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1 Introduction

We are all familiar with congested roads, and perhaps
also with congestion in other networks such as the
Internet, so it is obviously important to have a gen-
eral understanding of how and why congestion occurs
in networks. However, the pattern of the flow of traf-
fic through a network is the consequence of a subtle
and complex interaction between different users. For
example, in a road network we would normally expect
each driver to attempt to choose the most convenient
route, and this choice will depend upon the delays
the driver expects to encounter on different roads; but
these delays will in turn depend upon the choices of
routes made by others. This mutual interdependence
makes it difficult to predict the effects of changes to
the system, such as the construction of a new road or
the introduction of tolls in certain places.

Related issues arise in other large-scale systems like
the telephone network or the Internet. In these sys-
tems a major practical concern is the extent to which
control can be decentralized. When you are browsing
the web, the rate at which a web page is transferred to
you across the network is controlled by software proto-
cols running on your computer and on the web server
hosting the web page, and not by some huge central
computer. This decentralized approach to flow control
has been outstandingly successful as the Internet has
evolved from a small-scale research network to today’s
interconnection of hundreds of millions of hosts, but is
beginning to show signs of strain. In developing new
protocols, the challenge is to understand just which
aspects of decentralized flow control are important if
the network as a whole is to continue to expand and
evolve.

In this article we introduce the reader to some of the
mathematical models that have been used to address
these issues. The models need to be able to represent
several distinct aspects of the system. We shall see
that the language of graph theory and matrices is

needed to capture the pattern of connections within
the network. Calculus is needed to describe how con-
gestion depends upon traffic volumes. And optimiza-
tion concepts are needed to model the way in which
self-interested drivers choose their shortest routes, or
the way that decentralized controls in communication
networks can cause the system as a whole to perform
well.

2 Network Structure

Figure 1 illustrates a set of three nodes connected by a
set of five directed links. We might imagine the nodes
as representing towns or locations within a city, and
the links as representing road capacity between differ-
ent nodes. A two-way road is represented by two links,
one in each direction. Notice that there are two routes
from node c to node a that a driver can choose: the
first route, let us call it ca1, is the direct route, using
link 5; the second route, let us call it ca2, is via node b
and uses links 4 and 2.

Let J be the set of directed links and let R be the
set of possible routes. One way to describe the rela-
tionship between links and routes is with a table, or
matrix, defined as follows. Set Ajr = 1 if link j lies
on route r, and set Ajr = 0 otherwise. This defines a
matrix A = (Ajr, j ∈ J, r ∈ R) called the link-route
incidence matrix. Each column of the matrix corre-
sponds to one of the routes r, and each row to one of
the links j of the network. The column for route r is
composed of 0s and 1s: the 1s tell us which links are
on route r. As for the rows, the 1s in the row for link j

tell us which routes pass through that link. Thus, for
example, the incidence matrix in Figure 1 has a col-
umn for each of the two routes, ca1 and ca2, between
node c and node a. These columns encode the infor-
mation that route ca1 uses link 5 and that route ca2
uses links 4 and 2. Note that the incidence matrix does
not tell us the order of the links on the route. Also the
incidence matrix shown does not include all logically
possible routes, but it could if we wanted it to. And
while we have illustrated a very small network, there is
no limit to the number of nodes and links there could
be in the network, or to the number of choices of route
each driver might have—the incidence matrix would
just be bigger.
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ab ac ba bc ca1 ca2 cb1 cb2
1 1 1 0 0 0 0 0 1
2 0 0 1 0 0 1 0 0

A = 3

⎛
⎜⎜⎜⎜⎜⎝ 0 1 0 1 0 0 0 0

⎞
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5 0 0 0 0 1 0 0 1

ab ac ba bc ca1 ca2 cb1 cb2
ab 1 0 0 0 0 0 0 0
ac 0 1 0 0 0 0 0 0
ba 0 0 1 0 0 0 0 0

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠bc 0 0 0 1 0 0 0 0

ca 0 0 0 0 1 1 0 0
cb 0 0 0 0 0 0 1 1

Figure 1 A simple network and its link-route incidence
matrix, A. The matrix H represents which routes serve
which source–destination pairs.

