
Given an edge-weighted digraph, find the shortest path from s to t.

2

Shortest paths in an edge-weighted digraph

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

Google maps

3

Car navigation

4

・PERT/CPM.

・Map routing.

・Seam carving.

・Robot navigation.

・Texture mapping.

・Typesetting in TeX.

・Urban traffic planning.

・Optimal pipelining of VLSI chip.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Exploiting arbitrage opportunities in currency exchange.

・Optimal truck routing through given traffic congestion pattern.

5

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

・Source-sink: from one vertex to another.

・Single source: from one vertex to every other.

・All pairs: between all pairs of vertices.

Restrictions on edge weights?

・Nonnegative weights.

・Arbitrary weights.

・Euclidean weights.

Cycles?

・No directed cycles.

・No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.
6

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

17

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation

Relax edge e = v!w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v!w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

19

Edge relaxation

black edges
are in edgeTo[]

s

3.1

7.2 4.4

v→w successfully relaxes

1.3

v

w

20

Edge relaxation

Relax edge e = v!w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v!w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)
 {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
 }

21

Shortest-paths optimality conditions!

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v!w, distTo[w] ! distTo[v] + e.weight().

Pf. " [necessary]

・Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v!w.

・Then, e gives a path from s to w (through v) of length less than

distTo[w].

s

3.1

7.2 distTo[w]

1.3

v

w

distTo[v]

22

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v!w, distTo[w] ! distTo[v] + e.weight().

Pf. # [sufficient]

・Suppose that s = v0 ! v1 ! v2 ! … ! vk = w is a shortest path from s to w.

・Then,

・Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

 distTo[w] = distTo[vk] ! e1.weight() + e2.weight() + … + ek.weight()

・Thus, distTo[w] is the weight of shortest path to w. !

weight of shortest path from s to w

weight of some path from s to w

distTo[v1] ! distTo[v0] + e1.weight()

distTo[v2] ! distTo[v1] + e2.weight()

...

distTo[vk] ! distTo[vk-1] + ek.weight()

ei = ith edge on shortest
path from s to w

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

・Throughout algorithm, distTo[v] is the length of a simple path from s

to v (and edgeTo[v] is last edge on path).

・Each successful relaxation decreases distTo[v] for some v.

・The entry distTo[v] can decrease at most a finite number of times. !

23

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = $ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

24

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = $ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

29

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

0%1 5.0

0%4 9.0

0%7 8.0

1%2 12.0

1%3 15.0

1%7 4.0

2%3 3.0

2%6 11.0

3%6 9.0

4%5 4.0

4%6 20.0

4%7 5.0

5%2 1.0

5%6 13.0

7%5 6.0

7%2 7.0

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

30

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0%1

2 14.0 5%2

3 17.0 2%3

4 9.0 0%4

5 13.0 4%5

6 25.0 2%6

7 8.0 0%7

3

shortest-paths tree from vertex s

s

Computing spanning trees in graphs

Dijkstra’s algorithm seem familiar?

・Prim’s algorithm is essentially the same algorithm.

・Both are in a family of algorithms that compute a graph’s spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

・Prim’s: Closest vertex to the tree (via an undirected edge).

・Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
36

37

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・d-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap
(Johnson 1975)

d logd V d logd V logd V E log E/V V

Fibonacci heap
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V

Q. Suppose that an edge-weighted digraph has no directed cycles.

Is it easier to find shortest paths than in a general digraph?

A. Yes!

40

Acyclic edge-weighted digraphs

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

41

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted DAG

0!1 5.0

0!4 9.0

0!7 8.0

1!2 12.0

1!3 15.0

1!7 4.0

2!3 3.0

2!6 11.0

3!6 9.0

4!5 4.0

4!6 20.0

4!7 5.0

5!2 1.0

5!6 13.0

7!5 6.0

7!2 7.0

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

42

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0!1

2 14.0 5!2

3 17.0 2!3

4 9.0 0!4

5 13.0 4!5

6 25.0 2!6

7 8.0 0!7

3

shortest-paths tree from vertex s

s

0 1 4 7 5 2 3 6

Proposition. Topological sort algorithm computes SPT in any edge-

weighted DAG in time proportional to E + V.

