
CHAPTER 7 

MEASURES AND METRICS 

An introduction to some standard measures and metrics 
for quantifiJing network structure, many oj which were 
introduced first in the study of social networks, although 
they are now in wide use in many other areas 

I F WE KNOW the struchlfe of a network we can calculate from it a variety of 
useful quantities or measures that capture particular features of the net-

work topology. In this chapter we look at some of these measures. Many of the 
most important ideas in this area come from the social sciencesf from the dis-
cipline of social network analysis, which was developed to aid our understand-
ing of social network data such as those described in Chapter 3, and much 
of the language used to describe these ideas reflects their sociological origin. 
Nonetheless, the methods described are now widely used in areas outside the 
social sciences, including computer science, physics, and biology, and form an 
important part of the basic network toolbox.! 

In the chapter following this one we will apply some of the measures de-
veloped here to the analysis of network data from a variety of fields and in the 
process reveal some intriguing features and patterns that will play an impor-
tant role in later developments. 

7.1 DEGREE CENTRALITY 

A large volume of research on networks has been devoted to the concept of 
centrality. This research addresses the question, "Which are the most important 
or central vertices in a network?" There are of course many possible definitions 

1 For those interested in traditional social network analysis, introductions can be found in the 
books by Scott [293] and by Wasserman and Faust [320]. 
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of importance, and correspondingly many centrality measures for networks. 
In this and the following several sections we describe some of the most widely 
used such measures. 

Perhaps the simplest centrality measure in a network is just the degree of a 
vertex, the number of edges connected to it (see Section 6.9). Degree is some-
times called degree centrality in the social networks literature, to emphasize its 
use as a centrality measure. In directed networksf vertices have both an in-
degree and an out-degree, and both may be useful as measures of centrality in 
the appropriate circumstances. 

Although degree centrality is a simple centrality measure, it can be very 
illuminating. In a social network, for instance, it seems reasonable to suppose 
that individuals who have connections to many others might have more influ-
ence, more access to informationf or more prestige than those who have fewer 
connections. A non-social network example is the use of citation counts in 
the evaluation of scientific papers. The number of citations a paper receives 
from other papers, which is simply its in-degree in the citation network, gives 
a crude measure of whether the paper has been influential or not and is widely 
used as a metric for judging the impact of scientific research. 

7.2 EIGENVECTOR CENTRALITY 

A natural extension of the simple degree centrality is eigenvector centrality. We 
can think of degree centrality as awarding one "centrality point" for every net-
work neighbor a vertex has. But not all neighbors are equivalent. In many 
circumstances a vertex's importance in a network is increased by having con-
nections to other vertices that are themselves important. This is the concept be-
hind eigenvector centrality. Instead of awarding vertices just one point for each 
neighbor, eigenvector centrality gives each vertex a score proportional to the 
sum of the scores of its neighbors. Here's how it works. 

Let us make some initial guess about the centrality Xi of each vertex i. For 
instance, we could start off by setting Xi = 1 for all i. Obviously this is not 
a useful measure of centrality, but we can use it to calculate a better one x;, 
which we define to be the sum of the centralities of i's neighbors thus: 

x; = LAijxj, 
; 

(7.1) 

where Ai; is an element of the adjacency matrix. We can also write this ex-
pression in matrix notation as x' = Ax, where x is the vector with elements Xi. 

Repeating this process to make better estimates, we have after t steps a vector 
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of centralities x(t) given by 

x(t) = Atx(O). (7.2) 

Now let us write x(O) as a linear combination of the eigenvectors Vi of the 
adjacency matrix thus: 

x(O) = LCiVi, (7.3) 

for some appropriate choice of constants Ci. Then 

(7.4) 

where the Ki are the eigenvalues of A, and Kj is the largest of them. Since 
Kti Kj < 1 for all i cF 1, all terms in the sum other than the first decay exponen-
tially as t becomes large, and hence in the limit t 00 we get x(t) -+ CjKiVj. 

In other words, the limiting vector of centralities is simply proportional to the 
leading eigenvector of the adjacency matrix. Equivalently we could say that 
the centrality x satisfies 

(7.5) 

This then is the eigenvector centrality, first proposed by Bonacich [49] in 1987. 
As promised the centrality Xi of vertex i is proportional to the sum of the cen-
tralities of i's neighbors: 

Xi = KII L:Aijxjl (7.6) 
j 

which gives the eigenvector centrality the nice property that it can be large 
either because a vertex has many neighbors or because it has important neigh-
bors (or both). An individual in a social network, for instance, can be impor-
tant, by this measure, because he or she knows lots of people (even though 
those people may not be important themselves) or knows a few people in high 
places. 

Note also that the eigenvector centralities of all vertices are non-negative. 
To see this, consider what happens if the initial vector x(O) happens to have 
only non-negative elements. Since all elements of the adjacency matrix are also 
non-negative, multiplication by A can never introduce any negative elements 
to the vector and x(t) in Eq. (7.2) must have all elements non-negative2 

2Technically, there could be more than one eigenvector with eigenvalue Kl t only one of which 
need have all elements non-negative. It turns out, however, that this cannot happen: the adjacency 
matrix has only one eigenvector of eigenvalue Kl. See footnote 2 on page 346 for a proof. 

7.2 EIGENVECTOR CENTRALITY 

Equation (7.5) does not fix the normalization of the eigenvector centrality, 
although typically this doesn't matter because we care only about which ver-
tices have high or low centrality and not about absolute values. If we wish, 
however, we can normalize the centralities by, for instance, requiring that they 
sum to n (which insures that average centrality stays constant as the network 
gets larger). 

