
The Small-World Phenomenon: 
An Algorithmic Perspective * 

Jon Kleinberg * 

Abstract 

Long a matter of folklore, the "small-world phenomenon" 
-- the principle that we are all linked by short chains of 
acquaintances -- was inaugurated as an area of experi- 
mental study in the social sciences through the pioneer- 
ing work of Stanley Milgram in the 1960's. This work 
was among the first to make the phenomenon quantita- 
tive, allowing people to speak of the "six degrees of sep- 
aration" between any two people in the United States. 
Since then, a number of network models have been pro- 
posed as frameworks in which to study the problem an- 
alytically. One of the most refined of these models was 
formulated in recent work of Watts and Strogatz; their 
framework provided compelling evidence that the small- 
world phenomenon is p@rvasive in a range of networks 
arising in nature and technology, and a fundamental in- 
gredient in the evolution of the World Wide Web. 

But existing models are insufficient to explain the 
striking algorithmic component of Milgram's original 
findings: that individuals using local information are 
collectively very effective at actually constructing short 
paths between two points in a social network. Although 
recently proposed network models are rich in short paths, 
we prove that no decentralized algorithm, operating with 
local information only, can construct short paths in these 
networks with non-negligible probability. We then de- 
fine an infinite family of network models that naturally 
generalizes the Watts-Strogatz model, and show that 
for one of these models, there is a decentralized algo- 
rithm capable of finding short paths with high proba- 
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bility. More generally, we provide a strong characteri- 
zation of this family of network models, showing that  
there is in fact a unique model within the family for 
which decentralized algorithms are effective. 

1 Introduction 

The Small-World Phenomenon. A social network ex -  
hibits the small-world phenomenon if, roughly speak- 
ing, any two individuals in the network are likely to 
be connected through a short sequence of intermediate 
acquaintances. This has long been the subject of anec- 
dotal observation and folklore; often we meet a stranger 
and discover tha t  we have an acquaintance in common. 
It has since grown into a significant area of study in the 
social sciences, in large part  through a series of strik- 
ing experiments conducted by Stanley Milgram and his 
co-workers in the 1960's [13, 18, 12]. Recent work has 
suggested that  the phenomenon is pervasive in networks 
arising in nature and technology, and a fundamental in- 
gredient in the structural evolution of the World Wide 
Web [17, 19,.2]. 

Milgram's basic small-world experiment remains one 
of the most compelling ways to think about the prob- 
lem. The goal of the experiment was to find short chains 
of acquaintances linking pairs of people in the United 
States who did not know one another. In a typical in- 
stance of the experiment, a source person in Nebraska 
would be given a letter to deliver to a target person in 
Massachusetts. The source would initially be told ba- 
sic information about  the target, including his address 
and occupation; the source would then be instructed to 
send the letter to someone she knew on a first-name 
basis in an effort to transmit the letter to the target as 
efficacious!y as possible. Anyone subsequently receiving 
the letter would be given the same instructions, and the 
chain of communication would continue until the target 
was reached. Over many trials, the average number of 
intermediate steps in a successful chain was found to 
lie between five and six, a quanti ty tha t  has since en- 
tered popular culture as the "six degrees 'of separation" 
principle [7]. 
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Modeling the Phenomenon. Naturally, the empirical 
validation of the phenomenon has led to a rash of an- 
alytical work aimed at answering the following general 
question: 

(*) Why should there exist short chains of ac- 
quaintances linking together arbi t rary pairs of 
strangers? 

Most of the early work on this issue, beginning with 
analysis of Pool and Kochen tha t  pre-dated Milgram's  
experiments [16], was based on versions of the follow- 
ing explanation: random networks have low diameter. 
(See for example the book of surveys edited by Kochen 
[11].) Tha t  is, if every individual in the United States 
were to have a small number  of acquaintances selected 
uniformly at random from the populat ion - -  and if ac- 
quaintanceship were symmetr ic  - -  then two random in- 
dividuals would be linked by a short chain with high 
probability. Even this early work recognized the lim- 
itations of a uniform random model; if A and B are 
two individuals with a common friend, it is much more 
likely tha t  they themselves are friends. But  at the same 
time, a network of acquaintanceships tha t  is too "clus- 
tered" w i l l n o t  have the low diameter  tha t  Milgram's  
experiments indicated. 