Pf.

・Each edge e = v!w is relaxed exactly once (when v is relaxed),

leaving distTo[w] ! distTo[v] + e.weight().

・Inequality holds until algorithm terminates because:

– distTo[w] cannot increase

– distTo[v] will not change

・Thus, upon termination, shortest-paths optimality conditions hold. !

43

Shortest paths in edge-weighted DAGs

because of topological order, no edge pointing to v
will be relaxed after v is relaxed

distTo[] values are monotone decreasing

edge weights
can be negative!

44

Shortest paths in edge-weighted DAGs

public class AcyclicSP

{

 private DirectedEdge[] edgeTo;

 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)

 {

 edgeTo = new DirectedEdge[G.V()];

 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)

 distTo[v] = Double.POSITIVE_INFINITY;

 distTo[s] = 0.0;

 Topological topological = new Topological(G);

 for (int v : topological.order())

 for (DirectedEdge e : G.adj(v))

 relax(e);

 }

 }

topological order

Seam carving. [Avidan and Shamir] Resize an image without distortion for

display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...
46

Content-aware resizing

To find vertical seam:

・Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = energy function of 8 neighboring pixels.

・Seam = shortest path (sum of vertex weights) from top to bottom.

47

Content-aware resizing

To find vertical seam:

・Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = energy function of 8 neighboring pixels.

・Seam = shortest path (sum of vertex weights) from top to bottom.

48

Content-aware resizing

seam

To remove vertical seam:

・Delete pixels on seam (one in each row).

49

Content-aware resizing

seam

To remove vertical seam:

・Delete pixels on seam (one in each row).

50

Content-aware resizing

Formulate as a shortest paths problem in edge-weighted DAGs.

・Negate all weights.

・Find shortest paths.

・Negate weights in result.

Key point. Topological sort algorithm works even with negative weights.
51

Longest paths in edge-weighted DAGs

equivalent: reverse sense of equality in relax()

5->4 -0.35
4->7 -0.37
5->7 -0.28
5->1 -0.32
4->0 -0.38
0->2 -0.26
3->7 -0.39
1->3 -0.29
7->2 -0.34
6->2 -0.40
3->6 -0.52
6->0 -0.58
6->4 -0.93

shortest paths input

5->4 0.35
4->7 0.37
5->7 0.28
5->1 0.32
4->0 0.38
0->2 0.26
3->7 0.39
1->3 0.29
7->2 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

longest paths input

5->4 -0.35
4->7 -0.37
5->7 -0.28
5->1 -0.32
4->0 -0.38
0->2 -0.26
3->7 -0.39
1->3 -0.29
7->2 -0.34
6->2 -0.40
3->6 -0.52
6->0 -0.58
6->4 -0.93

s

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence

constraints, schedule the jobs (by finding a start time for each) so as to

achieve the minimum completion time, while respecting the constraints.

52

Parallel job scheduling solution

0

4

3

5

9

7

6 8 2

1

41 700 91 123 173

A job scheduling problem

 0 41.0 1 7 9
 1 51.0 2
 2 50.0
 3 36.0
 4 38.0
 5 45.0
 6 21.0 3 8
 7 32.0 3 8
 8 32.0 2
 9 29.0 4 6

job duration must complete
before

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

・Source and sink vertices.

・Two vertices (begin and end) for each job.

・Three edges for each job.

– begin to end (weighted by duration)

– source to begin (0 weight)

– end to sink (0 weight)

・One edge for each precedence constraint (0 weight).