One quantity of interest in a network is the volume
of traffic along a particular route or link. Let xr be
the flow on route r, defined as the number of cars
per hour that travel along that route. We can list the
flows along all the routes in the network as a sequence
of numbers x = (xr, r ∈ R), and we can think of
this sequence as a vector. From this vector we can
calculate the total flow through a link: for example,
the total flow through link 5 in Figure 1 is the sum
of the flows along routes ca1 and cb2, since these are
the routes that pass through link 5. In general, since
Ajr = 1 when a route r passes through link j and
Ajr = 0 when it does not, the total flow through link
j, coming from all of the routes that use it, is

yj =
∑
r∈R

Ajrxr, j ∈ J.

D(y)

0 y

Figure 2 The time taken to travel along a link, D(y),
expressed as function of the total flow y along the link.
As the flow increases, congestion effects cause additional
delay.

Again, the numbers (yj , j ∈ J) can be thought of as
forming a vector. The above equations can then be
represented succinctly in matrix form as

y = Ax.

We expect the level of congestion at a link to depend
on the total flow through the link, and we expect this
to influence the time taken to travel along the link. We
shall call this time the delay. Figure 2 shows a typical
way in which the delay might depend on the amount
of flow. At small values of the flow y the delay D(y) is
just the time taken to travel along an empty road; for
larger values of y the delay D(y) is larger, and quite
possibly much larger, owing to congestion effects.1

Let Dj(yj) be the delay along link j when the flow
through that link is yj ; the nature of this delay may
depend upon characteristics of link j such as its length
and width, so we have to use the subscript j on the
function Dj to indicate that the functions for the var-
ious links can be different.

1. The graph shown in Figure 2 is single valued. It is quite pos-
sible for the curve representing delay as a function of flow to bend
back upon itself, so that higher delays than shown in the graph cor-
respond to flows smaller than the maximum flow shown there. You
are in this part of the graph when you experience stop–start driving
conditions on a congested but otherwise incident-free highway. Part
of the aim of traffic management is to keep flows and delays away
from this part of the graph, which we will not consider further.

We will assume that the graph is increasing and smooth, which
will make our use of calculus later more straightforward. Formally,
we shall assume that D(y) is a continuously differentiable and
strictly increasing function of its argument y, as in the graph shown
in Figure 2.
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2.1 Routing Choices

Given two nodes in a network there will in general be a
variety of possible routes capable of linking them. For
example, in Figure 1 we have seen that the incidence
matrix A records two routes between nodes c and a.
The pair ca is an example of a source–destination pair.
Flow originating from source c and destined for node a
can use either of ca1 or ca2, the two routes that serve
this source–destination pair. We now need another
matrix, this time to describe the relationship between
source–destination pairs and routes. Let us use s to
denote a typical source–destination pair, and let S be
the set of all source–destination pairs. Then, for each
source–destination pair s and each route r, let Hsr = 1
if s can be served by the route r, and let Hsr = 0 other-
wise. This defines a matrix H = (Hsr, s ∈ S, r ∈ R);
Figure 1 gives an example. Observe that the row
labeled ca has 1s for the two routes, r = ca1, ca2, that
serve the source–destination pair s = ca. Each column
of H corresponds to a route, and contains a single 1:
this identifies the source–destination pair served by
the route. For each route r let us write s(r) for the
source–destination pair served by r: for example, in
Figure 1, s(ac) = ac and s(ca1) = ca.

From the vector x = (xr, r ∈ R) we can calculate
the total flow from a source to a destination: for exam-
ple, the flow from node c to node a in Figure 1 is the
sum of flows along routes ca1 and ca2, since from the
matrix H we see that these are the routes that serve
the source–destination pair ca. More generally, if fs is
the total flow of traffic added up over all of the routes
serving source–destination pair s, then

fs =
∑
r∈R

Hsrxr, s ∈ S.

Thus the vector f = (fs, s ∈ S) of source–destination
flows can be expressed succinctly in matrix form as
f = Hx.

3 Wardrop Equilibria

We are now able to approach the central issue: how
do the traffic flows between the various sources and
destinations distribute themselves over the links of the
network? Each driver will try to use whatever route
is quickest, but this may make other routes quicker or
slower and cause other drivers to change their routes.

Only when they cannot find alternative, quicker routes
will drivers not have an incentive to change routes.
What does this mean mathematically?

Let us first calculate the time taken for a driver
to travel along route r. The column labeled r of the
matrix A tells us which links j are on route r. If we
add up the delays on each of these links, we get the
time taken to travel along route r as the expression∑

j∈J

Dj(yj)Ajr.

