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1. Introduction

In this paper, we present Google, a prototype of a large-scale search engine which makes
heavy use of the structure present in hypertext. Google is designed to crawl and index
the Web efficiently and produce much more satisfying search results than existing sys-
tems. The prototype with a full text and hyperlink database of at least 24 million pages
is available at http://google.stanford.edu/

To engineer a search engine is a challenging task. Search engines index tens to hundreds
of millions of web pages involving a comparable number of distinct terms. They answer
tens of millions of queries every day. Despite the importance of large-scale search engines
on the web, very little academic research has been done on them. Furthermore, due to
rapid advance in technology and web proliferation, creating a web search engine today
is very different from 3 years ago. This paper provides an in-depth description of our
large-scale web search engine - the first such detailed public description we know of to
date.

Apart from the problems of scaling traditional search techniques to data of this magni-
tude, there are new technical challenges involved with using the additional information
present in hypertext to produce better search results. This paper addresses this question
of how to build a practical large-scale system which can exploit the additional information
present in hypertext. Also we look at the problem of how to effectively deal with uncon-
trolled hypertext collections, where anyone can publish anything they want.

© 2010 Elsevier B.V. All rights reserved.

worse, some advertisers attempt to gain people’s attention
by taking measures meant to mislead automated search

The web creates new challenges for information retrie-
val. The amount of information on the web is growing rap-
idly, as well as the number of new users inexperienced in
the art of web research. People are likely to surf the web
using its link graph, often starting with high quality human
maintained indices such as [12] or with search engines.
Human maintained lists cover popular topics effectively
but are subjective, expensive to build and maintain, slow
to improve, and cannot cover all esoteric topics. Auto-
mated search engines that rely on keyword matching usu-
ally return too many low quality matches. To make matters
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engines. We have built a large-scale search engine which
addresses many of the problems of existing systems. It
makes especially heavy use of the additional structure
present in hypertext to provide much higher quality search
results. We chose our system name, Google, because it is a
common spelling of googol, or 10'%° and fits well with our
goal of building very large-scale search engines.

1.1. Web search engines - scaling up: 1994-2000

Search engine technology has had to scale dramatically
to keep up with the growth of the web. In 1994, one of the
first web search engines, the World Wide Web Worm
(WWWW) [20] had an index of 110,000 web pages and
web accessible documents. As of November, 1997, the
top search engines claim to index from 2 million
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(WebCrawler) to 100 million web documents (from [8]). It
is foreseeable that by the year 2000, a comprehensive in-
dex of the Web will contain over a billion documents. At
the same time, the number of queries search engines han-
dle has grown incredibly too. In March and April 1994, the
World Wide Web Worm received an average of about 1500
queries per day. In November 1997, Altavista claimed it
handled roughly 20 million queries per day. With the
increasing number of users on the web, and automated
systems which query search engines, it is likely that top
search engines will handle hundreds of millions of queries
per day by the year 2000. The goal of our system is to ad-
dress many of the problems, both in quality and scalability,
introduced by scaling search engine technology to such
extraordinary numbers.

1.2. Google: Scaling with the web

Creating a search engine which scales even to today’s
web presents many challenges. Fast crawling technology
is needed to gather the web documents and keep them
up to date. Storage space must be used efficiently to store
indices and, optionally, the documents themselves. The
indexing system must process hundreds of gigabytes of
data efficiently. Queries must be handled quickly, at a rate
of hundreds to thousands per second.

These tasks are becoming increasingly difficult as the
Web grows. However, hardware performance and cost
have improved dramatically to partially offset the diffi-
culty. There are, however, several notable exceptions to
this progress such as disk seek time and operating system
robustness. In designing Google, we have considered both
the rate of growth of the Web and technological changes.
Google is designed to scale well to extremely large data
sets. It makes efficient use of storage space to store the in-
dex. Its data structures are optimized for fast and efficient
access (see Section 4.2). Further, we expect that the cost to
index and store text or HTML will eventually decline rela-
tive to the amount that will be available (see Appendix B in
the full version ). This will result in favorable scaling prop-
erties for centralized systems like Google.