In theory eigenvector centrality can be calculated for either un-
directed or directed networks. It works best however for the un- B 
directed case. In the directed case other complications arise. First 
of all, a directed network has an adjacency matrix that is, in gen-
eral, asymmetric (see Section 6.4). This means that it has two sets of 
eigenvectors, the left eigenvectors and the right eigenvectors, and 
hence two leading eigenvectors. So which of the two should we use 
to define the centrality? In most cases the correct answer is to use 
the right eigenvector. The reason is that centrality in directed net-
works is usually bestowed by other vertices pointing towards you, 

A 

rather than by you pointing to others. On the World Wide Web, for 
instance, the number and stature of web pages that point to your 
page can give a reasonable indication of how important or useful 
your page is. On the other hand, the fact that your page might point 
to other important pages is neither here nor there. Anyone can set 
up a page that points to a thousand others, but that does not make 
the page important.' Similar considerations apply also to citation 
networks and other directed networks. Thus the correct definition 

Figure 7.1: A portion of a directed net-
work. Vertex A in this network has 
only outgoing edges and hence will 
have eigenvector centrality zero. Ver-
tex B has outgoing edges and one in-
going edge, but the ingoing one origi-
nates at A, and hence vertex B will also 

of eigenvector centrality for a vertex i in a directed network makes 
it proportional to the centralities of the vertices that point to i thus: 

Xi = K11 LAijxj, 
j 

have centrality zero. 

(7.7) 

which gives Ax = KIX in matrix notation, where x is the right leading eigen-
vector. 

However, there are still problems with eigenvector centrality on directed 
networks. Consider Fig. 7.l. Vertex A in this figure is connected to the rest 
of the network, but has only outgoing edges and no incoming ones. Such a 
vertex will always have centrality zero because there are no terms in the sum 

3This is not entirely true, as we will see in Section 7.5. Web pages that point to many others are 
often directories of one sort or another and can be useful as starting points for web surfing. This is 
a different kind of importance, however, from that highlighted by the eigenvector centrality and a 
different, complementary centrality measure is needed to quantify it. 
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in Eq. (7.7). This might not seem to be a problem: perhaps a vertex that no 
one points to should have centrality zero. But then consider vertex B, which 
has one ingoing edge, but that edge originates at vertex A, and hence B also 
has centrality zero, because the one term in its sum in Eq. (7.7) is zero. Taking 
this argument further, we see that a vertex may be pOinted to by others that 
themselves are pointed to by many more, and so on through many generations, 
but if the progression ends up at a vertex or vertices that have in-degree zero, 
it is all for nothing-the final value of the centrality will still be zero. 

In mathematical terms, only vertices that are in a strongly connected com-
ponent of two or m.ore vertices, or the out-component of such a component, 
can have non-zero eigenvector centrality.4 In many cases, however, it is ap-
propriate for vertices with high in-degree to have high centrality even if they 
are not in a strongly-connected component or its out-component. Web pages 
with many links, for instance, can reasonably be considered important even if 
they are not in a strongly connected component. Recall also that acyclic net-
works, such as citation networks, have no strongly connected components of 
more than one vertex (see Section 6.11.1), so all vertices will have centrality 
zero. Clearly this make the standard eigenvector centrality completely useless 
for acyclic networks. 

A variation on eigenvector centrality that addresses these problems is the 
Katz centrality, which is the subject of the next section. 

7.3 KATZ CENTRALITY 

One solution to the issues of the previous section is the following: we sim-
ply give each vertex a small amount of centrality "for free," regardless of its 
position in the network or the centrality of its neighbors. In other words, we 
define 

(7.8) 

where It and f3 are positive constants. The first term is the normal eigenvector 
centrality term in which the centralities of the vertices linking to i are summed, 
and the second term is the" free" part, the constant extra term that all vertices 
receive. By adding this second term, even vertices with zero in-degree still get 
centrality f3, and once they have a non-zero centrality, then the vertices they 
point to derive some advantage from being pointed to. This means that any 
vertex that is pointed to by many others will have a high centrality, although 

4For the left eigenvector it would be the in-component. 

those that are pointed to by others with high centrality themselves will still do 
better. 

In matrix terms, Eq. (7.8) can be written 

x = aAx + f31, (7.9) 

where 1 is the vector (1, 1, 1 ... ). Rearranging for x, we find that x f3(I-
aA)-l·l. As we have said, we normally don't care about the absolute mag-
nitude of the centrality, only about which vertices have high or low centrality 
values, so the overall multiplier f3 is unimportant. For convenience we usually 
set f3 = 1, giving 

x= (I-itA) 1·1. (7.10) 

This centrality measure was first proposed by Katz in 1953 [169] and we will 
refer to it as the Katz centrality. 

The Katz centrality differs from ordinary eigenvector centrality in the im-
portant respect of having a free parameter It, which governs the balance be-
tween the eigenvector term and the constant term in Eq. (7.8). If we wish to 
make use of the Katz centrality we must first choose a value for this constant. 
In doing so it is important to understand that It cannot be arbitrarily large. If 
we let It --> 0, then only the constant term survives in Eq. (7.8) and all vertices 
have the same centrality f3 (which we have set to 1). As we increase It from 
zero the centralities increase and eventually there comes a point at which they 
diverge. This happens at the point where (I - aA)-l diverges in Eq. (7.10), 
i.e., when det(I - itA) passes through zero. Rewriting this condition as 

(7.11) 

we see that it is simply the characteristic equation whose roots It-I are equal to 
the eigenvalues of the adjacency matrix.' As It increases, the determinant first 
crosses zero when It-1 = KI, the largest eigenvalue of A, or alternatively when 
IX = lIK,. Thus, we should choose a value of It less than this if we wish the 
expression for the centrality to converge.6 

Beyond this, however, there is little guidance to be had as to the value that 
a should take. Most researchers have employed values close to the maximum 
of l1K1, which places the maximum amount of weight on the eigenvector term 

5The eigenvalues being defined by Av = KV, we see that (A KI)v = 0, which has non-zero 
solutions for v only if (A - KI) cannot be inverted, Le., if det(A - KI) = 0, and hence this equation 
gives the eigenvalues K. 

6Pormally one recovers finite values again when one moves past 1/ Kl to higher rt, but in prac-
tice these values are meaningless. The method returns good results only for {t < 1/ Kl. 
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and the smallest amount on the constant term. This returns a centrality that is 
numerically quite close to the ordinary eigenvector centrality, but gives small 
non-zero values to vertices that are not in the strongly connected components 
or their out-components. 