Critical path method

53Edge-weighted DAG representation of job scheduling

41
0 0

51
1 1

50
2 2

36
3 3

38
4 4

45
5 5

21
6 6

32
7 7

32
8 8

29
9 9

precedence constraint
(zero weight)

job start job finish

duration

zero-weight
edge to each

job start

zero-weight
edge from each

job finish

A job scheduling problem

 0 41.0 1 7 9
 1 51.0 2
 2 50.0
 3 36.0
 4 38.0
 5 45.0
 6 21.0 3 8
 7 32.0 3 8
 8 32.0 2
 9 29.0 4 6

job duration must complete
before

Critical path method

54

CPM. Use longest path from the source to schedule each job.

Longest paths solution to job scheduling example

41
0 0

51
1 1

50
2 2

36
3 3

38
4 4

45
5 5

21
6 6

32
7 7

32
8 8

29
9 9

critical path

duration

Parallel job scheduling solution

0

4

3

5

9

7

6 8 2

1

41 700 91 123 173

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn’t work.

Conclusion. Need a different algorithm.
57

Shortest paths with negative weights: failed attempts

0

3

1

2

4

2-9

6
Dijkstra selects vertex 3 immediately after 0.
But shortest path from 0 to 3 is 0%1%2%3.

0

3

1

11

13

20

15

Adding 9 to each edge weight changes the
shortest path from 0%1%2%3 to 0%3.

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.

Proposition. A SPT exists iff no negative cycles.

58

Negative cycles

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

assuming all vertices reachable from s

s

for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

59

Bellman-Ford algorithm

pass i (relax each edge)

Initialize distTo[s] = 0 and distTo[v] = " for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

60

0%1 5.0

0%4 9.0

0%7 8.0

1%2 12.0

1%3 15.0

1%7 4.0

2%3 3.0

2%6 11.0

3%6 9.0

4%5 4.0

4%6 20.0

4%7 5.0

5%2 1.0

5%6 13.0

7%5 6.0

7%2 7.0

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

61

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0%1

2 14.0 5%2

3 17.0 2%3

4 9.0 0%4

5 13.0 4%5

6 25.0 2%6

7 8.0 0%7

3

shortest-paths tree from vertex s

s

62

Bellman-Ford algorithm visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Dynamic programming algorithm computes SPT in any edge-

weighted digraph with no negative cycles in time proportional to E # V.

Pf idea. After pass i, found shortest path containing at most i edges.

63

Bellman-Ford algorithm: analysis

Initialize distTo[s] = 0 and distTo[v] = " for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

65

Single source shortest-paths implementation: cost summary

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

algorithm restriction typical case worst case extra space

topological sort
no directed

cycles E + V E + V V

Dijkstra
(binary heap)

no negative
weights E log V E log V V

Bellman-Ford
no negative

cycles

E V E V V

Bellman-Ford
(queue-based)

cycles
E + V E V V

Shortest paths summary

Dijkstra’s algorithm.

・Nearly linear-time when weights are nonnegative.

・Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

・Arise in applications.

・Faster than Dijkstra’s algorithm.

・Negative weights are no problem.

Negative weights and negative cycles.

・Arise in applications.

・If no negative cycles, can find shortest paths via Bellman-Ford.

・If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

vincenzo
Typewritten Text

vincenzo
Typewritten Text

vincenzo
Typewritten Text
The Bellman-Ford Algorithm

Optimal Substructure (Formal)

Lemma: Let G = (V ,E) be a directed graph with edge lengths ce
and source vertex s.
[G might or might not have a negative cycle]
For every v ∈ V , i ∈ {1, 2, . . .}, let P = shortest s-v path with at
most i edges. (Cycles are permitted.)

Case 1: If P has ≤ (i − 1) edges, it is a shortest s-v path with
≤ (i − 1) edges.
Case 2: If P has i edges with last hop (w , v), then P � is a shortest
s-w path with ≤ (i − 1) edges.

Case 2

s

w

v

P �

Tim Roughgarden

Proof of Optimal Substructure

Case 1: By (obvious) contradiction.

