50 .
durcItion \@ 2, > @ 32 /V@ -

: 21 - 36 %
O : 29 e S
N C 38 O

Critical path method

CPM. Use longest path from the source to schedule each job.

Parallel job scheduling solution

51
41 —»@—>

P 32 32 /@L’
duration \®—> / \

/ 6 critical path
B> ()
”
\: 38 O

45

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

i Dijkstra selects vertex 3 immediately after O.

But shortest path from 0 to 3 is 0—1—2—3.
Y
% -9

Re-weighting. Add a constant to every edge weight doesn’t work.

Adding 9 to each edge weight changes the
11 15 shortest path from 0—=1—-2—3 to 0—3.

Conclusion. Need a different algorithm.

57

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.
digraph
4->5 0.35 < c
5->4 -0.66
47 0.37 G ©
5->7 0.28 ! ‘\® @
7->5 0.28 * Q
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29 negative cycle (-0.66 + 0.37 + 0.28)
2->70.34 5->4->7->5
6->2 0.40
3->6 0.52
6->0 0.58 shortest path from 0 to 6
6->4 0.93 0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

AN

assuming all vertices reachable from s

58

Bellman-Ford algorithm

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (int i = 0; i < G.VQ; i++)
for (int v = 0; v < G.VO; v++)
for (DirectedEdge e : G.adj(v)) |«
relax(e);

pass i (relax each edge)

59

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

an edge-weighted digraph

© O O O O O O O O O O o o o o o

60

Bellman-Ford algorithm demo

Repeat V times: relax all £ edges.

O

Q

shortest-paths tree from vertex s

Y, distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

61

Bellman-Ford algorithm visualization

passes

13

SPT

10

62

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

Proposition. Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to £ x V.

Pf idea. After pass i, found shortest path containing at most i edges.

63

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

t I I ¢ no directed
opological sor cycles
-Dukstra no nggatlve E log V E log V
(binary heap) weights
Bellman-Ford EV EV
no negative
_ cycles
Bellman-Ford Ly iy

(queue-based)

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

65

Shortest paths summary

Dijkstra’s algorithm.
e Nearly linear-time when weights are nonnegative.
e Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.
e Arise in applications.
« Faster than Dijkstra’s algorithm.
« Negative weights are no problem.

Negative weights and negative cycles.
« Arise in applications.

« If no negative cycles, can find shortest paths via Bellman-Ford.

 If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

The Bellman-Ford Algorithm

vincenzo
Typewritten Text

vincenzo
Typewritten Text

vincenzo
Typewritten Text
The Bellman-Ford Algorithm

Optimal Substructure (Formal)

Lemma: Let G = (V, E) be a directed graph with edge lengths c.
and source vertex s.

[G might or might not have a negative cycle]

Forevery v e V, i€ {1,2,...}, let P = shortest s-v path with at
most / edges.

Case 1: If P has < (i — 1) edges, it is a shortest s-v path with

< (i — 1) edges.

Case 2: If P has i edges with last hop (w, v), then P is a shortest
s-w path with < (i — 1) edges.

Case 2

Tim Roughgarden

Proof of Optimal Substructure

Case 1: By (obvious) contradiction.

Case 2: If Q is shorter than P’ then
Q+ (w,v) is shorter than P’ + (w, v)
(= P) which contradicts the optimality of P. QED!

Tim Roughgarden

The Recurrence

Notation: Let L;, = minimum length of a s-v path with </ edges.
- With cycles allowed
- Defined as 400 if no s-v paths with </ edges

Recurrence: For every v e V, i€ {1,2,...}

L — min L1y, Case 1
e min(u,v)EE{L(i—l),w + cw} Case 2

Correctness: Brute-force search from the only (1+in-deg(v))
candidates (by the optimal substructure lemma).

Tim Roughgarden

If No Negative Cycles

Now: Suppose input graph G has no negative cycles.
= Shortest paths do not have cycles

[removing a cycle only decreases length]
= Have < (n — 1) edges

Point: If G has no negative cycle, only need to solve subproblems
uptoi=n—1

Subproblems: Compute L;, forall i € {0,1,...,n— 1} and all
vev.

Tim Roughgarden

The Bellman-Ford Algorithm

Let A = 2-D array (indexed by i and v)
Base case: A[0, s] = 0; A[0, v] = 400 for all v # s.

Fori=1,2,...,n—1

For each v e V

Al — min{ Ali = 1,v] }

min(w,v)EE{A[i -1, W] + va}

As discussed: If G has no negative cycle, then algorithm is correct
[with final answers = A[n — 1, v]'s]

Tim Roughgarden

Stopping Early

Note: Suppose for some j < n—1, A[j,v] = A[j — 1, v] for all
vertices v.

= For all v, all future A[i, v]'s will be the same

= Can safely halt (since A[n — 1, v]'s = correct shortest-path
distances)

Tim Roughgarden

From Bellman-Ford to Internet Routing

Note: The Bellman-Ford algorithm is intuitively “distributed”.
Toward a routing protocol:

(1) Switch from source-driven to destination driven

[Just reverse all directions in the Bellman-Ford algorithm]

- Every vertex v stores shortest-path distance from v to destination
t and the first hop of a shortest path

[For all relevant destinations t|

Tim Roughgarden

Handling Asynchrony

(2) Can't assume all A[/, v]'s get computed before all A[i —1,v]|'s

Fix: Switch from “pull-based” to “push-based”: As soon as
Ali,v] < A[i — 1, v], v notifies all of its neighbors.

