
42 BASIC PROBLEMS AND PROTOCOLS

entity sequentially (i.e., one at the time). Once a node is reached by the token, it
is marked as “visited.” Depending on the traversal strategy employed, we will have
different traversal protocols.

2.3.1 Depth-First Traversal

A well known strategy is the depth-first traversal of a graph. According to this strategy,
the graph is visited (i.e., the token is forwarded) trying to go forward as long as
possible; if it is forwarded to an already visited node, it is sent back to the sender, and
that link is marked as a back-edge; if the token can no longer be forwarded (it is at a
node where all its neighbors have been visited), the algorithm will “backtrack” until
it finds an unvisited node where the token can be forwarded to.

The distributed implementation of depth-first traversal is straightforward.

1. When first visited, an entity remembers who sent the token, creates a list of
all its still unvisited neighbors, forwards the token to one of them (removing it
from the list), and waits for its reply returning the token.

2. When the neighbor receives the token, it will return the token immediately if
it had been visited already by somebody else, notifying that the link is a back-
edge; otherwise, it will first forward the token to each of its unvisited neighbors
sequentially, and then reply returning the token.

3. Upon the reception of the reply, the entity forwards the token to another unvis-
ited neighbor.

4. Should there be no more unvisited neighbors, the entity can no longer forward
the token; it will then send the reply, returning the token to the node from which
it first received it.

NOTE. When the neighbor in step (2) determines that a link is a back-edge , it knows
that the sender of the token is already visited; thus, it will remove it from the list of
unvisited neighbors.

We will use three types of messages: “T” to forward the token in the traversal,
“Backedge” to notify the detection of a back-edge, and “Return” to return the token
upon local termination.

Protocol DF Traversal is shown in Figure 2.6, where the operation of extracting
an element from a set B and assigning it to variable a is denoted by a ⇐ B. Let us
examine its costs.

Focus on a link (x,y)∈ E. What messages can be sent on it? Suppose x sends T
to y; then y will only send to x either Return (if it was idle when the T arrived) or
Backedge (otherwise). In other words, on each link there will be exactly two messages
transmitted. Since the traversal is sequential, T[DF Traversal ] = M[DF Traversal ];
hence

T[DF Traversal] = M[DF Traversal] = 2m. (2.6)



TRAVERSAL 43

PROTOCOL DF Traversal.

! Status: S = {INITIATOR,IDLE,VISITED,DONE};
SINIT = {INITIATOR,IDLE}; STERM = {DONE}.

! Restrictions: R ;UI.

INITIATOR
Spontaneously
begin

Unvisited:= N (x);
initiator:= true;
VISIT;

end

IDLE
Receiving (T )
begin

entry: = sender;
Unvisited: = N (x) − {sender};
initiator: = false;
VISIT;

end

VISITED
Receiving (T )
begin

Unvisited: = Unvisited −{sender};
send(Backedge) to {sender};

end

Receiving(Return)
begin

VISIT;
end

Receiving(Backedge)
begin

VISIT;
end

Procedure VISIT
begin

if Unvisited "= ∅ then
next ⇐ Unvisited;
send(T) to next;
become VISITED

else
if not(initiator) then send(Return) to entry; endif
become DONE;

endif
end

FIGURE 2.6: DF Traversal

To determine how efficient is the protocol, we are going to determine what is the
complexity of the problem.

Using exactly the same technique we employed in the proof of Theorem 2.1.1, we
have (Exercise 2.9.11):

Theorem 2.3.1 M(DFT/R) ≥ m.



44 BASIC PROBLEMS AND PROTOCOLS

Therefore, the 2m message cost of protocol DF Traversal is indeed excellent, and the
protocol is message optimal.

Property 2.3.1 The message complexity of depth-first traversal under R is !(m).

The time requirements of a depth-first traversal are quite different from those of a
broadcast. In fact, since each node must be visited sequentially, starting from the sole
initiator, the time complexity is at least the number of nodes:

Theorem 2.3.2 T (DFT/R) ≥ n − 1.

The time complexity of protocol DF Traversal is dreadful. In fact, the upper bound
2m could be several order of magnitude larger than the lower bound n − 1. For
example, in a complete graph, 2m = n2 − n. Some significant improvements in the
time complexity can, however, be made by going into a finer granularity. We will
discuss this topic in greater details next.

2.3.2 Hacking (!)

Let us examine protocol Protocol DF Traversal to see if it can be improved, especially
its time cost.

IMPORTANT. When measuring ideal time, we consider only synchronous exe-
cutions; however, when measuring messages and establishing correctness we must
consider every possible schedule of events, especially the nonsynchronous execu-
tions.

Basic Hacking The protocol we have constructed is totally sequential: in a syn-
chronous execution, at each time unit only one message will be sent, and every mes-
sage requires one unit of time. So, to improve the time complexity, we need to (1)
reduce the number of messages and/or (2) introduce some concurrency.

By definition of traversal, each entity must receive the token (message T) at least
once. In the execution of our protocol, however, some entities receive it more than
once; those links from which these other T messages arrive are precisely the back-
edges.

Question. Can we avoid sending T messages on back-edges?

To answer this question we must understand why T messages are sent on back-edges.
When an entity x sends a T message to y, it does not know whether the link is
a back-edge or not; that is, whether y has already been visited by somebody else
or not. If x knew which of its neighbors are already visited, it would not send a
T message to them, there would be no need for Backedge messages from them,
and we would be saving messages and time. Let us examine how to achieve such a
condition.