Now the driver using route r could have used any
other route that served the same source–destination
pair s(r). So, for the driver to be content with route
r, we require∑

j∈J

Dj(yj)Ajr �
∑
j∈J

Dj(yj)Ajr′

for every other route r′ that serves the same source–
destination pair s(r).

Define a Wardrop equilibrium to be a vector x =
(xr, r ∈ R) of nonnegative numbers such that for
every pair of routes r, r′ serving the same source–
destination pair,

xr > 0 ⇒
∑
j∈J

Dj(yj)Ajr �
∑
j∈J

Dj(yj)Ajr′ ,

where y = Ax. The implication expresses the defin-
ing characteristic of a Wardrop equilibrium (Wardrop
1952): that if a route r is actively used, then it achieves
the minimum delay over all routes serving its source–
destination pair s(r).

Does a Wardrop equilibrium exist? It is not at all
clear whether it is possible to find a vector x such that
all of the above implications, for the various routes
through the network, are satisfied simultaneously. To
answer the question, we shall proceed by addressing
a seemingly different question: what is the answer to
the following optimization problem?

Minimize
∑
j∈J

∫ yj

0
Dj(u) du

over x � 0, y,

subject to Hx = f, Ax = y.

Let us see in outline why this optimization problem
has a solution (x, y), and why, if (x, y) is a solution,
the vector x is a Wardrop equilibrium.

The optimization problem has some aspects that
are quite natural. An obvious constraint is that the



4 Princeton Companion to Mathematics Proof

flows along each route are nonnegative, which is why
we insist that x � 0. The constraints Hx = f , Ax = y

just enforce the accounting rules we have seen earlier—
the rules that allow the source–destination flows f and
the link flows y to be calculated from the route flows x

using the matrices H and A, respectively. We view the
source–destination flows f as fixed, to be distributed
over the various routes. Given a choice of f , our task
is then to find the route flows x and consequently the
link flows y. At a solution to the optimization problem
y will be nonnegative, since x is.

This much is fairly natural, but the function to
be minimized looks somewhat strange. Its importance
rests on the fact that the rate of change of the integral∫ yj

0
Dj(u) du

with respect to yj is Dj(yj), by the fundamental

theorem of calculus, and the function to be min-
imized is the sum of these integrals over all links. We
shall see that the link between Wardrop equilibria and
the optimization problem is a direct consequence of
this observation.

To find a solution to the optimization problem,
we will use the method of Lagrange multipliers.
Define the function

L(x, y; λ, µ)

=
∑
j∈J

∫ yj

0
Dj(u) du + λ · (f − Hx) − µ · (y − Ax),

where λ = (λs, s ∈ S), µ = (µj , j ∈ J) are vectors of
Lagrange multipliers, to be fixed later. The idea is that
if we make the right choices of Lagrange multipliers,
the minimization of the function L over x and y will
find a solution to the original problem. The reason
this works is that, for the right choices of Lagrange
multipliers, the constraints Hx = f and Ax = y are
consistent with the minimization of L.

To minimize the function L we need to differentiate.
First,

∂L

∂yj
= Dj(yj) − µj .

Second,
∂L

∂xr
= −λs(r) +

∑
j∈J

µjAjr.

Note that the form of the matrix H causes the deriva-
tive with respect to xr to pick out exactly one com-
ponent of λ, namely λs(r), and the form of the matrix

A causes the derivative to pick out just those compo-
nents of µ that correspond to links on route r. These
derivatives allow us to deduce that a minimum of L,
over all x � 0 and all y, occurs when

µj = Dj(yj)

and

λs(r) =
∑
j∈J

µjAjr if xr > 0

�
∑
j∈J

µjAjr if xr = 0.

The equality condition for λs(r) is straightforward: if
xr > 0 then small variations up or down in xr should
not decrease the function L(x, y; λ, µ), and hence we
deduce that the partial derivative with respect to xr

must be zero. But if xr = 0 then we can only vary xr

upwards, and so all we can deduce is that the partial
derivative with respect to xr is nonnegative, and from
this we deduce the inequality condition for λs(r).

Minimizing the function L corresponds to allowing
the constraints Hx = f , Ax = y to be violated, but at
a cost: now one charges a price λs for any shortfall of
the sum

∑
j∈J Ajrxr below fs and a price µj for any

excess of the sum
∑

j∈J Ajrxr over yj . From general
results on convex optimization it is known that there
exist Lagrange multipliers (λ, µ) and a vector (x, y)
such that (x, y) minimizes L(x, y; λ, µ), satisfies the
constraints Hx = f , Ax = y, and solves the original
optimization problem.