The Katz centrality can be calculated directly from Eq. (7.10) by inverting 
the matrix on the right-hand side, but often this isn't the best way to do it. 
Inverting a matrix on a computer takes an amount of time proportional to n3, 

where n is the number of vertices. This makes direct calculation of the Katz 
centrality prohibitively slow for large networks. Networks of more than a 
thousand vertices or so present serious problems, 

A better approach in many cases is to evaluate the centrality directly from 
Eq. (7.S) (or equivalently, Eq. (7.9». One makes an initial estimate of x-
probably a bad one, such as x = O-and uses that to calculate a better estimate 

x' = "Ax + f31. (7.12) 

Repeating the process many times, x converges to a value close to the correct 
centrality. Since A has m non-zero elements, each iteration requires m multi-
plication operations and the total time for the calculation is proportional to rm, 
where r is the number of iterations necessary for the calculation to converge. 
Unfortunately, r depends on the details of the network and on the choice of ", 
so we cannot give a general guide to how many iterations will be necessary. 
Instead one must watch the values of Xi to observe when they converge to con-
stant values. Nonetheless, for large networks it is almost always worthwhile 
to evaluate the centrality this way rather than by inverting the matrix. 

We have presented the Katz centrality as a solution to the problems en-
countered with ordinary eigenvector centrality in directed networks. How-
ever, there is no reason in principle why one cannot use Katz centrality in un-
directed networks as well, and there are times when this might be useful. The 
idea of adding a constant term to the centrality so that each vertex gets some 
weight just by virtue of existing is a natural one. It allows a vertex that has 
many neighbors to have high centrality regardless of whether those neighbors 
themselves have high centrality, and this could be desirable in some applica-
tions. 

A possible extension of the Katz centrality is to consider cases in which the 
additive constant term in Eq. (7.S) is not the same for all vertices. One could 
define a generalized centrality measure by 

Xi = IX L AijXj + f3if (7.13) 
j 

where f3i is some intrinsicf non-network contribution to the centrality for each 

vertex. For example, in a social network the importance of an individual might 
depend on non-network factors such as their age or income and if we had in-
formation about these factors we could incorporate it into the values of the f3i. 
Then the vector x of centralities is given by 

(7.14) 

where (3 is the vector whose elements are the f3i. One nice feature of this ap-
proach is that the difficult part of the calculation-the inversion of the matrix-
only has to be done once for a given network and choice of ". For difference 
choices of the f3i we need not recalculate the inverse, but simply multiply the 
inverse into different vectors (3. 

7.4 PAGERANK 

The Katz centrality of the previous section has one feature that can be undesir-
able. If a vertex with high Katz centrality points to many others then those 
others also get high centrality. A high-centrality vertex pointing to one mil-
lion others gives all one million of them high centrality. One could argue-and 
many have-that this is not always appropriate. In many cases it means less 
if a vertex is only one among many that are pointed to. The centralIty gamed 
by virtue of receiving an edge from a prestigious vertex is diluted by being 
shared with so many others. For instance, the famous Yahoo! web dlTectory 
might contain a link to my web page, but it also has links to millions of other 
pages. Yahoo! is an important website, and would have high centrality by any 
sensible measure, but should I therefore be considered very important by as-
sociation? Most people would say not: the high centrality of Yahoo! will get 
diluted and its contribution to the centrality of my page should be small be-
cause my page is only one of millions. 

We can allow for this by defining a variation on the Katz centrality in which 
the centrality I derive from my network neighbors is proportional to their cen-
trality divided by their out-degree. Then vertices that point to many others pass 
only a small amount of centrality on to each of those others, even if their own 
centrality is high. 

In mathematical terms this centrality is defined by 

(7.15) 

This gives problems however if there are vertices in the network with out-
degree ki"! = O. If there are any such vertices then the first term in Eq. (7.15) 

7.4 PAGERANK 
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more detail in Section 19.1. 
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is indeterminate-it is equal to zero divided by zero (because Aij = 0 for all i). 
This problem is easily fixed however. It is clear that vertices with no out-going 
edges should contribute zero to the centrality of any other vertex, which we 
can contrive by artificially setting Ie?U' = 1 for all such vertices. (In fact, we 
could set kjut to any non-zero value and the calculation would give the same 
answer.) 

In matrix terms, Eq. (7.15), is then 

(7.16) 

with 1 being again the vector (1,1,1, ... ) and D being the diagonal matrix with 
elements 0ii = max(leiu" 1). Rearranging, we find that x = f3(I - "AD-I) -I ·1, 
and thus, as before, f3 plays the role only of an unimportant overall multiplier 
for the centrality. Conventionally we set f3 = 1, giving 

(7.17) 

This centrality measure is commonly known as PageRank, which is the trade 
name given it by the Google web search corporation, which uses it as a cen-
tral part of their web ranking technology [55]. The aim of the Google web 
search engine is to generate lists of useful web pages from a preassembled 
index of pages in response to text queries. It does this by first searching the 
index for pages matching a given query using relatively simple criteria such 
as text matching, and then ranking the answers according to scores based on 
a combination of ingredients of which PageRank is one. Google returns useful 
answers to queries not because it is better at finding relevant pages, but be-
cause it is better at deciding what order to present its findings in: its perceived 
accuracy arises because the results at the top of the list of answers it returns 
are often highly relevant to the query, but it is possible and indeed likely that 
many irrelevant answers also appear on the list, lower down. 

PageRank works on the Web precisely because having links to your page 
from important pages elsewhere is a good indication that your page may be 
important too. But the added ingredient of dividing by the out-degrees of 
pages insures that pages that simply point to an enormous number of others 
do not pass much centrality on to any of them, so that, for instance, network 
hubs like Yahoo! do not have a disproportionate influence on the rankings. 

As with the Katz centrality, the formula for PageRank, Eq. (7.17), contains 
one free parameter it, whose value must be chosen somehow before the algo-
rithm can be used. By analogy with Eq. (7.11) and the argument that follows 
it, we can see that the value of " should be less than the inverse of the largest 
eigenvalue of AD- 1 For an undirected network this largest eigenvalue turns 

out to be 1 and the corresponding eigenvector is (k
"

k2,k3 , .. . ), where ki is the 
degree of the ith vertex? Thus t1: should be chosen less than 1. For a directed 
network, this result does not follow and in general the leading eigenvalue will 
be different from 1, although in practical cases it is usually still roughly of or-
der 1. 

The Google search engine uses a value of " = 0.85 in its calculations, al-
though it's not clear that there is any rigorous theory behind this choice. More 
likely it is just a shrewd guess based on experimentation to find out what 
works well. 