Recently, Wat ts  and Strogatz proposed a model for 
the small-world phenomenon based on a class of random 
networks tha t  interpolates between these two extremes, 
in which the edges of the network are divided into "lo- 
cal" and "long-range" contacts [19]. The paradigmat ic  
example they studied was a "re-wired ring lattice," con- 
structed roughly as follows. One starts  with a set V of 
n points spaced uniformly on a circle, and joins each 
point by an edge to each of its k nearest neighbors, for 
a small constant k. These are the "local contacts" in 
the network. One then introduces a small number  of 
edges in which the endpoints are chosen uniformly at 
random from V - -  the "long-range contacts".  Wat t s  
and Strogatz argued tha t  such a model captures two 
crucial parameters  of social networks: there is a sim- 
ple underlying structure tha t  explains the presence of 
most edges, but a few edges are produced by a ran- 
dom process tha t  does not respect this structure. Their  
networks thus have low diameter (like uniform random 
networks), but also have the property tha t  many  of the 
neighbors of a node u are themselves neighbors (unlike 
uniform random networks). They showed tha t  a number  
of natural ly arising networks exhibit this pair of prop- 
erties (including the connections among neurons in the 
nematode species C. elegans, and the power grid of the 
Western U.S.); and their approach has been applied to 
the analysis of the hyperlink graph of the World Wide 
Web as well [1]. 

Networks tha t  are formed from a superposition of a 
"structured subgraph" and a "random subgraph" have 

been investigated in the area of probabilistic combina- 
torics. In a fundamental  instance of such an approach, 
Bollob£s and Chung [5] gave bounds on the diameter  of 
the random graph obtained by adding a random match-  
ing to the nodes of a cycle. (See also [6].) 

The  Present  Work. Let us return to Milgram's  exper- 
iment. We claim tha t  it really contains two fundamen- 
tal ly surprising discoveries: first, tha t  such short chains 
should exist in the network of acquaintanceships; and 
second, tha t  people should be able to find these chains 
knowing so little about  the target  individual. From an 
analytical point of view, the first of these discoveries is 
existential in nature, the second algorithmic-- it reveals 
tha t  individuals who know only the locations of their 
direct acquaintances can still, collectively, construct a 
short pa th  between two points in the network. We there- 
fore propose to s tudy the following na tu ra l  companion 
to Question (*) above: 

(**) Why should arbi t rary  pairs of strangers 
be able to find short chains of acquaintances 
tha t  link them together? 

I t  is impor tan t  to note tha t  Question (**) raises issues 
tha t  lie t ruly beyond the scope of Question (*): one 
can imagine networks in which short chains exist, but 
no mechanism based on purely local information is able 
to find them. The success of Milgram's  experiment sug- 
gests a source of latent  navigational  "cues" embedded in 
the underlying social network, by which a message could 
implicitly be guided quickly from source to target.  I t  is 
natural  to ask what  properties a social network must  
possess in order for it to exhibit such cues, and enable 
its members  to find short chains through it. 

In this work, we s tudy "decentralized" algorithms by 
which individuals, knowing only the locations of their 
direct acquaintances, a t t empt  to t ransmi t  a message 
from a source to a target  along a short path.  Our central 
findings are the following. 

• First, we show tha t  existing models are insufficient 
to explain the success of such decentralized algo- 
r i thms in finding short paths through a social net- 
work. In a class of networks generated according 
to the model of Wat t s  and Strogatz, we prove tha t  
there is no decentralized algori thm capable of con- 
structing paths of small expected length (relative 
to the diameter  of the underlying network). 