Our solution for the Lagrange multipliers shows
that they have a simple interpretation: µj is the delay
on link j and λs is the minimum delay over all routes
serving the node pair s. The various conditions estab-
lished for the multipliers thus show that an optimum
of the function L, known as the objective function,
corresponds precisely to a Wardrop equilibrium.

Thus if traffic in the network distributes itself in
accordance with the self-interested choices of drivers,
the equilibrium flows (x, y) will solve an optimization
problem. This result is originally due to Beckmann
et al. (1956), and it provides a remarkable insight into
the equilibrium patterns achieved in road traffic net-
works. The pattern of traffic resulting from the indi-
vidual decisions of a large number of self-interested
drivers behaves as if a central intelligence were direct-
ing flows to optimize a certain (rather strange) objec-
tive function.
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Figure 3 Braess’s paradox. The addition of a link causes everyone’s journey time to lengthen.
(After Braess (1968) and Cohen (1988).)

The result does not mean that average delays in the
network will be minimal: a striking illustration of this
fact is provided by Braess’s paradox (Braess 1968),
which we describe next.

4 Braess’s Paradox

Consider the network illustrated in Figure 3(a). Cars
travel from node S to node N, via either node W
or node E. The total flow is 6, and the link delays
Dj(y) are given next to links in the figure. One can
imagine the figure illustrating rush hour as commuters
travel from the center of a city in the south to their
homes in the north. Commuters learn from experi-
ence what the delays are likely to be along the east-
ern and western routes. The distribution of traffic
shown is the Wardrop equilibrium: there is no incen-
tive for any drivers to change their routes, since the
two possible routes incur the same delay, namely
(10 × 3) + (3 + 50) = 83 units of time. Now sup-
pose that a new link is added, between nodes W and
E, as shown in Figure 3(b). Traffic is attracted onto
the new link, since to begin with it offers a shorter
journey time from the south to the north. Eventu-

ally, after everyone knows about the new link and
traffic patterns have settled down, a new Wardrop
equilibrium will be established, and this is shown in
Figure 3(b). In the new equilibrium there are three
routes used, which each incur the same delay, namely
(10×4)+(2+50) = (10×4)+(2+10)+(10×4) = 92.
Thus in Figure 3(b) each car incurs a delay of 92,
while in Figure 3(a) the delay of each car was only 83.
Adding the new link has increased everyone’s delay!

The explanation for this apparent paradox is as fol-
lows. At a Wardrop equilibrium each driver is using
a route which, given the choices of others, gives the
minimum delay over the routes available between that
driver’s source and destination. But there is no intrin-
sic reason why this equilibrium should correspond
to particularly low delays relative to what could be
achieved by another flow pattern. If all drivers could
be encouraged to depart from their own self-interested
choices, it is quite possible that all might benefit. And
in the above example, if all drivers in the second net-
work could agree to avoid the new link, effectively con-
verting the network back into the first network, then
all would incur lower delays.

To explore the point further, note that the prod-
uct of the flow yj and the delay Dj(yj) is the delay
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incurred at link j per unit time, aggregated over all
the vehicles using link j. Let us try to find the flow
pattern that minimizes the total delay per unit time,
summed over the entire network. Consider then the
following problem.

Minimize
∑
j∈J

yjDj(yj)

over x � 0, y,

subject to Hx = f, Ax = y.

Note that the problem is of the same form as the ear-
lier optimization problem, but the function to be min-
imized now measures the total network delay per unit
time. (Recall that the function to be minimized in
the first optimization problem seemed initially to be
rather arbitrary, with its eventual motivation being
that its minimization was achieved by a Wardrop equi-
librium.) Again define the function

L(x, y; λ, µ)

=
∑
j∈J

yjDj(yj) + λ · (f − Hx) − µ · (y − Ax).

Again
∂L

∂xr
= −λs(r) +

∑
j∈J

µjAjr,

but now
∂L

∂yj
= Dj(yj) + yjD

′
j(yj) − µj .

Hence a minimum of L over x � 0 and y occurs when

µj = Dj(yj) + yjD
′
j(yj)

and

λs(r) =
∑
j∈J

µjAjr if xr > 0

�
∑
j∈J

µjAjr if xr = 0.