As with the Katz centrality we can generalize PageRank to the case where 
the additive constant term in Eq. (7.15) is different for different vertices: 

(7.18) 

In matrix form this gives a solution for the centrality vector of 

x = D(D - ItA)-Ij3. (7.19) 

One could, for instance, use this for ranking web pages, giving f3i a value based 
perhaps on textual relevance to a search query. Pages that contained the word 
or words being searched for more often or in more prominent places could 
be given a higher intrinsic centrality than others, thereby pushing them up 
the rankings. The author is not aware, however, of any cases in which this 
technique has been implemented in practice. 

Finally, one can also imagine a version of PageRank that did not have the 
additive constant term in it at all: 

(7.20) 

which is similar to the original eigenvector centrality introduced back in Sec-
tion 7.2, but now with the extra division by lej- For an undirected network, 
however, this measure is trivial: it is easy to see that it gives simply Xi = ki 

7It is easy to confirm that this vector is indeed an eigenvector with eigenvalue 1. That there 
is no eigenvalue larger than 1 is less obvious. It follows from a standard result in linear algebra, 
the Perron-Frobenius theorem, which states that the largest eigenvalue of a matrix such as AD-I 
that has all elements non-negative is unique-there is only one eigenvector with this eigenvalue-
that the eigenvector also has all elements non-negative, and that it is the only eigenvector with all 
elements non-negative. Combining these results, it is clear that the eigenvalue 1 above must be 
the largest eigenvalue of the matrix AD-i. For a discussion of the Perron-Frobenius theorem see 
Ref. [217] and the two fooh10tes on page 346 of this book. 
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divide by 
out-degree 

no division 

with constant term 
x _ D(D - itA) 1·1 

PageRank 
x = (I - itA) 1·1 

Katz centrality 

without constant term 
x - AD' IX 

degree centrality 
- lA x - 1(1 X 

eigenvector centrality 

Table 7.1: Four centrality measures. The four matrix-based centrality measures dis-
cussed in the text are distinguished by whether or not they include an additive constant 
term in their definition and whether they are normalized by dividing by the degrees of 
neighboring vertices. Note that the diagonal matrix D, which normally has elements 
Du = ki , must be defined slightly differently for PageRank, as Dij = max(tki)-see 
Eq. (7.15) and the following discussion. Each of the measures can be applied to directed 
networks as well as undirected ones, although only three of the four are commonly used 
in this way. (The measure that appears in the top right corner of the table is equivalent 
to degree centrality in the undirected case but takes more complicated values in the 
directed case and is not widely used.) 

and therefore is just the same as ordinary degree centrality. For a directed net-
work, on the other hand, it does not reduce to any equivalent simple value 
and it might potentially be of use, although it does not seem to have found 
use in any prominent application. (It does suffer from the same problem as 
the original eigenvector centrality, that it gives non-zero scores only to vertices 
that fall in a strongly connected component of two or more vertices or in the 
out-component of such a component. All other vertices get a zero score.) 

In Table 7.1 we give a summary of the different matrix centrality measures 
we have discussed, organized according to their definitions and properties. If 
you want to use one of these measures in your own calculations and find the 
many alternatives bewildering, eigenvector centrality and PageRank are prob-
ably the two measures to focus on initially. They are the two most commonly 
used measures of this type. The Katz centrality has found widespread use in 
the past but has been favored less in recent work, while the PageRank mea-
sure without the constant term, Eq. (7.20), is the same as degree centrality for 
undirected networks and not in common use for directed ones. 

7.5 HUBS AND AUTHORITIES 

In the case of directed networks, there is another twist to the centrality mea-
sures introduced in this section. So far we have considered measures that 
accord a vertex high centrality if those that point to it have high centrality. 

7.5 

However, in some netvvorks it is appropriate also to accord a vertex high cen-
trality if it points to others with high centrality. For instance, in a citation net-
work a paper such as a review article may cite other articles that are author-
itative sources for information on a particular subject. The review itself may 
contain relatively little information on the subject, but it tells us where to find 
the information, and this on its own makes the review useful. Similarly, there 
are many examples of web pages that consist primarily of links to other pages 
on a given topic or topics and such a page of links could be very useful even if 
it does not itself contain explicit information on the topic in question. 

Thus there are really two types of important node in these networks: au-
thorities are nodes that contain useful information on a topic of interest; hubs 
are nodes that tell us where the best authorities are to be found. An authority 
lnay also be a hub, and vice versa: review articles often contain useful discus-
sions of the topic at hand as well as citations to other discussions. Clearly hubs 
and authorities only exist in directed netvvorks, since in the undirected case 
there is no distinction between pointing to a vertex and being pointed to. 

One can imagine defining two different types of centrality for directed net-
works, the authority centrality and the hub centrality, which quantify vertices' 
prominence in the two roles. This idea was first put forward by Kleinberg [176] 
and developed by him into a centrality algorithm called hyperlink-induced topic 
search or HITS. 

The HITS algorithm gives each vertex i in a network an authority central-
ity X; and a hub centrality y;. The defining characteristic of a vertex with high 
authority centrality is that it is pointed to by many hubs, i.e., by many other 
vertices with high hub centrality. And the defining characteristic of a vertex 
with high hub centrality is that it points to many vertices with high authority 
centrality. 

Thus an important scientific paper (in the authority sense) would be one 
cited in many important reviews (in the hub sense). An important review is 
one that cites many important papers. Reviews, however, are not the only 
publications that can have high hub centrality. Ordinary papers can have high 
hub centrality too if they cite many other important papers, and papers can 
have both high authority and high hub centrality. Reviews too may be cited 
by other hubs and hence have high authority centrality as well as high hub 
centrality. 

In Kleinberg's approach, the authority centrality of a vertex is defined to be 
proportional to the sum of the hub centralities of the vertices that point to it: 

Xi = a LAiiYi, 
j 

(7.21) 

HUBS AND AUTHORITIES 
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where" is a constant. Similarly the hub centrality of a vertex is proportional 
to the sum of the authority centralities of the vertices it points to: 

Yi = fl L, Ajixj, (7.22) 
j 

with fl another constant. Notice that the indices on the matrix element Aji are 
swapped around in this second equation: it is the vertices that i points to that 
define its hub centrality. 

