226 MESSAGE ROUTING AND SHORTEST PATHS

(a) (b)

FIGURE 4.1: Determining the shortest paths from s to the other entities.

the problem of maintaining the information of the tables up to date, should changes
occur in the system. Finally, we will discuss how to represent routing information in
a compact way, suitable for systems where space is a problem. In the following, and
unless otherwise specified, we will assume the set of restrictions IR: Bidirectional
Links (BL), Connectivity (CN), Total Reliability (TR), and Initial Distinct Values (ID).

4.2 SHORTEST PATH ROUTING

The routing table of an entity contains information on how to reach any possible
destination. In this section we examine how this information can be acquired, and
the table constructed. As we will see, this problem is related to the construction
of particular spanning-trees of the network. In the following, and unless otherwise
specified, we will focus on shortest-path routing.

Different types of routing tables can be defined, depending on the amount of
information contained in them. We will consider for now the full routing table: For
each destination, there is stored a shortest path to reach it; if there are more than one
shortest path, only the lexicographically smallest' will be stored. For example, in the
network of Figure 4.1, the routing table R7(s) for s is shown in Table 4.1.

We will see different approaches to construct routing tables, some depending on
the amount of local storage an entity has available.

4.2.1 Gossiping the Network Maps

A first obvious solution would be to construct at every entity the entire map of the
network with all the costs; then, each entity can locally and directly compute its
shortest-path routing table. This solution obviously requires that the local memory
available to an entity is large enough to store the entire map of the network.

! The lexicographic order will be over the strings of the names of the nodes in the paths.



SHORTEST PATH ROUTING 227

TABLE 4.1: Full Routing Table for Node s

Routing Shortest
Destination Path Cost

h (s, h) 1
k (s, h)(h, k) 4
c (s, c) 10
d (s, c)c, d)

e (s, e)

f (s, e)e, f) 8

The map of the network can be viewed as an n x n array MAP(G), one row and one
column per entity, where for any two entities x and y, the entry MAP[x, y] contains
information on whether link (x, y) exists, and if so on its cost. In a sense, each entity
x knows initially only its own row MAP[x, x]. To know the entire map, every entity
needs to know the initial information of all the other entities.

This is a particular instance of a general problem called input collection or gossip:
every entity has a (possibly different) piece of information; the goal is to reach a final
configuration where every entity has all the pieces of information. The solution of the
gossiping problem using normal messages is simple:

every entity broadcasts its initial information.

Since it relies solely on broadcast, this operation is more efficiently performed in
a tree. Thus, the protocol will be as follows:

Map_Gossip:

1. An arbitrary spanning tree of the network is created, if not already available;
this tree will be used for all communication.

2. Each entity acquires full information about its neighborhood (e.g., names of
the neighbors, cost of the incident links, etc.), if not already available.
3. Each entity broadcasts its neighborhood information along the tree.

At the end of the execution, each entity has a complete map of the network with
all the link costs; it can then locally construct its shortest-path routing table.

The construction of the initial spanning-tree can be done using O(m 4+ nlogn)
messages, for example using protocol MegaMerger. The acquisition of neighborhood
information requires a single exchange of messages between neighbors, requiring in
total just 2m messages. Each entity x then broadcasts on the tree deg(x) items of
information. Hence the total number of messages will be at most

>, deg(x)(n—1) = 2m(n —1).
Thus, we have

M[Map_Gossip] = 2mn + Lo.t. 4.1)