The Lagrange multipliers now have a more sophisti-
cated interpretation. Suppose that, in addition to the
delay Dj(yj), users of link j incur a traffic-dependent
toll

Tj(yj) = yjD
′
j(yj).

Then µj is the generalized cost of using link j, defined
as the sum of the toll and the delay, and λs is the
minimum generalized cost over all routes serving the
node pair s. If users select routes in an attempt to
minimize the sum of their tolls and their delays, then

they will produce a flow pattern which minimizes total
delay in the network. Notice that the generalized cost
µj is (∂/∂yj)(yjD(yj)), which is the rate of increase in
the total delay at link j as the flow yj is increased. So
the assumption now is that, in a certain sense, drivers
try to minimize their contribution to the total delay
rather than minimizing their own delay.

We have seen that if drivers attempt to minimize
their own delay the resulting equilibrium flows will
minimize a certain objective function defined for the
network. However, the objective function is certainly
not the total network delay, and thus there is no guar-
antee that when capacity is added to a network the sit-
uation is improved. We have also seen that, with the
imposition of appropriate tolls, it is possible for the
self-interested behavior of drivers to lead to an equi-
librium pattern of flow that minimizes total delay. A
major challenge for governments and transport plan-
ners is to understand how insights from these and
more sophisticated models might be used to encourage
more efficient development and use of road networks
(Department for Transport 2004).

5 Flow Control in the Internet

When a file is requested over the Internet, the com-
puter that hosts that file breaks it into small packets
of data that are then transferred across the network
by the transmission control protocol of the Internet,
known as TCP. The rate at which packets enter the
network is controlled by TCP, which is implemented as
software on the two computers that are the source and
destination of the data. The general approach is as fol-
lows (Jacobson 1988). When a link within the network
becomes overloaded, one or more packets are lost; loss
of a packet is taken as an indication of congestion, the
destination informs the source, and the source slows
down. The TCP then gradually increases its sending
rate until it again receives an indication of congestion.
This cycle of increase and decrease enables the source
computers to discover and use the available capacity,
and to share it between different flows of packets.

TCP has been outstandingly successful as the Inter-
net has evolved from a small-scale research network to
today’s interconnection of hundreds of millions of end-
points and links. This in itself is a striking observation.
Each of a large but indeterminate number of flows is
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controlled by a feedback loop that can know only of
that flow’s experience of congestion. A flow does not
know how many other flows are sharing a link on its
route, or even how many links are on its route. The
links vary in capacity by many orders of magnitude,
as do the numbers of flows sharing different links. It is
remarkable that so much has been achieved in such a
rapidly growing and heterogeneous network with con-
gestion controlled just at the endpoints. Why does this
algorithm work so well?

In recent years theoreticians have shed some light
on TCP’s success, by interpreting the protocol as a
decentralized parallel algorithm that solves an opti-
mization problem, just as the decentralized choices of
drivers in a road network solve an optimization prob-
lem. We shall outline the argument, beginning with a
more detailed description of TCP.2

Packets transferred by TCP across the Internet con-
tain sequence numbers indicating their order, and they
should arrive at their destination in that order. When
a packet is received at the destination, it is acknow-
ledged: an acknowledgment is a short packet sent by
the destination back to the source. If a packet has been
lost in the transfer, the source can tell this from the
sequence numbers contained in the acknowledgments.
The source keeps a copy of each packet sent until it
has been positively acknowledged; these copies form
what is called a sliding window, and allow packets lost
in transfer to be sent again by the source.

Meanwhile, stored in the source computer there is
a numerical variable known as the congestion window
and denoted cwnd. The congestion window directs the
size of the sliding window in the following sense: if
the size of the sliding window is less than cwnd, then
the computer increases it by sending out a packet; if
it is greater than or equal to cwnd, then it waits for
positive acknowledgments to come in, which have the
effect of reducing the size of the sliding window and, as
we shall see, increasing cwnd as well. Thus, the size of
the sliding window continually changes, moving in the
direction of a target size that is given by the congestion
window.

The congestion window itself is not a fixed number:
rather, it is constantly being updated, and the precise

2. Even our detailed description of TCP is simplified, concerning
just the congestion-avoidance part of the protocol and omitting dis-
cussion of timeouts or of reactions to multiple congestion indication
signals received within a single round-trip time.

rules for how this is done are critical for TCP’s sharing
of capacity. The rules currently used are as follows.
Every time a positive acknowledgment comes in, cwnd
is increased by cwnd−1, and every time a lost packet is
detected, cwnd is halved.3 Thus, if the source computer
detects a lost packet, it realizes that there has been
some congestion and backs off for a while, but if all
its packets are getting through then it allows the rate
at which it sends packets to inch up again.