In matrix terms these equations can be written as 

x = "Ay, y=flATX, (7.23) 

Of, combining the two, 

AATX = Ax, ATAy=Ay, (7.24) 

where A = ("fl)-1 Thus the authority and hub centralities are respectively 
given by eigenvectors of AA T and AT A with the same eigenvalue. By an ar-
gument similar to the one we used for the standard eigenvector centrality in 
Section 7.1 we can show that we should in each case take the eigenvector cor-
responding to the leading eigenvalue. 

A crucial condition for this approach to work, is that AAT and AT A have 
the same leading eigenvalue A, otherwise we cannot satisfy both conditions in 
Eq. (7.24). It is easily proved, however, that this is the case, and in fact that all 
eigenvalues are the same for the two matrices. If AAT x = Ax then multiplying 
both sides by AT gives 

AT A(AT x) = A(AT x), (7.25) 

and hence AT x is an eigenvector of AT A with the same eigenvalue A. Compar-
ing with Eq. (7.24) this means that 

y = AT x, (7.26) 

which gives us a fast way of calculating the hub centralities once we have 
the authority ones-there is no need to solve both the eigenvalue equations 
in Eq. (7.24) separately. 

Note that AAT is precisely the cocitation matrix defined in Section 6.4.1 
(Eq. (6.8)) and the authority centrality is thus, roughly speaking, the eigen-
vector centrality for the cocitation network.' Similarly AT A is the bibliographic 

8This statement is only approximately correct since, as discussed in Section 6.4.1, the cocitation 
matrix is not precisely equal to the adjacency matrix of the cocitation network, having non-zero 
elements along its diagonal where the adjacency matrix has none. 

7.6 

coupling matrix, Eq. (6.11), and hub centrality is the eigenvector centrality for 
the bibliographic coupling network. 

A nice feature of the hub and authority centralities is that they circum-
vent the problems that ordinary eigenvector centrality has with directed net-
works, that vertices outside of strongly connected components or their out-
components always have centrality zero. In the hubs and authorities approach 
vertices not cited by any others have authority centrality zero (which is reason-
able), but they can still have non-zero hub centrality. And the vertices that they 
cite can then have non-zero authority centrality by virtue of being cited. This 
is perhaps a more elegant solution to the problems of eigenvector centrality 
in directed networks than the more ad hoc method of introducing an additive 
constant term as we did in Eq. (7.8). We can still introduce such a constant 
term into the HITS algorithm if we wish, or employ any of the other variations 
considered in previous sections, such as normalizing vertex centralities by the 
degrees of the vertices that point to them. Some variations along these lines 
are explored in Refs. [52,256], but we leave the pursuit of such details to the 
enthusiastic reader. 

The HITS algorithm is an elegant construction that should in theory pro-
vide more information about vertex centrality than the simpler measures of 
previous sections, but in practice it has not yet found much application. It is 
used as the basis for the web search engines Teamo and Ask.cam, and will per-
haps in future find further use, particularly in citation networks, where it holds 
clear advantages over other eigenvector measures. 

7.6 CLOSENESS CENTRALITY 

An entirely different measure of centrality is provided by the closeness central-
ity, which measures the mean distance from a vertex to other vertices. In Sec-
tion 6.10.1 we encountered the concept of the geodesic path, the shortest path 
through a network between two vertices. Suppose d ij is the length of a geodesic 
path from i to j, meaning the number of edges along the path9 Then the mean 
geodesic distance from i to j, averaged over all vertices j in the network, is 

(7.27) 

9Recall that geodesic paths need not be unique-vertices can be joined by several shortest 
paths of the same length. The length dij however is always well defined, being the length of any 
one of these paths. 
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This quantity takes low values for vertices that are separated from others by 
only a short geodesic distance on average. Such vertices might have better ac-
cess to information at other vertices or more direct influence on other vertices. 
In a social network, for instance, a person with lower mean distance to others 
might find that their opinions reach others in the community more quickly 
than the opinions of someone with higher mean distance. 

In calculating the average distance some authors exclude from the sum 
in (7.27) the term for j = i, so that 

1 
Ei = --1 L: dii, 

n - ili'i) 
(7.28) 

which is a reasonable strategy, since a vertex's influence on itself is usually not 
relevant to the working of the network. On the other hand, the distance dii 
from i to itself is zero by definition, so this term in fact contributes nothing to 
the sum. The only difference the change makes to £i is in the leading divisor, 
which becomes I/(n -1) instead of lin, meaning that £i changes by a factor 
of n I (n - 1). Since this factor is independent of i and since, as we have said, 
we usually care only about the relative centralities of different vertices and not 
about their absolute values, we can in most cases ignore the difference between 
Eqs. (7.27) and (7.28). In this book we use (7.27) because it tends to give slightly 
more elegant analytic results. 

The mean distance £i is not a centrality measure in the same sense as the 
others in this chapter, since it gives low values for more central vertices and 
high values for less central ones, which is the opposite of our other measures. 
In the social networks literature, therefore, researchers commonly calculate the 
inverse of £i rather than Ei itself. This inverse is called the closeness centrality C;: 

(7.29) 

Closeness centrality is a very natural measure of centrality and is often used 
in social and other network studies. But it has some problems. One issue 
is that its values tend to span a rather small dynamic range from largest to 
smallest. As discussed in Sections 3.6, 8.2, and 12.7, geodesic distances di] be-
tween vertices in most networks tend to be small, the typical distance increas-
ing only logarithmically with the size of the entire network. This means that 
the ratio between the smallest distance, which is 1, and the largest, which is of 
order log n, is itself only of order log n, which is small. But the smallest and 
largest distances provide lower and upper bounds on the average distance Ei, 
and hence the range of values of Ei and similarly of Ci is also small. In a typical 
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network the values of Ci might span a factor of five or less. What this means 
in practice is that it is difficult to distinguish between central and less central 
vertices using this measure: the values tend to be cramped together with the 
differences between adjacent values showing up only when you examine the 
trailing digits. This means that even small fluctuations in the structure of the 
network can change the order of the values substantially. 