1.3. Design goals

1.3.1. Improved search quality

Our main goal is to improve the quality of web search
engines. In 1994, some people believed that a complete
search index would make it possible to find anything easily.
According to [1] “The best navigation service should make
it easy to find almost anything on the Web (once all the data
is entered).” However, the Web of 1997 is quite different.
Anyone who has used a search engine recently, can readily
testify that the completeness of the index is not the only
factor in the quality of search results. “Junk results” often
wash out any results that a user is interested in. In fact, as
of November 1997, only one of the top four commercial
search engines finds itself (returns its own search page in
response to its name in the top ten results). One of the main
causes of this problem is that the number of documents in
the indices has been increasing by many orders of magni-
tude, but the user’s ability to look at documents has not.

People are still only willing to look at the first few tens of
results. Because of this, as the collection size grows, we
need tools that have very high precision (number of rele-
vant documents returned, say in the top tens of results). In-
deed, we want our notion of “relevant” to only include the
very best documents since there may be tens of thousands
of slightly relevant documents. This very high precision is
important even at the expense of recall (the total number
of relevant documents the system is able to return). There
is quite a bit of recent optimism that the use of more hyper-
textual information can help improve search and other
applications [19,23,26,18]. In particular, link structure and
link text provide a lot of information for making relevance
judgments and quality filtering. Google makes use of both
link structure and anchor text (see Sections 2.1 and 2.2).

1.3.2. Academic search engine research

Aside from tremendous growth, the Web has also be-
come increasingly commercial over time. In 1993, 1.5% of
web servers were on.com domains. This number grew to
over 60% in 1997. At the same time, search engines have
migrated from the academic domain to the commercial.
Up until now most search engine development has gone
on at companies with little publication of technical details.
This causes search engine technology to remain largely a
black art and to be advertising oriented (see Appendix A).
With Google, we have a strong goal to push more develop-
ment and understanding into the academic realm.

Another important design goal was to build systems
that reasonable numbers of people can actually use. Usage
was important to us because we think some of the most
interesting research will involve leveraging the vast
amount of usage data that is available from modern web
systems. For example, there are many tens of millions of
searches performed every day. However, it is very difficult
to get this data, mainly because it is considered commer-
cially valuable.

Our final design goal was to build an architecture that
can support novel research activities on large-scale web
data. To support novel research uses, Google stores all of
the actual documents it crawls in compressed form. One
of our main goals in designing Google was to set up an
environment, where other researchers can come in quickly,
process large chunks of the web, and produce interesting
results that would have been very difficult to produce
otherwise. In the short time the system has been up, there
have already been several papers using databases gener-
ated by Google, and many others are underway. Another
goal we have is to set up a Spacelab-like environment,
where researchers or even students can propose and do
interesting experiments on our large-scale web data.

2. System features

The Google search engine has two important features
that help it produce high precision results. First, it makes
use of the link structure of the Web to calculate a quality
ranking for each web page. This ranking is called PageRank
and is described in detail in [21]. Second, Google utilizes
link to improve search results.
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2.1. PageRank: Bringing order to the web

The citation (link) graph of the web is an important re-
source that has largely gone unused in existing web search
engines. We have created maps containing as many as
518 million of these hyperlinks, a significant sample of
the total. These maps allow rapid calculation of a web
page’s “PageRank”, an objective measure of its citation
importance that corresponds well with people’s subjective
idea of importance. Because of this correspondence, Page-
Rank is an excellent way to prioritize the results of web
keyword searches. For most popular subjects, a simple text
matching search that is restricted to web page titles per-
forms admirably when PageRank prioritizes the results
(demo available at [4]). For the type of full text searches
in the main Google system, PageRank also helps a great
deal.

2.1.1. Description of PageRank calculation

Academic citation literature has been applied to the
web, largely by counting citations or backlinks to a given
page. This gives some approximation of a page’s impor-
tance or quality. PageRank extends this idea by not count-
ing links from all pages equally, and by normalizing by the
number of links on a page. PageRank is defined as follows:

We assume page A has pages T1. Tn which point to it (i.e.,
are citations). The parameter d is a damping factor which
can be set between 0 and 1. We usually set d to 0.85. There
are more details about d in the next section. Also C (A) is
defined as the number of links going out of page A. The
PageRank of a page A is given as follows:

PR(A) = (1 — d) + d(PR(T1)/C(T1) + - -- + PR(Tn)/C(Tn))

Note that the PageRanks form a probability distribution
over web pages, so the sum of all web pages’ PageRanks
will be one.