If p is the probability that a packet is lost, then with
probability 1 − p the congestion window will increase
by cwnd−1 and with probability p it will decrease by
1
2cwnd. The expected change in the congestion window
cwnd per update step is therefore

cwnd−1(1 − p) − 1
2cwnd p.

The expected change will be positive for small values
of cwnd, but will become negative if cwnd is big enough.
We might therefore expect an equilibrium for cwnd to
arise when the expression is zero: that is, when

cwnd =

√
2(1 − p)

p
.

Now let us see how this calculation can be extended
to networks. Suppose that a network consists of a set
of nodes connected by directed links, like the network
illustrated in Figure 1. As earlier, let J be the set
of directed links, let R be the set of routes, and let
A = (Ajr, j ∈ J, r ∈ R) be the link-route inci-
dence matrix. When a request reaches a computer in
this network, that computer will set up a congestion
window for the flow of packets that will result. Since
there will be many different such congestion windows,
they need to be labeled, and it is convenient to label
them with the route that will be used for the flow.
(Exactly how these flows are routed is a complicated
and important question, but one that we shall not dis-
cuss here.) So, for each route r that is being used, let
cwndr be the congestion window for that route. Let Tr

be the round-trip time for the route r: that is, the time
between the sending out of a packet and the receiving

3. These increase and decrease rules may appear rather mysteri-
ous, and indeed it is only recently that many of their macroscopic
consequences have begun to be understood. The rules have worked
well for more than a decade, but they are now beginning to show
signs of age, and much current research is aimed at understanding
the full consequences of changing them.
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of an acknowledgment for it.4 Finally, define a variable
xr to be cwndr/Tr.

Now at any given time the sliding window consists
of those packets that have been sent but not acknow-
ledged. Therefore, if a packet has just been acknow-
ledged and its round trip has taken time Tr, the sliding
window consists of all packets sent out in the last Tr

time units. Since the source computer is aiming for
the number of such packets to be about cwndr, we
can interpret xr to be the rate at which packets are
transferred over route r. Thus, the numbers xr form a
flow vector that is closely analogous to the traffic flow
vector discussed earlier.

As we did then, let us define a vector y = Ax, so
that yj is the total flow through link j, obtained by
summing xr over each route r that passes through link
j. Let pj be the proportion of packets that are lost,
or “dropped,” at link j. We expect pj to be related
to yj , the total flow through link j, as follows. If yj

is less than the capacity Cj of link j, then pj will be
zero—there will be no dropped packets at link j if the
link is not full. And if pj > 0 then yj = Cj—if packets
are dropped then the link is full. If we assume that
the proportions of packets dropped at links are small,
then the probability that a packet is lost on route r is
approximately

pr =
∑
j∈R

pjAjr.

(The exact formula would be (1 − pr) =
∏

j∈R(1 −
pj)Ajr , but when the pj are small we can ignore their
products.) Since xr = cwndr/Tr, our earlier calcula-
tion of cwnd now gives us that

xr =
1
Tr

√
2(1 − pr)

pr
.

Is it possible to choose the rates x = (xr, r ∈ R)
and the drop probabilities p = (pj , j ∈ J) in a con-
sistent fashion, so that the last two equations are sat-
isfied and either pj is zero or yj = Cj for each j ∈ J?
The remarkable observation is that such a choice cor-

4. The round-trip time comprises the time taken for a packet to
travel along links, called the propagation delay, together with pro-
cessing times and queueing delays at nodes. Processing times and
queueing delays tend to decrease with increasing computer speeds,
but the finite speed of light places a fundamental lower bound on
propagation delays. We shall treat the round-trip time for a route
as a constant. Hence, we assume that congestion at a link makes
itself felt by packet loss rather than additional packet delay.

arctan(x)

x0

Figure 4 The arctan function. The Internet’s transmis-
sion control protocol (TCP) implicitly maximizes a sum of
utilities over all the connections present in a network: this
function shows the shape of the utility function for a single
connection. The horizontal axis is proportional to the rate
of the connection, and the vertical axis is proportional to
the usefulness of that rate. Both axes are scaled in terms
of the round-trip time of the connection.

responds precisely to the solution of the following opti-
mization problem (Kelly 2001; Low et al. 2002).