• We then define an infinite family of random net- 
work models tha t  natural ly  generalizes the Watts-  
Strogatz model. We show tha t  for one of these 
models, there is a decentralized algorithm capable 
of finding short paths with high probability. 

• Finally, we prove the stronger s ta tement  tha t  there 
is in fact a unique model within the family for which 
decentralized algori thms are effective. 
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The Model: Networks and Decentralized Algorithms. 
We now give precise definitions for our network model 
and our notion of a decentralized algorithm; we then 
provide formal statements of the main results. 

In designing our network model, we seek a simple 
framework that  encapsulates the paradigm of Watts and 
Strogatz - -  rich in local connections, with a few long- 
range connections. Rather than using a ring as the ba- 
sic structure, however, we begin from a two-dimensional 
grid and allow for edges to be directed. Thus, we begin 
with a set of nodes (representing individuals in the so- 
cial network) that  are identified with the set of lattice 
points in an n x n square, { ( i , j ) :  i e { 1 , 2 , . . . , n } , j  e 
{1, 2 , . . . ,  n}}, and we define the lattice distance between 
two nodes (i, j)  and (k, g) to be the number of "lattice 
steps" separating them: d((i, j), (k, g)) = Ik - i I + Ig - j l .  
For a universal constant p > 1, the node u has a directed 
edge to every other node within lattice distance p - -  
these are its local contacts. For universal constants q > 0 
and r _> 0, we also construct directed edges from u to q 
other nodes (the long-range contacts) using independent 
random trials; the i TM directed edge from u has endpoint 
v with probability proportional to [d(u, v)] - r .  (To ob- 
tain a probability distribution, we divide this quantity 
by the appropriate normalizing constant }-iv [d(u, v)]-r;  
we will call this the inverse rth-power distribution.) 

This model has a simple "geographic" interpreta- 
tion: individuals live on ~ grid and know their neighbors 
for some number of steps in all directions; they also have 
some number of acquaintances distributed more broadly 
across the grid. Viewing p and q as fixed constants, 
we obtain a one-parameter family of network models 
by tuning the value of the exponent r. When r = 0, 
we have the uniform distribution over long-range con- 
tacts, the distribution used in the basic network model 
of Watts and Strogatz - -  one's long-range contacts are 
chosen independently of their position on the grid. As 
r increases, the long-range contacts of a node become 
more and more clustered in its vicinity on the grid. 
Thus, r serves as a basic structural parameter measur- 
ing how widely "networked" the underlying society of 
nodes is. 

The algorithmic component of the model is based 
on Milgram's experiment. We start with two arbitrary 
nodes in the network, denoted s and t; the goal is to 
transmit a message from s to t in as few steps as pos- 
sible. We study decentralized algorithms, mechanisms 
whereby the message is passed sequentially from a cur- 
rent message holder to one of its (local or long-range) 
contacts, using only local information. In particular, 
the message holder u in a given step has knowledge of 

(i) the set of local contacts among all nodes (i.e. the 
underlying grid structure); 

(ii) the location, on the lattice, of the target t; and 

(iii) the locations and long-range contacts of all nodes 
that have come in contact with the message. 

Crucially, u does not have knowledge of the long-range 
contacts of nodes that have not touched the message. 
Given this, u must choose one of its contacts v, and 
forward the message to this contact. The expected de- 
livery time of a decentralized algorithm - -  a primary 
figure of merit in our analysis - -  is the expected num- 
ber of steps taken by the algorithm to deliver the mes- 
sage over a network generated according to an inverse 
rth-power distribution, from a source to a target chosen 
uniformly at random from the set of nodes. Of course, 
constraining the algorithm to use only local information 
is crucial to our model; if one had full global knowledge 
of the local and long-range contacts of all nodes in the 
network, the shortest chain between two nodes could be 
computed simply by breadth-first search. 