PageRank or PR (A) can be calculated using a simple
iterative algorithm, and corresponds to the principal eigen-
vector of the normalized link matrix of the web. Also, a
PageRank for 26 million web pages can be computed in a
few hours on a medium size workstation. There are many
other details which are beyond the scope of this paper.

2.1.2. Intuitive justification

PageRank can be thought of as a model of user behavior.
We assume there is a “random surfer” who is given a web
page at random and keeps clicking on links, never hitting
“back” but eventually gets bored and starts on another ran-
dom page. The probability that the random surfer visits a
page is its PageRank. And, the d damping factor is the prob-
ability at each page the “random surfer” will get bored and
request another random page. One important variation is
to only add the damping factor d to a single page, or a
group of pages. This allows for personalization and can
make it nearly impossible to deliberately mislead the sys-
tem in order to get a higher ranking. We have several other
extensions to PageRank, again see [7].

Another intuitive justification is that a page can have a
high PageRank if there are many pages that point to it, or if

there are some pages that point to it and have a high Page-
Rank. Intuitively, pages that are well cited from many
places around the web are worth looking at. Also, pages
that have perhaps only one citation from something like
the [12] homepage are also generally worth looking at. If
a page was not high quality, or was a broken link, it is quite
likely that Yahoo's homepage would not link to it. Page-
Rank handles both these cases and everything in between
by recursively propagating weights through the link struc-
ture of the web.

2.2. Anchor text

The text of links is treated in a special way in our search
engine. Most search engines associate the text of a link
with the page that the link is on. In addition, we associate
it with the page the link points to. This has several advan-
tages. First, anchors often provide more accurate descrip-
tions of web pages than the pages themselves. Second,
anchors may exist for documents which cannot be indexed
by a text-based search engine, such as images, programs,
and databases. This makes it possible to return web pages
which have not actually been crawled. Note that pages that
have not been crawled can cause problems, since they are
never checked for validity before being returned to the
user. In this case, the search engine can even return a page
that never actually existed, but had hyperlinks pointing to
it. However, it is possible to sort the results, so that this
particular problem rarely happens.

This idea of propagating anchor text to the page it refers
to was implemented in the World Wide Web Worm [20]
especially because it helps search non-text information,
and expands the search coverage with fewer downloaded
documents. We use anchor propagation mostly because
anchor text can help provide better quality results. Using
anchor text efficiently is technically difficult because of
the large amounts of data which must be processed. In
our current crawl of 24 million pages, we had over
259 million anchors which we indexed.

3. Related work

Search research on the web has a short and concise his-
tory. The World Wide Web Worm (WWWW) [20] was one
of the first web search engines. It was subsequently fol-
lowed by several other academic search engines, many of
which are now public companies. Compared to the growth
of the Web and the importance of search engines there are
precious few documents about recent search engines [22].
According to Michael Mauldin (chief scientist, Lycos Inc.)
[6], “the various services (including Lycos) closely guard
the details of these databases”. However, there has been
a fair amount of work on specific features of search en-
gines. Especially well represented is work which can get
results by post-processing the results of existing commer-
cial search engines, or produce small scale “individualized”
search engines. Finally, there has been a lot of research on
information retrieval systems, especially on well con-
trolled collections. [LH Witten., 1994]
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However. work on information retrieval has mostly
been on fairly small. well controlled collections such as
the Text Retrieval Conference [lo]. Things that work well
on TREC often do not produce good results on the Web.
For example, the standard vector space model tries to re-
turn the document that most closely approximates the
query, given that both query and document are vectors de-
fined by their word occurrence. On the Web, this strategy
often returns very short documents that are the query plus
a few words. For example. we have seen a major search en-
gine return a page containing only “Bill Clinton Sucks” and
picture from a “Bill Clinton” query. Given examples like
these, we believe that the standard information retrieval
work needs to be extended to deal effectively with the
Web.

The Web is a vast collection of completely uncontrolled
heterogeneous documents. Documents vary significantly
in language, format, and style. There can be many orders
of magnitude of difference in two documents’ size, quality,
popularity, and trustworthiness. All of these are significant
challenges to effective searching on the Web. They are
somewhat mediated by the availability of auxiliary data
such as hyperlinks and formatting and Google tries to take
advantage of both of these.