Maximize
∑
r∈R

√
2

Tr
arctan

(
xrTr√

2

)

over x � 0,

subject to Ax � C.

Some aspects of this optimization problem are as
we might expect: in particular, the inequality Ax � C

simply adds up the flows through link j and requires
that the sum not exceed the capacity Cj of link j, for
each link j ∈ J . But, as before, the function being
optimized is undoubtedly strange. The arctan func-
tion, illustrated in Figure 4, is the inverse function to
the trigonometric function tan, and can also be defined
as

arctan(x) =
∫ x

0

1
1 + u2 du.

From this form, we see that its derivative with respect
to x is 1/(1 + x2).

Let us sketch the relationship between the optimiza-
tion problem and the equilibrium rates and drop prob-
abilities. Define the function

L(x, z; µ)

=
∑
r∈R

√
2

Tr
arctan

(
xrTr√

2

)
+ µ · (C − Ax − z),

where µ = (µj , j ∈ J) is a vector of Lagrange multi-
pliers, and z = C − Ax is a vector of slack variables,
measuring the spare capacity on each of the links j ∈ J
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of the network. Then, using the derivative of the arc-
tan function,

∂L

∂xr
= (1 + 1

2x2
rT

2
r )−1 −

∑
j∈J

µjAjr

and
∂L

∂zj
= −µj .

We look for a maximum of L over x, z � 0; it turns out
that this maximum is, under the identification µj =
pj , precisely the collection (xr, r ∈ R), (pj , j ∈ J)
of rates and drop probabilities that we were looking
for. For example, setting to zero the partial derivative
with respect to xr gives the desired equation for xr.

In summary, for each link j ∈ J the Lagrange multi-
plier µj arising from the optimization problem is pre-
cisely the proportion pj of packets dropped at that
link, much as the Lagrange multipliers arising earlier
were precisely the delays on links of a road traffic net-
work. And the equilibrium reached by the interaction
of many competing TCPs, each implemented only on
the source and destination computers, is effectively
maximizing an objective function for the entire net-
work. The objective function has a surprising inter-
pretation: it is as if the usefulness of the flow rate xr

to the source–destination pair served by this route is
given by a utility function

√
2

Tr
arctan

(
xrTr√

2

)
,

and the network is attempting to maximize the sum
of these utility functions across all source–destination
pairs, subject to constraints arising from the limited
capacities of the links.

The arctan function, illustrated in Figure 4, is
concave. Thus, if two or more connections share an
overloaded link, the rates achieved will be approxi-
mately equal, since otherwise the total utility could
be increased by reducing the largest rate a little and
increasing the smallest rate a little. As a result, there
is a tendency for TCP to share resources more or less
equitably. This is very different from resource-control
mechanisms in traditional telephone networks where,
if the network is overloaded, some calls are blocked in
order that the calls that are accepted are unaffected
by the overload.

6 Conclusion

The behavior of large-scale systems has been of great
interest to mathematicians for over a century, with
many examples coming from physics. For example, the
behavior of a gas can be described at the microscopic
level in terms of the position and velocity of each
molecule. At this level of detail a molecule’s velocity
appears as a random process, as the molecule bounces
around off other molecules and the walls of the con-
tainer. Yet consistent with this detailed microscopic
description of the system is macroscopic behavior best
described by quantities such as temperature and pres-
sure. Similarly, the behavior of electrons in an elec-
trical network can be described in terms of random
walks, and yet this simple description at the micro-
scopic level leads to rather sophisticated behavior at
the macroscopic level: Kelvin showed that the pattern
of potentials in a network of resistors is exactly the
one that minimizes heat dissipation for a given level
of current flow (Kelly 1991). The local, random behav-
ior of the electrons causes the network as a whole to
solve a rather complex optimization problem.

In the last 50 years we have begun to realize that
large-scale engineered systems are often best under-
stood in similar terms. Thus a microscopic description
of traffic flow in terms of each driver’s choice of the
most convenient route can be consistent with macro-
scopic behavior described in terms of a function mini-
mization. And the simple, local rules that control how
packets are transmitted through the Internet can cor-
respond with a maximizing of aggregate utility across
the entire network.

One thought-provoking difference is that, whereas
the microscopic rules governing physical systems are
fixed, for engineered systems such as transport or com-
munication networks we may be able to choose the
microscopic rules so as to achieve the macroscopic con-
sequences we judge desirable.
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