The reader may worry that  assumption (iii) above 
gives a decentralized algorithm too much power. How- 
ever, it only strengthens our results: our lower bounds 
will hold even for algorithms that  are given this knowl- 
edge, while our upper bounds make use of decentralized 
algorithms that  only require assumptions (i) and (ii). 

Statement  of Results. Our results explore the way in 
which the structure of the network affects the ability of 
a decentralized algorithm to construct a short path. 

When r = 0 - -  the uniform distribution over long- 
range contacts - -  standard results from random graph 
theory can be used to show that  with high probabil- 
ity there exist paths between every pair of nodes whose 
lengths are bounded by a polynomial in log n, exponen- 
tially smaller than the total number of nodes. However, 
there is no way for a decentralized algorithm to find 
these chains: 

T h e o r e m  1 There is a constant C~o, depending on p 
and q but independent of n, so that when r = O, the ex- 
pected delivery time of any decentralized algorithm is at 
least c~on 2/3. (Hence exponential in the expected mini- 
mum path length.) 

As the parameter r increases, a decentralized algo- 
rithm can take more advantage of the "geographic struc- 
ture" implicit in the long-range contacts; at the same 
time, long-range contacts become less useful in moving 
the message a large distance. There is a value of r where 
this trade-off can be best exploited algorithmically; this 
is r = 2, the inverse-square distribution. 

T h e o r e m  2 There is a decentralized algorithm .4 and 
a constant c~2, independent of n, so that when r = 2 and 
p = q = 1, the expected delivery time of .4 is at most  
a2(log n) 2 . 

This pair of theorems reflects a fundamental con- 
sequence of our model. When long-range contacts are 
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Figure 1: (A) A two-dimensional grid network with n = 6, p = 1, and q = 0. (B) The contacts of a node u with 
p = 1 and q = 2. v and w are the two long-range contacts. 

formed independently of the geometry of the grid, short 
chains will exist but the nodes, operating at a local level, 
will not be able to find them. When long-range contacts 
are formed by a process that  is related to the geometry 
of the grid in a specific way, however, then short chains 
will still form and nodes operating with local knowledge 
will be able to construct them. 

We now comment on the ideas underlying the proofs 
of these results; the full details are given in the sub- 
sequent sections. The decentralized algorithm .4 that  
achieves the bound of Theorem 2 is the following simple 
rule: in each step, the current message-holder u chooses 
a contact that  is as close to the target t as possible, 
in the sense of lattice distance. Note that  algorithm A 
makes use of even less information than is allowed by 
our general model: the current message holder does not 
need to know anything about the set of previous mes- 
sage holders. To analyze an execution of algorithm .4, 
we say that  it is in phase j if the lattice distance from the 
current message holder to the target is between 2 j and 
2 j+ l .  We show that  in phase j ,  the expected time be- 
fore the current message holder has a long-range contact 
within lattice distance 2 j of t is bounded proportionally 
to logn; at this point, phase j will come to an end. As 
there are at most 1 + log  n phases, a bound proportional 
to (logn) 2 follows. Interestingly, the analysis matches 
our intuition, and Milgram's description, of how a short 
chain is found in real life: "The geographic movement of 
the [message] from Nebraska to Massachusetts is strik- 
ing. There is a progressive closing in on the target area 
as each new person is added to the chain" [13]. 

The impossibility result of Theorem 1 is based, fun- 
damentally, on the fact that  the uniform distribution 
prevents a decentralized algorithm from using any "clues" 
provided by the geometry of the grid. Roughly, we con- 
sider the set U of all nodes within lattice distance n 2/3 
of t. With high probability, the source s will lie outside 

of U, and if the message is never passed from a node to 
a long-range contact in U, the number of steps needed 
to reach t will be at least proportional to n 2/3. But the 
probability that  any message holder has a long-range 
contact in U is roughly n -2/3, so the expected number 
of steps before a long-range contact in U is found is at 
least proportional to n 2/3 as well. 