4. System anatomy
4.1. Google architecture overview

In this section, we will give a high level overview of how
the whole system works as pictured in Fig. 1. Further sec-
tions will discuss the applications and data structures not
mentioned in this section. Most of Google is implemented
in C or C++ for efficiency and can run in either Solaris or
Linux.

URL Server

Fig. 1. High level Google architecture.

In Google, the web crawling (downloading of web
pages) is done by several distributed crawlers. There is a
URLserver that sends lists of URLs to be fetched to the
crawlers. The web pages that are fetched are then sent to
the storeserver. The storeserver then compresses and
stores the web pages into a repository. Every web page
has an associated ID number called a docID which is as-
signed whenever a new URL is parsed out of a web page.
The indexing function is performed by the indexer and
the sorter. The indexer performs a number of functions. It
reads the repository, uncompresses the documents, and
parses them. Each document is converted into a set of
word occurrences called hits. The hits record the word, po-
sition in document, an approximation of font size, and cap-
italization. The indexer distributes these hits into a set of
“barrels”, creating a partially sorted forward index. The in-
dexer performs another important function. It parses out
all the links in every web page and stores important infor-
mation about them in an anchors file. This file contains en-
ough information to determine, where each link points
from and to, and the text of the link.

The URLresolver reads the anchors file and converts rel-
ative URLs into absolute URLs and in turn into docIDs. It
puts the anchor text into the forward index, associated with
the docID that the anchor points to. It also generates a data-
base of links which are pairs of docIDs. The links database is
used to compute PageRanks for all the documents.

The sorter takes the barrels, which are sorted by docID
(this is a simplification, see Section 4.2.), and resorts them
by wordID to generate the inverted index. This is done in
place so that little temporary space is needed for this oper-
ation. The sorter also produces a list of wordIDs and offsets
into the inverted index. A program called DumpLexicon
takes this list together with the lexicon produced by the in-
dexer and generates a new lexicon to be used by the
searcher. The searcher is run by a web server and uses
the lexicon built by DumpLexicon together with the in-
verted index and the PageRanks to answer queries.

4.2. Major data structures

Google’s data structures are optimized so that a large
document collection can be crawled, indexed, and
searched with little cost. Although, CPUs and bulk input
output rates have improved dramatically over the years,
a disk seek still requires about 10 ms to complete. Google
is designed to avoid disk seeks whenever possible, and this
has had a considerable influence on the design of the data
structures. The full version of the paper contains a discus-
sion of all the major data structures. We only give a brief
overview here.

Almost all of the data for Google is stored in Bigfiles
which are virtual tiles we developed that can span multiple
tile systems and support compression. The raw HTML
repository uses roughly half of the necessary storage. It
consists of the concatenation of the compressed HTML of
every page, preceded by a small header. The document in-
dex keeps information about each document. It is a fixed
width ISAM (Index sequential access mode) index, ordered
by doclD. The information stored in each entry includes the
current document status, a pointer into the repository, a
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document checksum, and various statistics. Variable width
information such as URL and title is kept in a separate file.
There is also an auxiliary index to convert URLs into doc-
IDs. The lexicon has several different forms for different
operations. They all are memory-based hash tables with
varying values attached to each word.

A hit list corresponds to a list of occurrences of a partic-
ular word in a particular document including position,
font, and capitalization information. Hit lists account for
most of the space used in both the forward and the in-
verted indices. Because of this, it is important to represent
them as efficiently as possible. We considered several
alternatives for encoding position, font, and capitalization
- simple encoding (a triple of integers), a compact encod-
ing (a hand optimized allocation of bits), and Huffman cod-
ing. In the end we chose a hand optimized compact
encoding since it required far less space than the simple
encoding and far less bit manipulation than Huffman cod-
ing. Our compact encoding uses two bytes for every hit.
The details of this coding are in the full version of this pa-
per.The length of a hit list is stored before the hits them-
selves. To save space, the length of the hit list is
combined with the wordID in the forward index and the
docID in the inverted index.