For example, it has become popular in recent years to rank film actors ac-
cording to their closeness centrality in the network of who has appeared in 
films with who else [323]. Using data from the Internet Movie Database,10 we 
find that in the largest component of the network, which includes more than 
98% of all actors, the smallest closeness centrality of any actor is 2.4138 for 
the actor Christopher Lee,ll while the largest is 8.6681 for an Iranian actress 
named Leia Zanganeh. The ratio of the two is just 3.6 and about half a million 
other actors lie in between. As we can immediately see, the values must be 
very closely spaced. The second best centrality score belongs to actor Donald 
Pleasence, who scores 2.4164, just a tenth of a percent less than winner Lee. 
Because of the close spacing of values, the leaders under this dubious measure 
of superiority change frequently as the small details of the film network shift 
when new films are made or old ones added to the database. In an analysis 
using an earlier version of the database, Watts and Strogatz [323] proclaimed 
Rod Steiger to be the actor with the lowest closeness centrality. Steiger falls in 
sixth place in our analysis and it is entirely possible that the rankings will have 
changed again by the time you read this. Other centrality measures, including 
degree centrality and eigenvector centrality. typically don't suffer from this 
problem because they have a wider dynamic range and the centrality values, 
particular those of the leaders, tend to be widely separated. 

The closeness centrality has another problem too. If, as discussed in Sec-
tion 6.10.1, we define the geodesic distance between two vertices to be infinite 
if the vertices fall in different components of the network, then Ei is infinite 
for all i in any network with more than one component and Ci is zero. There 
are two strategies for getting around this. The most common one is simply 
to average over only those vertices in the same component as i. Then n in 
Eq. (7.29) becomes the number of vertices in the component and the sum is 
over only that component. This gives us a finite measure, but one that has its 
own problems. In particular, distances tend to be smaller between vertices in 
small components, so that vertices in such components get lower values of fi 

lOwww.imdb.com 

11 Perhaps most famous for his role as the evil wizard Saruman in the film version of The Lord 
of the Rings. 
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and higher closeness centrality than their counterparts in larger components. 
This is usually undesirable: in most cases vertices in small components are 
considered less well connected than those in larger ones and should therefore 
be given lower centrality. 

Perhaps a better solution, therefore, is to redefine closeness in terms of the 
harmonic mean distance between vertices, i.e., the average of the inverse dis-
tances: 

c;= _1_ L 
n - 1 j("i) d'i 

(7.30) 

(Notice that we are obliged in this case to exclude from the sum the term for 
j = i, since dii = 0 which would make this term infinite. This means that the 
sum has only n - 1 terms in it, hence the leading factor of 1/ (n - 1 ).) 

This definition has a couple of nice properties. First, if dij = 00 because i and 
j are in different components, then the corresponding term in the sum is sim-
ply zero and drops out. Second, the measure naturally gives more weight to 
vertices that are close to i than to those far away. Intuitively we might imagine 
that the distance to close vertices is what matters in most practical situations-
once a vertex is far away in a network it matters less exactly how far away it 
is, and Eq. (7.30) reflects this, having contributions close to zero from all such 
vertices. 

Despite its desirable qualities, however, Eq. (7.30) is rarely used in practice. 
We have seen it employed only occasionally. 

An interesting property of entire networks, which is related to the closeness 
centrality, is the mean geodesic distance between vertices. In Section 8.2 we 
will use measurements of mean distance in networks to study the so-called 
"small-world effect." 

For a network with only one component, the mean distance between pairs 
of vertices, conventionally denoted just £ (now without the subscript), is 

1 1 e = --, Ldi) = - Lei. 
n ij n i 

(7.31) 

In other words f is just the mean of fi over all vertices. 
For a network with more than one component we run into the same prob-

lems as before, that dil is infinite when i and j are in different components 
and hence £ is also infinite. The most common way around this problem is to 
average only over paths that run between vertices in the same component. Let 
{'Ii,,,} be the set of components of a network, with m = 1,2 ... Then we define 

e _ L", LijE'6;" d ij 
- Lmntrl ' (7.32) 
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where nm is the number of vertices in component This measure is now 
finite for all networks, although it is not now equal to a simple average over 
the values of ei for each vertex. 

An alternative and perhaps better approach would be to use the trick from 
Eq. (7.30) and define a harmonic mean distance £' according to 

or equivalently 

1 
e' 

, n e = ,".C" w, , 

(7.33) 

(7.34) 

where C; is the harmonic mean closeness of Eq. (7.30). (Note that, as in (7.30), 
we exclude from the first sum in (7.33) the terms for i = j, which would be 
infinite since dii = 0.) 

Equation (7.34) automatically removes any contributions from vertex pairs 
for which dij = 00. Despite its elegance, however, Eq. (7.34), like Eq. (7.30), is 
hardly ever used. 

7.7 BETWEENNESS CENTRALITY 

A very different concept of centrality is betweenness centrality, which measures 
the extent to which a vertex lies on paths between other vertices. The idea of 
betweenness is usually attributed to Freeman [128] in 1977, although as Free-
man himself has pointed out [129], it was independently proposed some years 
earlier by Anthonisse [19] in an unpublished technical report. 

Suppose we have a network with something flowing around it from vertex 
to vertex along the edges. For instance, in a social network we might have mes-
sages, news, information, or rumors being passed from one person to another. 
In the Internet we have data packets moving around. Let us initially make 
the simple assumption that every pair of vertices in the network exchanges a 
message with equal probability per unit time (more precisely every pair that 
is actually connected by a path) and that messages always take the shortest 
(geodesic) path though the network, or one such path, chosen at random, if 
there are several. Then let us ask the following question: if we wait a suitably 
long time until many messages have passed between each pair of vertices, how 
many messages, on average, will have passed through each vertex en route to 
their destination? The answer is that, since messages are passing down each 
geodesic path at the same rate, the number passing through each vertex is 
simply proportional to the number of geodesic paths the vertex lies on. This 
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number of geodesic paths is what we call the betweenness centrality, or just 
betweenness for short. 

Vertices with high betweenness centrality may have considerable influence 
within a network by virtue of their control over information passing between 
others. The vertices with highest betweenness in our message-passing scenario 
are the ones through which the largest number of messages pass, and if those 
vertices get to see the messages in question as they pass, or if they get paid 
for passing the messages along, they could derive a lot of power from their 
position within the network. The vertices with highest betweenness are also 
the ones whose removal from the network will most disrupt communications 
between other vertices because they lie on the largest number of paths taken 
by messages. In real-world situations, of course, not all vertices exchange com-
munications with the same frequency, and in most cases communications do 
not always take the shortest path. Nonetheless, betweenness centrality may 
still be an approximate guide to the influence vertices have over the flow of 
information between others. 