More generally, we can show a strong characteriza- 
tion theorem for this family of models: r = 2 is the only 
value for which there is a decentralized algorithm capa- 
ble of producing chains whose length is a polynomial in 

log n: 

T h e o r e m  3 (a) Let 0 < r < 2. There is a constant c~r, 
depending on p, q, r, but independent of n, so that the 
expected delivery time of any decentralized algorithm is 
at least c~rn(2-r )/3. 

(b) Let r > 2. There is a constant c~r, depending 
on p, q, r, but independent of n, so that the expected 
delivery time of any decentralized algorithm is at least 
OLrn(r--2)/(r--1). 

The complete proof of this theorem is given in Sec- 
tion 3. The proof of (a) is analogous to that  of The- 
orem 1. The proof of (b), on the other hand, exposes 
a "dual" obstacle for decentralized algorithms: with a 
large value of r, it takes a significant amount of time 
before the message reaches a node with a long-range 
contact that  is far away in lattice distance. This ef- 
fectively limits the "speed" at which the message can 
travel from s to t. 

Although we have focused on the two-dimensional 
grid, our analysis can be applied more broadly. We can 
generalize our results to k-dimensional lattice networks, 
for constant values of k, as well as less structured graphs 
with analogous scaling properties. In the k-dimensional 
case, a decentralized algorithm can construct paths of 
length polynomial in log n if and only if r = k. 
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Figure 2: The lower bound implied by Theorem 3. The x-axis is the value of r; the y-axis is the resulting exponent 
o n  n.  

The results suggest a fundamental  network property, 
distinct from diameter, tha t  helps to explain the success 
of small-world experiments. One could think of it as the 
"transmiSsion rate" of a class of networks: the minimum 
expected delivery t ime of any decentralized algorithm 
operating in a random network drawn from this class. 
Thus we see tha t  minimizing the transmission rate of 
a network is not necessarily the same as minimizing its 
diameter. This may seem counter-intuitive at first, but 
in fact it formalizes a notion raised initially - -  in ad- 
dition to having short paths, a network should contain 
latent structural cues tha t  can be used to guide a mes- 
sage towards a target. The dependence of long-range 
connections on the geometry of the lattice is providing 
precisely such implicit information. 

Other Related Work. There has been work aimed at 
modeling the way in which individuals in Milgram's  ex- 
periments chose recipients for their letters. Some of this 
work is related in spirit to what  we do here, though us- 
ing very different perspectives and models. Killworth 
and Bernard [10], in their "reverse small-world experi- 
ments," asked a set of respondents to explain how they 
chose to send letters in a run of the small-world ex- 
periment, and used this information to look for com- 
mon principles at an empirical level. At an analyti- 
cal level, White [20] investigated the probabil i ty tha t  
a chain would "die out" through an individual 's fail- 
ure to participate, and Hunter and Shotland [8] studied 
the passage of a chain through different social "cate- 
gories." In the context of a "referral system" for the 
World Wide Web, Kautz,  Selman, and Shah [17] ran 

simulations of communicat ion in an abstract  social net- 
work in which each individual was given pre-defined ac- 
curacy and responsiveness parameters.  The distinction 
between the mere existence of short paths linking points 
on the World Wide Web, and the ability of agents to find 
them, has also been raised recently in work of Albert, 
Jeong, and Barabasi  [2, 9]. 

2 Upper Bound for the Inverse-Square Distribution 

We now present proofs of the theorems discussed in the 
previous section. When we analyze a decentralized al- 
gorithm, we can adopt  the following equivalent formula- 
tion of the model, which will make the exposition easier. 
Although our model considers all long-range contacts 
as being generated initially, at random, we invoke the 
"Principle of Deferred Decisions" - -  a common mech- 
anism for analyzing randomized algorithms [14] - -  and 
assume tha t  the long-range contacts of a node v are gen- 
erated only when the message first reaches v. Since a 
decentralized algorithm does not learn the long-range 
contacts of v until the message reaches v, this formula- 
tion is equivalent for the purposes of analysis. 