The forward index is actually already partially sorted. It
is stored in a number of barrels (we used 64). Each barrel
holds a range of wordID’s. If a document contains words
that fall into a particular barrel, the docID is recorded into
the barrel, followed by a list of wordID’s with hitlists which
correspond to those words. This scheme requires slightly
more storage because of duplicated docIDs but the differ-
ence is very small for a reasonable number of buckets
and saves considerable time and coding complexity in
the final indexing phase done by the sorter. The inverted
index consists of the same barrels as the forward index, ex-
cept that they have been processed by the sorter. For every
valid wordID, the lexicon contains a pointer into the barrel
that wordID falls into. It points to a doclist of docID’s to-
gether with their corresponding hit lists. This doclist repre-
sents all the occurrences of that word in all documents.

An important issue is in what order the docID’s should
appear in the doclist. One simple solution is to store them
sorted by docID. This allows for quick merging of different
doclists for multiple word queries. Another option is to
store them sorted by a ranking of the occurrence of the
word in each document. This makes answering one word
queries trivial and makes it likely that the answers to mul-
tiple word queries are near the start. However, merging is
much more difficult. Also, this makes development much
more difficult in that a change to the ranking function re-
quires a rebuild of the index. We chose a compromise be-
tween these options, keeping two sets of inverted barrels -
one set for hit lists which include title or anchor hits and
another set for all hit lists. This way, we check the first
set of barrels first and if there are not enough matches
within those barrels we check the larger ones.

4.3. Crawling the web

Running a web crawler is a challenging task. There are
tricky performance and reliability issues and even more

importantly, there are social issues. Crawling is the most
fragile application since it involves interacting with hun-
dreds of thousands of web servers and various name serv-
ers which are all beyond the control of the system.

In order to scale to hundreds of millions of web pages,
Google has a fast distributed crawling system. A single
URLserver serves lists of URLs to a number of crawlers
(we typically ran about 3). Both the URLserver and the
crawlers are implemented in Python. Each crawler keeps
roughly 300 connections open at once. This is necessary
to retrieve web pages at a fast enough pace. At peak speeds,
the system can crawl over 100 web pages per second using
four crawlers. This amounts to roughly 600 K per second of
data. A major performance stress is DNS lookup. Each
crawler maintains a its own DNS cache so it does not need
to do a DNS lookup before crawling each document. Each of
the hundreds of connections can be in a number of differ-
ent states: looking up DNS, connecting to host, sending re-
quest, and receiving response. These factors make the
crawler a complex component of the system. It uses asyn-
chronous IO to manage events, and a number of queues to
move page fetches from state to state.

4.4. Searching

The goal of searching is to provide quality search results
efficiently. Many of the large commercial search engines
seemed to have made great progress in terms of efficiency.
Therefore, we have focused more on quality of search in
our research, although we believe our solutions are scal-
able to commercial volumes with a bit more effort.

Google maintains much more information about web
documents than typical search engines. Every hitlist in-
cludes position, font, and capitalization information. Addi-
tionally, we factor in hits from anchor text and the
PageRank of the document. Combining all of this informa-
tion into a rank is difficult. We designed our ranking func-
tion so that no particular factor can have too much
influence. For every matching document we compute
counts of hits of different types at different proximity lev-
els. These counts are then run through a series of lookup
tables and eventually are transformed into a rank. This
process involves many tunable parameters. We have not
spent much time tuning the system; instead we have
developed a feedback system which will help us tune these
parameters in the future.

5. Results and performance

The most important measure of a search engine is the
quality of its search results. While a complete user evalua-
tion is beyond the scope of this paper, our own experience
with Google has shown it to produce better results than
the major commercial search engines for most searches.
As an example which illustrates the use of PageRank, an-
chor text, and proximity, Fig. 2 shows Google’s results for
a search on “bill clinton”. These results demonstrates some
of Google’s features. The results are clustered by server.
This helps considerably when sifting through result sets.
A number of results are from the whitehouse.gov domain
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Query: bill clinton
http://www.whitehouse.gov/
100.00% e (N0 date) (0K)

http://www.whitehouse.gov/
Office of the President
99.67 Yo (DeeC 23 1996) (2K)

http://www.whitehouse.gov/WH/EOP/OP/htm|/OP_Home.html
Welcome To The White House
99.98% (Nov 09 1997) (5K)
http://www.whitehouse.gov/WH/Welcome.html
Send Electronic Mail to the President
99.86% mmmmmmn (Jul 14 1997) (5K)

http://www.whitehouse.gov/WH/Mail/html/Mail_President.html
mailto:president@whitehouse.gov
99.98% m—
mailto:President@whitehouse.gov
99.27% we—
The "Unofficial" Bill Clinton
94.06% s (NOV 11 1997) (14K)
http://zpub.com/un/un-bc.html
Bill Clinton Meets The Shrinks
86.27% s - (Jun 29 1997) (63K)
http://zpub.com/un/un-bc9.html
President Bill Clinton - The Dark Side
97.27% wmmmmn (NoV 10 1997) (15K)
http://www.realchange.org/clinton.htm
$3 Bill Clinton
94.73% e (N0 date) (4K)
http://www.gatewy.net/~tjohnson/clinton1.html