Fact: Algorithm guaranteed to converge eventually. (Assuming no
negative cycles)

[Reason: Updates strictly decrease sum of shortest-path estimates]

= RIP, RIP2 Internet routing protocols very close to this algorithm
[see RFC 1058]

Example: /{x ,
2
Y ‘/"\‘
/

4 Tim Roughgarden

Handling Failures

Problem: Convergence guaranteed only for static networks (not
true in practice).

Counting to Infinity: O==0 20
% 0t 0
pS oo
6 X

Fix: Each V maintains entire shortest path to t, not just the next
hop.

“Path vector protocol” “Border Gateway Protocol (BGP)"
Con: More space required.
Pro#1: More robust to failures.

Pro#2: Permits more sophisticated route selection (e.g., if you

care about intermediate stops).
Tim Roughgarden

All-Pairs Shortest Paths
(APSP)

vincenzo
Typewritten Text
All-Pairs Shortest Paths
(APSP)

Quiz

Question: How many invocations of a single-source shortest-path
subroutine are needed to solve the all-pairs shortest path problem?
[n = # of vertices]

Running time (nonnegative edge costs):
O(n?log n) if m = ©(n)
2

n- Dijkstra = O(nmlog n) = O(nlog n) it m = ©(n?)

Running time (general edge costs):

O(n3) if m = ©(n)
. - pr— 2 =

n- Bellman-Ford = O(n°m) o(n*) if m = ©(n?)

Tim Roughgarden

Motivation

Floyd-Warshall algorithm: O(n3) algorithm for APSP.
- Works even with graphs with negative edge lengths.

Thus: (1) At least as good as n Bellman-Fords, better in dense
graphs.

(2) In graphs with nonnegative edge costs, competitive with n
Dijkstra’s in dense graphs.

Important special case: Transitive closure of a binary (i.e., all-pairs
reachability) relation.

Open question: Solve APSP significantly faster than O(n?) in
dense graphs?

Tim Roughgarden

Optimal Substructure

Recall: Can be tricky to define ordering on subproblems in graph
problems.

Key idea: Order the vertices V = {1,2,..., n} arbitrarily. Let
vk ={1,2,... k}.

Lemma: Suppose G has no negative cycle. Fix source i € V,
destination j € V, and k € {1,2,...,n}. Let P = shortest
(cycle-free) i-j path with all internal nodes in V().

Example:
4 _
()=~ (3) >
2 AT NS —
ay T 0)
NN PN
10 (1) 0

Tim Roughgarden

Optimal Substructure (con'd)

Optimal substructure lemma: Suppose G has no negative cost
cycle. Let P be a shortest (cycle-free) i-j path with all internal
nodes in V(¥). Then:

Case 1: If k not internal to P, then P is a shortest (cycle-free) i-j
path with all internal vertices in V(1)

Case 2: If k is internal to P, then:

P1 = shortest (cycle-free) i-k path with all internal nodes in
v(=1) and

P> = shortest (cycle-free) k-j path with all internal nodes in
V(k—l)

Y
- —\J

Py R

Proof: Similar to Bellman-Ford opt substructure (you check!)
Tim Roughgarden

Problem Definition

Input: Directed graph G = (V/, E) with edge costs c for each edge
e € E, [No distinguished source vertex.]

Goal: Either

(A) Compute the length of a shortest u — v path for all pairs of
vertices u,v € V

OR

(B) Correctly report that G contains a negative cycle.

Tim Roughgarden

Quiz

Setup: Let A = 3-D array (indexed by i, J, k).

Intent: A[i,J, k] = length of a shortest i-j path with all internal
nodes in {1,2,..., k} (or +o0 if no such paths)

Question: What is A[i, , 0] if
(1) i=J (@))€ E (3)i#jand (i,j) ¢ E

Tim Roughgarden

The Floyd-Warshall Algorithm

Let A = 3-D array (indexed by i, j, k)

Base cases: For all i,j € V:

0ifi=j
Ali,j,0l =< ¢;if (i,j) € E

+oo if i #jand (i,j) ¢ E
For k=1ton

Fori=1ton

Forj=1ton

Alirj, k] = m'“{ Ali, k, k — 1]+ Alk, j, k — 1] }

Correctness: From optimal substructure + induction, as usual.

Running time: O(1) per subproblem, O(n3) overall.

Tim Roughgarden

Odds and Ends

Question #1: What if input graph G has a negative cycle?

—~(O)—

negative cost cycle

Answer: Will have A[i, i, n] <0 for at least one i € V at end of
algorithm.

Question #2: How to reconstruct a shortest i-j path?

Answer: In addition to A, have Floyd-Warshall compute BJ[i, j] =
max label of an internal node on a shortest i-j path for all i,j € V.
[Reset BJi,] = k if 2nd case of recurrence used to compute

Ali,j, k]l

= Can use the BJi,j]'s to recursively reconstruct shortest paths!
Tim Roughgarden