A comment  on the notation: logn denotes the loga- 
r i thm base 2, while inn  denotes the natural  logarithm, 
base e. 

Proof  of  Theorem 2. Since p = q = 1, we have a 
network in which each node u is connected to its four 
nearest neighbors in the lattice (two or three neighbors 
in the case of nodes on the boundary) ,  and has a single 
long-range contact v. The probabil i ty tha t  u chooses v 
as its long-range contact is d(u, v ) -2 /~v¢~ d(u, v) -2, 
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and we have 

d(u, v) -2 
v ¢ u  

2n-2 

-< E (4 j ) ( j -2 )  
j = l  

2 n - 2  

= 4 E  j - 1  
j = l  

< 4 + 4 1 n ( 2 n -  2) _< 41n(6n). 

Thus, the probabil i ty tha t  v is chosen is at least 
[4 ln(6n)d(u, v) 2] -1. 

The decentralized algorithm `4 is defined as follows: 
in each step, the current message-holder u chooses a 
contact tha t  is as close to the target  t as possible, in 
the sense of lattice distance. For j > 0, we say tha t  the 
execution of .4 is in phase j when the lattice distance 
from the current node to t is greater than  2J and at most  
2 j+l .  We say .4 is in phase 0 when the lattice distance 
to t is at most 2. Thus, the initial value of j is at 
most log n. Now, because the distance from the message 
to the target  decreases strictly in each step, each node 
that  becomes the message holder has not touched the 
message before; thus, we may assume tha t  the long- 
range contact from the message holder is generated at 
this moment.  

Suppose we are in phase j ,  log(10gn) <_ j < logn, 
and the current message holder is u. W h a t  is the prob- 
ability tha t  phase j will end in this step? This requires 
the message to enter the set Bj of nodes within lattice 
distance 2 j of t. There are at least 

2 j 

l + E i : 122j + 1 2 j  -b l > 22J -1 
i= l  

nodes in Bj, each is within lattice distance 2 j + l  -[- 2 j < 
2 j+2 of u, and hence each has a probabil i ty of at least 
(41n(6n)22J+4) -1 of being the long-range contact of u. 
If any of these nodes is the long-range contact of u, it 
will be u 's  closest neighbor to t; thus the message enters 
Bj with probabil i ty at least 

22J- 1 1 

4 ln(6n)22j+4 128 ln(6n) 

Let Xj  denote total  number  of steps spent in phase 
j ,  log(log n) _< j < log n. We have 

oo 

E X j  = E P r [ X j  > i  l 
i = 1  

< 1 128 ln(6n) 
i = 1  

= 1281n(6n). 

An analogous set of bounds shows tha t  E X j  < 128 ln(6n) 
for j = log n as well. Finally, if 0 < j < log(log n), then 

E X j  < 128 ln(6n) holds for the simple reason tha t  the 
algorithm can spend at most  log n steps in phase j even 
if all nodes pass the message to a local contact. 

Now, if X denotes the total  number of steps spent 
by the algorithm, we have 

l og  n 

x= xj, 
j=O 

and so by linearity of expectat ion we have E X  <_ (1 + 
logn)(1281n(6n)) <_ a2( logn)  2 for a suitable choice of 

Ct 2 . 