Fig. 2. Sample results from Google.

which is what one may reasonably expect from such a
search. Currently, most major commercial search engines
do not return any results from whitehouse.gov, much less
the right ones. Notice that there is no title for the first re-
sult. This is because it was not crawled. Instead, Google re-
lied on anchor text to determine this was a good answer to
the query. Similarly, the fifth result is an email address
which, of course, is not crawlable. It is also a result of an-
chor text.

All of the results are reasonably high quality pages and,
at last check, none were broken links. This is largely be-
cause they all have high PageRank. The PageRanks are
the percentages in red along with bar graphs. Finally, there
are no results about a Bill other than Clinton or about a
Clinton other than Bill. This is because we place heavy
importance on the proximity of word occurrences. Of
course a true test of the quality of a search engine would
involve an extensive user study or results analysis which
we do not have room for here. Instead, we invite the reader
to try Google for themselves at http://google.stanford.edu.

Aside from search quality, Google is designed to scale
cost effectively to the size of the Web as it grows. One as-
pect of this is to use storage efficiently. Table 1 has a break-
down of some statistics and storage requirements of
Google.

It is important for a search engine to crawl and index
efficiently. This way information can be kept up to date
and major changes to the system can be tested relatively

Table 1
Statistics.

Storage statistics

Total Size of Fetched Pages 147.8 GB
Compressed Repository 53.5GB
Short Inverted Index 4.1GB
Full Inverted Index 37.2GB
Lexicon 293 MB
Temporary Anchor Data (not in total) 6.6 GB
Document Index Incl.

Variable Width Data 9.7 GB
Links Database 39GB
Total Without Repository 55.2 GB
Total With Repository 108.7 GB
Web page statistics

Number of Web Pages Fetched 24 million
Number of Urls Seen 76.5 million
Number of Email Addresses 1.7 million
Number of 404’s 1.6 million

quickly. For Google, the major operations are Crawling,
Indexing, and Sorting. It is difficult to measure how long
crawling took overall because disks filled up, name servers
crashed, or any number of other problems which stopped
the system. In total it took roughly 9 days to download
the 26 million pages (including errors). However, once
the system was running smoothly, it ran much faster,
downloading the last 11 million pages in just 63 h, averag-
ing just over 4 million pages per day or 48.5 pages per sec-
ond. We ran the indexer and the crawler simultaneously.
The indexer ran just faster than the crawlers. This is largely
because we spent just enough time optimizing the indexer
so that it would not be a bottleneck. These optimizations
included bulk updates to the document index and place-
ment of critical data structures on the local disk. The index-
er runs at roughly 54 pages per second. The sorters can be
run completely in parallel; using four machines, the whole
process of sorting takes about 24 h.

Improving the performance of search was not the major
focus of our research up to this point. The current version
of Google answers most queries in between 1 and 10 s. This
time is mostly dominated by disk IO over NFS (since disks
are spread over a number of machines). Furthermore, Goo-
gle does not have any optimizations such as query caching,
subindices on common terms, and other common optimi-
zations. We intend to speed up Google considerably
through distribution and hardware, software, and algorith-
mic improvements. Our target is to be able to handle sev-
eral hundred queries per second. Table 2 has some sample
query times from the current version of Google.

6. Conclusions

Google is designed to be a scalable search engine. The
primary goal is to provide high quality search results over
a rapidly growing World Wide Web. Google employs a
number of techniques to improve search quality including
page rank, anchor text, and proximity information. Fur-
thermore, Google is a complete architecture for gathering
web pages, indexing them, and performing search queries
over them.
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Table 2
Search Times.