Case 2: If Q (from s to w , ≤ (i − 1) edges) is shorter than P � then
Q + (w , v) (from s to v , ≤ i edges) is shorter than P � + (w , v)
(= P) which contradicts the optimality of P . QED!

Tim Roughgarden

The Recurrence

Notation: Let Li ,v = minimum length of a s-v path with ≤ i edges.

- With cycles allowed
- Defined as +∞ if no s-v paths with ≤ i edges

Recurrence: For every v ∈ V , i ∈ {1, 2, . . .}

Li ,v = min

�
L(i−1),v Case 1
min(u,v)∈E{L(i−1),w + cwv} Case 2

�

Correctness: Brute-force search from the only (1+in-deg(v))
candidates (by the optimal substructure lemma).

Tim Roughgarden

If No Negative Cycles

Now: Suppose input graph G has no negative cycles.

⇒ Shortest paths do not have cycles

[removing a cycle only decreases length]

⇒ Have ≤ (n − 1) edges

Point: If G has no negative cycle, only need to solve subproblems

up to i = n − 1.

Subproblems: Compute Li ,v for all i ∈ {0, 1, . . . , n − 1} and all

v ∈ V .

Tim Roughgarden

The Bellman-Ford Algorithm

Let A = 2-D array (indexed by i and v)

Base case: A[0, s] = 0; A[0, v] = +∞ for all v �= s.

For i = 1, 2, . . . , n − 1

For each v ∈ V

A[i , v] = min

�
A[i − 1, v]
min(w ,v)∈E{A[i − 1,w] + cwv}

�

As discussed: If G has no negative cycle, then algorithm is correct
[with final answers = A[n − 1, v]’s]

Tim Roughgarden

Stopping Early

Note: Suppose for some j < n − 1, A[j , v] = A[j − 1, v] for all
vertices v .

⇒ For all v , all future A[i , v]’s will be the same

⇒ Can safely halt (since A[n − 1, v]’s = correct shortest-path
distances)

Tim Roughgarden

From Bellman-Ford to Internet Routing

Note: The Bellman-Ford algorithm is intuitively “distributed”.

Toward a routing protocol:
(1) Switch from source-driven to destination driven

[Just reverse all directions in the Bellman-Ford algorithm]

- Every vertex v stores shortest-path distance from v to destination
t and the first hop of a shortest path

[For all relevant destinations t]

(“Distance vector protocols”)

Tim Roughgarden

Handling Asynchrony

(2) Can’t assume all A[i , v]’s get computed before all A[i − 1, v]’s

Fix: Switch from “pull-based” to “push-based”: As soon as
A[i , v] < A[i − 1, v], v notifies all of its neighbors.

Fact: Algorithm guaranteed to converge eventually. (Assuming no
negative cycles)

[Reason: Updates strictly decrease sum of shortest-path estimates]

⇒ RIP, RIP2 Internet routing protocols very close to this algorithm
[see RFC 1058]

Example:

3

u

v

w

t

1 2

3 4

+∞
2

+∞
4

+∞
7

Tim Roughgarden

Handling Failures

Problem: Convergence guaranteed only for static networks (not
true in practice).

Counting to Infinity:

...

ts v
1

1

1

2 1 0

4

6
...

+∞
3

5

Fix: Each V maintains entire shortest path to t, not just the next
hop.

“Path vector protocol” “Border Gateway Protocol (BGP)”

Con: More space required.

Pro#1: More robust to failures.

Pro#2: Permits more sophisticated route selection (e.g., if you
care about intermediate stops).

Tim Roughgarden

vincenzo
Typewritten Text
All-Pairs Shortest Paths(APSP)

Quiz

Question: How many invocations of a single-source shortest-path

subroutine are needed to solve the all-pairs shortest path problem?

[n = # of vertices]

A) 1

B) n − 1

C) n

D) n2

Running time (nonnegative edge costs):

n· Dijkstra = O(nm log n) =
O(n2 log n) if m = Θ(n)

O(n3 log n) if m = Θ(n2)

Running time (general edge costs):

n· Bellman-Ford = O(n2m) =
O(n3) if m = Θ(n)

O(n4) if m = Θ(n2)

Tim Roughgarden

Motivation

Floyd-Warshall algorithm: O(n3) algorithm for APSP.