3 Lower Bounds for Other Distributions 

We first expand our model of a decentralized algori thm 
slightly; it will correspondingly strengthen the result to 
show a lower bound for this new model. An algorithm 
initially has knowledge of the grid structure, all the local 
contacts, and the locations of s and t. In step i, some 
set Si of nodes has touched the message. At this point, 
the algorithm has knowledge of all long-range contacts 
of all nodes in S~. (Following our style of analysis, the 
long-range contacts of other nodes will be constructed 
only as the message reaches them.) Based on this in- 
formation, it chooses any contact v of any node in Si 
tha t  has not yet received the message - -  v need not be 
a contact of the current message holder - -  and it sends 
the message to v. The set Si+l thus contains one el- 
ement more than  S~, and the algori thm iterates. This 
is the same as our initial model of a decentralized algo- 
r i thm, except tha t  we do not count steps in which the 
algori thm "backtracks" by sending the message through 
a node tha t  has already received it. 

For technical' reasons, we will add one additional fea- 
ture to the algorithms we consider. An algori thm will 
run for an infinite sequence of steps; initially it behaves 
as above, and once the message reaches t, the message 
remains at t in all subsequent steps. Thus, when we 
consider the i th step of a given algorithm, we need not 
worry tha t  it has already terminated by this step. 

We now prove the two parts  of Theorem 3; note 
tha t  par t  (a) implies Theorem 1 by setting r = 0. As 
in Section 2, we will invoke the Principle of Deferred 
Decisions [14] in the analysis. 

Proof of Theorem 3a. We consider an arbi t rary  de- 
centralized algorithm of the type described above, and 
consider the expected number  of steps required for the 
message to travel from s to t, for nodes s and t generated 
uniformly at random from the grid. 

Note tha t  because we have the freedom to choose the 
constant c~r, we may also assume that n is at least as 

large as some fixed absolute constant no. The probabil- 

ity that a node u chooses v as its ith out of q long-range 
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contacts is d(u, v)-r  / ~-~,¢~ d(u, v) -~, and we have 

n/2  

d(u,v)-"  >_ ~-~(j)( j-~) 
v~u  j = l  

n/2  

j = l  

n /2  
Z 1 - r  d x  

J1 

_> ( 2 -  r ) - l ( (n /2 )  2 - r -  1) 

1 > • n 2 - r ,  
- 

where the last line follows if we assume n > 23-~. Let 
= (2 - 

Let U denote the set of nodes within lattice distance 
pn ~ of t. Note tha t  

pn 6 

IU[ _< 1 + ~--~4j _< 4p2n 2~, 
j = l  

where we assume n is large enough tha t  pn ~ > 2. Define 
A = ( (2 - r )27-~qp2)  -1. Let g '  be the event tha t  within 
An ~ steps, the message reaches a node other than  t with 
a long-range contact in U. Let g~ be the event tha t  in 
step i, the message reaches a node other than  t with a 

long-range contact in U; thus g '  = U g~" Now, the 
i<_An ~ 

node reached at step i has q long-range contacts tha t  
are generated at random when it is encountered; so we 
have 

Pr [£~] < q[g[ 
- -  1 . n 2 _ r  

(2-r)2 3-," 

< (2 -- r)23-rq • 4p2n 25 
- -  7 % 2 - - r  

(2 - r)25-rqp2n25 
~2--r 

Since the probability of a union of events is bounded by 
the sum of their probabilities, 

Pr[8 ' ]  _< Z Pr[g;] 
i<An ~ 

< (2 - r)257-~Aqp2n 3~ 
- -  n 2 - r  

1 
= ( 2 - r ) 2 S - r A q p 2  < 4" 

We now define two further events. Let 5 r denote the 
event tha t  the chosen source s and target  t are separated 
by a lattice distance of at least n/4. One can verify tha t  

1 [grA g-7] > ! P r [~ ]  > ~. Since e r  [ ~ V  8']  < g +  ¼, Pr  - 4 "  

Finally, let X denote the random variable equal to 
the number of steps taken for the message to reach t, 
and let £ denote the event tha t  the message reaches t 
within An ~ steps. We claim tha t  if 9 v occurs and 8 '  
does not occur, then g cannot  occur. For suppose it 
does. Since d(s,t) >_ n/4  > pan ~, in any s-t path  of 
at most  An ~ steps, the message must  be passed at least 
once from a node to a long-range contact. Moreover, the 
final t ime this happens, the long-range contact must lie 
in U. This contradicts our assumption tha t  g ' does not 
O c c u r .  