Having seen the basic idea of betweenness centrality, let us make things 
more precise. For the sake of simplicity, suppose for the moment that we have 
an undirected network in which there is at most one geodesic path between 
any pair of vertices. (There may be zero paths if the vertices in question are 
in different components.) Consider the set of all geodesic paths in such a net-
work. Then the betweenness centrality of a vertex i is defined to be the number 
of those paths that pass through i. 

Mathematically, let n;, be 1 if vertex i lies on the geodesic path from s to t 
and 0 if it does not or if there is no such path (because s and t lie in different 
components of the network). Then the betweenness centrality Xi is given by 

(7.35) 

Note that this definition counts separately the geodesic paths in either direc-
tion between each vertex pair. Since these paths are the same on an undirected 
network this effectively counts each path twice. One could compensate for this 
by dividing Xi by 2, and often this is done, but we prefer the definition given 
here for a couple of reasons. First, it makes little difference in practice whether 
one divides the centrality by 2, since one is usually concerned only with the rel-
ative magnitudes of the centralities and not with their absolute values. Second, 
as discussed below, Eq. (7.35) has the advantage that it can be applied unmod-
ified to directed networks, in which the paths in either direction between a 
vertex pair can differ. 

Note also that Eq. (7.35) includes paths from each vertex to itself. Some 
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people prefer to exclude such paths from the definition, so that Xi = L", n;" 
but again the difference is typically not important. Each vertex lies on one 
path from itself to itself, so the inclusion of these terms simply increases the 
betweenness by 1, but does not change the rankings of the vertices-which 
ones have higher or lower betweenness-relative to one another. 

There is also a choice to be made about whether the path from s to t should 
be considered to pass through the vertices sand t themselves. In the social net-
works literature it is usually assumed that it does not. We prefer the definition 
where it does: it seems reasonable to define a vertex to be on a path between 
itself and someone else, since normally a vertex has control over information 
flowing from itself to other vertices or vice versa. If, however, we exclude the 
endpoints of the path as sociologists commonly do, the only effect is to reduce 
the number of paths through each vertex by twice the size of the component 
to which the vertex belongs. Thus the betweennesses of all vertices within a 
single component are just reduced by an additive constant and the ranking of 
vertices within the component is again unchanged. (The rankings of vertices 
in different components can change relative to one another, but this is rarely an 
issue because betweenness centrality is not typically used to compare vertices 
in different components, since such vertices are not competing for influence in 
the same arena.) 

These developments are all for the case in which there is at most one geo-
desic path between each vertex pair. More generally, however, there may be 
more than one. The standard extension of betweenness to this case gives each 
path a weight equal to the inverse of the number of paths. For instance, if 
there are two geodesic paths between a given pair of vertices, each of them 
gets weight!. Then the betweenness of a vertex is defined to be the sum of the 
weights of all geodesic paths passing through that vertex. 

Note that the geodesic paths between a pair of vertices need not be vertex-
independent, meaning they may pass through some of the same vertices (see 
figure). If two or more paths pass through the same vertex then the between-
ness sum includes contributions from each of them. Thus if there are, say, three 
geodesic paths between a given pair of vertices and two of them pass through 
a particular vertex, then they contribute to that vertex's betweenness. 

Formally, we can express the betweenness for a general network by redefin-
ing n;, to be the number of geodesic paths from s to t that pass through i. And 
we define g;, to be the total number of geodesic paths from s to t. Then the 
betweenness centrality of vertex i is 

(7.36) 

.. } .........•••.. 
... / 

A / 
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Vertices A and B are con-
nected by two geodesic 
paths. Vertex C lies on both 
paths. 
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where we adopt the convention that gst = 0 if both andgst are zero. This 
definition is equivalent to our message-passing thought experiment above, in 
which messages pass between all pairs of vertices in a network at the same 
average rate, traveling along shortest paths, and in the case of several shortest 
paths between a given pair of vertices they choose at random between those 
several paths. Then X; is proportional to the average rate at which traffic passes 
though vertex i. 

Betweenness centrality can be applied to directed networks as well. In a 
directed network the shortest path between two vertices depends, in general, 
on the direction you travel in. The shortest path from A to B is different from 
the shortest path from B to A. Indeed there may be a path in one direction and 
no path at all in the other. Thus it is important in a directed network explicitly 
to include the path counts in either direction between each vertex pair. The 
definition in Eq. (7.36) already does this and so, as mentioned above, we can 
use the same definition without modification for the directed case. This is one 
reason why we prefer this definition to other slight variants that are sometimes 
used. 

Although the generalization of betweenness to directed networks is straight-
forward, however, it is rarely if ever used, so we won't discuss it further here, 
concentrating instead on the much more common undirected case. 

Betweenness centrality differs from the other centrality 
measures we have considered in being not principally a mea-
sure of how well-connected a vertex is. Instead it measures 
how much a vertex falls "between" others. Indeed a vertex 
can have quite low degree, be connected to others that have 
low degree, even be a long way from others on average, and 
still have high betweenness. Consider the situation depicted 

Figure 7.2: A low-degree vertex with high be-
tweenness. In this sketch of a network, ver-

in Fig. 7.2. Vertex A lies on a bridge between two groups 
within a network. Since any shortest path (or indeed any 
path whatsoever) between a vertex in one group and a ver-
tex in the other must pass along this bridge, A acquires very 
high betweenness, even though it is itself on the periphery of 
both groups and in other respects may be not well connected: 
probably A would not have particularly impressive values for 

tex A lies on a bridge joining two groups of 
other vertices. An paths between the groups 
must pass through A, so it has a high between-
ness even though its degree is low. 
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eigenvector or closeness centrality, and its degree centrality is 
only 2, but nonetheless it might have a lot of influence in the network as a re-
sult of its control over the flow of information between others. Vertices in roles 

7.7 BETWEENNESS CENTRALITY 

like this are sometimes referred to in the sociological literature as brokers. 12 

Betweenness centrality also has another interesting property: its values are 
typically distributed over a wide range. The maximum possible value for the 
betweenness of a vertex occurs when the vertex lies on the shortest path be-
tween every other pair of vertices. This occurs for the central vertex in a star 
graph, a network composed of a vertex attached to n - lathers by single edges. 
In this situation the central vertex lies on all n2 shortest paths between vertex 
pairs except for the 11 - 1 paths from the peripheral vertices to themselves. 
Thus the betweenness centrality of the central vertex is n2 - n + 1. At the 
other end of the scale, the smallest possible value of betweenness in a network 
with a single component is 2n - 1, since at a minimum each vertex lies on ev-
ery path that starts or ends with itself. (There are n - 1 paths from a vertex to 
others, n - 1 paths from others to the vertex, and one path from the vertex to 
itself, for a total of 2(n -1) + 1 = 2n -1.) This situation occurs, for instance, 
when a network has a "leaf" attached to it, a vertex connected to the rest of the 
network by just a single edge. 