Query Initial query Same query repeated

(10 mostly cached)

CPU time  Total time CPU time  Total time
(s) (s) (s) (s)

Al gore 0.09 213 0.06 0.06

Vice 1.77 3.84 1.66 1.80
president

Hard disks 0.25 4.86 0.20 0.24

Search 1.31 9.63 1.16 1.16
engines

6.1. Future work

A large-scale web search engine is a complex system
and much remains to be done. Our immediate goals are
to improve search efficiency and to scale to approximately
100 million web pages. Some simple improvements to effi-
ciency include query caching, smart disk allocation, and
subindices. Another area which requires much research is
updates. We must have smart algorithms to decide what
old web pages should be recrawled and what new ones
should be crawled. Work toward this goal has been done
in [16]. One promising area of research is using proxy ca-
ches to build search databases, since they are demand dri-
ven. We are planning to add simple features supported by
commercial search engines like boolean operators, nega-
tion, and stemming. However, other features are just start-
ing to be explored such as relevance feedback and
clustering (Google currently supports a simple hostname
based clustering). We also plan to support user context
(like the user’s location), and result summarization. We
are also working to extend the use of link structure and
link text. Simple experiments indicate PageRank can be
personalized by increasing the weight of a user’'s home
page or bookmarks. As for link text, we are experimenting
with using text surrounding links in addition to the link
text itself. A Web search engine is a very rich environment
for research ideas. We have far too many to list here so we
do not expect this Future Work section to become much
shorter in the near future.

6.2. High quality search

The biggest problem facing users of web search engines
today is the quality of the results they get back. While the
results are often amusing and expand users’ horizons, they
are often frustrating and consume precious time. For exam-
ple, the top result for a search for “Bill Clinton” on one of the
most popular commercial search engines was the [2]. Goo-
gle is designed to provide higher quality search so as the
Web continues to grow rapidly, information can be found
easily. In order to accomplish this Google makes heavy
use of hypertextual information consisting of link structure
and link (anchor) text. Google also uses proximity and font
information. While evaluation of a search engine is difficult,
we have subjectively found that Google returns higher
quality search results than current commercial search en-
gines. The analysis of link structure via PageRank allows

Google to evaluate the quality of web pages. The use of link
text as a description of what the link points to helps the
search engine return relevant (and to some degree high
quality) results. Finally, the use of proximity information
helps increase relevance a great deal for many queries.

6.3. Scalable architecture

Aside from the quality of search, Google is designed to
scale. It must be efficient in both space and time, and con-
stant factors are very important when dealing with the en-
tire Web. In implementing Google, we have seen
bottlenecks in CPU, memory access, memory capacity, disk
seeks, disk throughput, disk capacity, and network I0. Goo-
gle has evolved to overcome a number of these bottlenecks
during various operations. Google’s major data structures
make efficient use of available storage space. Furthermore,
the crawling, indexing, and sorting operations are efficient
enough to be able to build an index of a substantial portion
of the web - 24 million pages, in less than one week. We
expect to be able to build an index of 100 million pages
in less than a month.

6.4. A research tool

In addition to being a high quality search engine, Google
is a research tool. The data Google has collected has al-
ready resulted in many other papers submitted to confer-
ences and many more on the way. Recent research such
as [13] has shown a number of limitations to queries about
the Web that may be answered without having the Web
available locally. This means that Google (or a similar sys-
tem) is not only a valuable research tool but a necessary
one for a wide range of applications. We hope Google will
be a resource for searchers and researchers all around the
world and will spark the next generation of search engine
technology.
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Appendix A. Advertising and mixed motives

Currently, the predominant business model for com-
mercial search engines is advertising. The goals of the
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advertising business model do not always correspond to
providing quality search to users. For example, in our pro-
totype search engine one of the top results for cellular
phone is [7], a study which explains in great detail the dis-
tractions and risk associated with conversing on a cell
phone while driving. This search result came up first be-
cause of its high importance as judged by the PageRank
algorithm, an approximation of citation importance on
the web [21]. It is clear that a search engine which was tak-
ing money for showing cellular phone ads would have dif-
ficulty justifying the page that our system returned to its
paying advertisers. For this type of reason and historical
experience with other media [Bagdikian 83], we expect
that advertising funded search engines will be inherently
biased towards the advertisers and away from the needs
of the consumers.