- Works even with graphs with negative edge lengths.

Thus: (1) At least as good as n Bellman-Fords, better in dense

graphs.

(2) In graphs with nonnegative edge costs, competitive with n

Dijkstra’s in dense graphs.

Important special case: Transitive closure of a binary (i.e., all-pairs

reachability) relation.

Open question: Solve APSP significantly faster than O(n3) in

dense graphs?

Tim Roughgarden

Optimal Substructure

Recall: Can be tricky to define ordering on subproblems in graph

problems.

Key idea: Order the vertices V = {1, 2, . . . , n} arbitrarily. Let

V (k) = {1, 2, . . . , k}.

Lemma: Suppose G has no negative cycle. Fix source i ∈ V ,

destination j ∈ V , and k ∈ {1, 2, . . . , n}. Let P = shortest

(cycle-free) i-j path with all internal nodes in V (k).

Example: [i = 17, j = 10, k = 5]

-10

17

2 3

10

7

P5
-4

2

-10

Tim Roughgarden

Optimal Substructure (con’d)

Optimal substructure lemma: Suppose G has no negative cost

cycle. Let P be a shortest (cycle-free) i-j path with all internal

nodes in V (k). Then:

Case 1: If k not internal to P , then P is a shortest (cycle-free) i-j
path with all internal vertices in V (k−1).

Case 2: If k is internal to P , then:

P1 = shortest (cycle-free) i-k path with all internal nodes in

V (k−1) and

P2 = shortest (cycle-free) k-j path with all internal nodes in

V (k−1)

P2

i j
k

P1

Proof: Similar to Bellman-Ford opt substructure (you check!)

Tim Roughgarden

Problem Definition

Input: Directed graph G = (V ,E) with edge costs ce for each edge

e ∈ E , [No distinguished source vertex.]

Goal: Either

(A) Compute the length of a shortest u → v path for all pairs of

vertices u, v ∈ V

OR

(B) Correctly report that G contains a negative cycle.

Tim Roughgarden

Quiz

Setup: Let A = 3-D array (indexed by i , j , k).

Intent: A[i , j , k] = length of a shortest i-j path with all internal
nodes in {1, 2, . . . , k} (or +∞ if no such paths)

Question: What is A[i , j , 0] if

(1) i = j (2)(i , j) ∈ E (3) i �= j and (i , j) /∈ E

A) 0, 0, and +∞
B) 0, cij , and cij

C) 0, cij , and +∞

D) +∞, cij , and +∞

Tim Roughgarden

The Floyd-Warshall Algorithm

Let A = 3-D array (indexed by i , j , k)

Base cases: For all i , j ∈ V :

A[i , j , 0] =

0 if i = j

cij if (i , j) ∈ E

+∞ if i �= j and (i , j) /∈ E

For k = 1 to n

For i = 1 to n

For j = 1 to n

A[i , j , k] = min

�
A[i , j , k − 1] Case 1
A[i , k , k − 1] + A[k , j , k − 1] Case 2

�

Correctness: From optimal substructure + induction, as usual.

Running time: O(1) per subproblem, O(n3) overall.

Tim Roughgarden

Odds and Ends

Question #1: What if input graph G has a negative cycle?

negative cost cycle

x y

Answer: Will have A[i , i , n] < 0 for at least one i ∈ V at end of

algorithm.

Question #2: How to reconstruct a shortest i-j path?

Answer: In addition to A, have Floyd-Warshall compute B[i , j] =
max label of an internal node on a shortest i-j path for all i , j ∈ V .

[Reset B[i , j] = k if 2nd case of recurrence used to compute

A[i , j , k]]

⇒ Can use the B[i , j]’s to recursively reconstruct shortest paths!

Tim Roughgarden