Thus, Pr  [£ I ~" A £--7] = 0, hence E [X [ 5c A £---7] > 
An ~. Since 

1 
E X  >_ E [ X l g r A g  --7] . P r [ S r A g  ---7] >_ ~An , 

par t  (a) of the theorem follows. 

P roof  of  Theorem 3b. We now turn to par t  (b) of 
the theorem, when r > 2. Again we consider an arbi- 
t ra ry  decentralized algorithm; and again, as necessary, 
we may  assume tha t  n is larger than  some fixed absolute 
constant no. We write e = r - 2. Consider a node u, 
and let v be a randomly generated long-range contact of 
v. The normalizing constant for the inverse rth-power 
distribution is at least 1, and so for any m, we have 

2 n - 2  

Pr [d(u,v) > m] <: ~ (4j ) ( j  - r )  
j = r n + l  

2 n - 2  

= 4 Z j l - r  

j = m + l  

£ < X 1-r  dx 

<_ (r - 2) -1m 2-r = ¢ - i m - e .  

We __ e -v - -  1 a n r t  ~ j  __ min  l(e e,1) s e t  We - 7 7 7 , - -  i-47, " . . . . .  sq • 
will assume n has been chosen large enough tha t  n "y > p. 
Let g~ be the event tha t  in step i, the message reaches 
a node u ¢ t tha t  has a long-range contact v satisfying 

d(u,v) > n ~. Let g ' =  U £~ be the event tha t  this 
i<A'n~ 

happens in the first A'n ~ steps. We have 

Pr ig ' ]  _< ~ Pr[£~] 
i<_A'nP 

< A'n z.q¢-In-~ 
1 = A'qe -1 <_ -~. 

As in par t  (a), we define ~" to be the event tha t  
s and t are separated by a lattice distance of at least 
n/4. Observe tha t  Pr [5 r A g-7] _> ¼. Let X denote the 
random variable equal to the number  of steps taken for 
the message to reach t, and let g denote the event tha t  
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the message reaches t within )Cn z steps. We claim that  
if 5 r occurs and g'  does not occur, then g cannot occur. 
For if $~ does not occur, then the message can move a 
lattice distance of at most n 7 in each of its first A'n ~ 
steps. This is a total lattice distance of at most 

)dn ~+'r = )dn < n/4, 

and so the message will not reach t given that  5 r occurs. 
Thus E IX I -> Since 

E X  >_ E [ X  1.7"AC --/] . P r [ ~ A E  -v] >_ ~;~n , 

part (b) of the theorem follows. 

4 Conclusion 

Algorithmic work in different settings has considered 
the problem of routing with local information; see for 
example the problem of designing compact routing ta- 
bles for communication networks [15] and the problem of 
robot navigation in an unknown environment [3]. Our 
results are technically quite different from these; but 
they share the general goal of identifying qualitative 
properties of networks that  makes routing with local in- 
formation tractable, and offering a model for reasoning 
about effective routing schemes in such networks. While 
we have deliberately focused on a very clean model, we 
believe that  a more general conclusion can be drawn for 
small-world networks: that  the correlation between lo- 
cal structure and long-range connections provides fun- 
damental cues for finding paths through the network. 
When this correlation is near a critical threshold, the 
'structure of the long-range connections forms a type of 
"gradient" that  allows individuals to guide a message 
efficiently toward a target. As the correlation drops be- 
low this critical value and the social network becomes 
more homogeneous, these cues begin to disappear; in 
the limit, when long-range connections are generated 
uniformly at random, our model describes a world in 
which short chains exist but individuals, faced with a 
disorienting array of social contacts, are unable to find 
them. 

Acknowledgements. Wethank  Steve Strogatz for many 
valuable discussions on this topic. 
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