Since it is very difficult even for experts to evaluate
search engines, search engine bias is particularly insidious.
A good example was OpenText, which was reported to be
selling companies the right to be listed at the top of the
search results for particular queries [19]. This type of bias
is much more insidious than advertising, because it is not
clear who “deserves” to be there, and who is willing to
pay money to be listed. This business model resulted in
an uproar, and OpenText has ceased to be a viable search
engine. But less blatant bias are likely to be tolerated by
the market. For example, a search engine could add a small
factor to search results from “friendly” companies, and sub-
tract a factor from results from competitors. This type of
bias is very difficult to detect but could still have a signifi-
cant effect on the market. Furthermore, advertising income
often provides an incentive to provide poor quality search
results. For example, we noticed a major search engine
would not return a large airline’s homepage when the air-
line’s name was given as a query. It so happened that the
airline had placed an expensive ad, linked to the query that
was its name. A better search engine would not have re-
quired this ad, and possibly resulted in the loss of the reve-
nue from the airline to the search engine. In general, it
could be argued from the consumer point of view that the
better the search engine is, the fewer advertisements will
be needed for the consumer to find what they want. This
of course erodes the advertising supported business model
of the existing search engines. However, there will always
be money from advertisers who want a customer to switch
products, or have something that is genuinely new. But we
believe the issue of advertising causes enough mixed incen-
tives that it is crucial to have a competitive search engine
that is transparent and in the academic realm.

Appendix B. Scalability
B.1. Scalability of Google

We have designed Google to be scalable in the near
term to a goal of 100 million web pages. We have just re-
ceived disk and machines to handle roughly that amount.
All of the time consuming parts of the system are paralle-
lize and roughly linear time. These include things like the
crawlers, indexers, and sorters. We also think that most

of the data structures will deal gracefully with the expan-
sion. However, at 100 million web pages we will be very
close up against all sorts of operating system limits in
the common operating systems (currently we run on both
Solaris and Linux). These include things like addressable
memory, number of open file descriptors, network sockets
and bandwidth, and many others. We believe expanding to
a lot more than 100 million pages would greatly increase
the complexity of our system.

B.2. Scalability of centralized indexing architectures

As the capabilities of computers increase, it becomes
possible to index a very large amount of text for a reason-
able cost. Of course, other more bandwidth intensive med-
ia such as video is likely to become more pervasive. But,
because the cost of production of text is low compared to
media like video, text is likely to remain very pervasive.
Also, it is likely that soon we will have speech recognition
that does a reasonable job converting speech into text,
expanding the amount of text available. All of this provides
amazing possibilities for centralized indexing. Here is an
illustrative example. We assume we want to index every-
thing everyone in the US has written for a year. We assume
that there are 250 million people in the US and they write
an average of 10 k per day. That works out to be about 850
terabytes. Also assume that indexing a terabyte can be
done now for a reasonable cost. We also assume that the
indexing methods used over the text are linear, or nearly
linear in their complexity. Given all these assumptions
we can compute how long it would take before we could
index our 850 terabytes for a reasonable cost assuming
certain growth factors. Moore’s Law was defined in 1965
as a doubling every 18 months in processor power. It has
held remarkably true, not just for processors, but for other
important system parameters such as disk as well. If we as-
sume that Moore’s law holds for the future, we need only
10 more doublings, or 15 years to reach our goal of index-
ing everything everyone in the US has written for a year for
a price that a small company could afford. Of course, hard-
ware experts are somewhat concerned Moore’s Law may
not continue to hold for the next 15 years, but there are
certainly a lot of interesting centralized applications even
if we only get part of the way to our hypothetical example.

Of course a distributed systems like G/oss [17] or [5]
will often be the most efficient and elegant technical solu-
tion for indexing, but it seems difficult to convince the
world to use these systems because of the high administra-
tion costs of setting up large numbers of installations. Of
course, it is quite likely that reducing the administration
cost drastically is possible. If that happens, and everyone
starts running a distributed indexing system, searching
would certainly improve drastically.

Because humans can only type or speak a finite amount,
and as computers continue improving, text indexing will
scale even better than it does now. Of course there could
be an infinite amount of machine generated content, but
just indexing huge amounts of human generated content
seems tremendously useful. So we are optimistic that our
centralized web search engine architecture will improve
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in its ability to cover the pertinent text information over
time and that there is a bright future for search.
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