Thus the ratio of largest and smallest possible betweenness values is 

n2 - n + 1 1 
-- r.., -n 2n -1 - 2 ' 

(7.37) 

where the equality becomes exact in the limit of large n. Thus in theory there 
could be a factor of almost 11 between the largest and smallest betweenness 
centralities, which could become very large for large networks. In real net-
works the range is usually considerably smaller than this, but is nonetheless 
large and typically increasing with increasing n. 

Taking again the example of the network of film actors from the previous 
section, the individual with the highest betweenness centrality in the largest 
component of the actor network is the great Spanish actor Fernando Rey, most 
famous in the English-speaking world for his 1971 starring role next to Gene 
Hackman in The French Connection13 Rey has a betweenness score of 7.47 x 108, 

12Much of sociological literature concerns power or "social capital." It may seem ruthless to 
think of individuals exploiting their control over other people's information to gain the upper 
hand on them, but it may also be realistic. At least in situations where there is a significant pay-off 
to having such an upper hand (like business relationships, for example), it is reasonable to suppose 
that notions of power derived from network structure really do play into people's manipulations 
of the world around them. 

uIt is perhaps no coincidence that the highest betweenness belongs to an actor who appeared 
in both European and American films, played roles in several different languages, and worked 
extensively in both film and television, as well as on stage. Rey was the archetypal "broker," with 
a career that made him a central figure in several different arms of the entertainment business that 
otherwise overlap relatively little. 

A star graph. 
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while the lowest score of any actor!4 in the large component is just 8.91 x lOS. 
Thus there is a ratio of almost a thousand between the two limits-a much 
larger dynamic range than the ratio of 3.6 we saw in the case of closeness cen-
trality. One consequence of this is that there are very clear winners and losers 
in the betweenness centrality competition. The second highest betweenness 
in the actor network is that of Christopher Lee (again), with 6.46 x 108, a 14% 
percent difference from winner Fernando Rey. Although betweenness values 
may shift a little as new movies are made and new actors added to the net-
work, the changes are typically small compared with these large gaps between 
the leaders, so that the ordering at the top of the list changes relatively infre-
quently, giving betweenness centrality results a robustness not shared by those 
for closeness centrality. 

The values of betweenness calculated here are raw path counts, but it is 
sometimes convenient to normalize betweenness in some way. Several of the 
standard computer programs for network analysis, such as Pajek and UCINET, 
perform such normalizations. One natural choice is to normalize the path 
count by dividing by the total number of (ordered) vertex pairs, which is n2 , so 
that betweenness becomes the fraction (rather than the number) of paths that 
run through a given vertex: 15 

X . = 
1 2W . 

n sl gst 
(7.38) 

With this definition, the values of the betweenness lie strictly between zero and 
one. 

Some other variations on the betweenness centrality idea are worth men-
tioning. Betweenness gets at an important idea in network analysis, that of 
the flow of information or other traffic and of the influence vertices might 
have over that flow. However, betweenness as defined by Freeman is based 
on counting only the shortest paths between vertex pairs, effectively assuming 
that all or at least most traffic passes along those shortest paths. In reality traf-

14This score is shared by many actors. It is the minimum possible score of 2n - 1 as described 
above. 

15 Another possibility, proposed by Freeman [128] in his original paper on betweenness, is to 
divide by the maximum possible value that betweenness can take on any network of size n, which, 
as mentioned above, occurs for the central vertex in a star graph. The resulting expression for 
between is then 

._ 1 
- 2 n n + 1 ,/ gsl 

We, however, prefer Eq. (7.38), which we find easier to interpret, although the difference between 
the two becomes small anyway in the limit of large n. 
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fie flows along paths other than the shortest in many networks. Most of us, for 
instance, will have had the experience of hearing news about one of our friends 
not from that friend directly but from another mutual acquaintance-the mes-
sage has passed along a path of length two via the mutual acquaintance, rather 
than along the direct (geodesic) path of length one. 

A version of betweenness centrality that makes some allowance for effects 
like this is the flow betweenness, which was proposed by Freeman et al. [130] 
and is based on the idea of maximum flow. Imagine each edge in a network 
as a pipe that can carry a unit flow of some fluid. We can ask what the maxi-
Inurn possible flow then is between a given source vertex s and target vertex t 
through these pipes. In general the answer is that more than a single unit of 
flow can be carried between source and target by making simultaneous use of 
several different paths through the network. The flow betweenness of a ver-
tex i is defined according to Eq. (7.35), but with being now the amount of 
flow through vertex i when the maximum flow is transmitted from s to t. 

As we saw in Section 6.12, the maximum flow between vertices sand t 
is also equal to the number of edge-independent paths between them. Thus 
another way equivalent to look at the flow betweenness would be to consider 
";, to be the number of independent paths between sand t that run through 
vertex i. 

A slight problem arises because the independent paths between 
a given pair of vertices are not necessarily unique. For instance, 
the network shown in Fig. 7.3 has two edge-independent paths be-
tween sand t but we have two choices about what those paths are, 
either the paths denoted by the solid arrows, or those denoted by 
the dashed ones. Furthermore, our result for the flow betweenness 
will depend on which choice we make; the vertices labeled A and B 
fall on one set of paths but not the other. To get around this problem, 
Freeman et al. define the flow through a vertex for their purposes to 

See Section 6.12 for a dis-
cussion of maximum flow 
in networks. 

be the maximum possible flow over all possible choices of paths, or 
equivalently the maximum number of independent paths. Thus in 
the network of Fig. 7.3, the contribution of the flow between sand t 
to the betweenness of vertex A would be 1, since this is the maxi-
mum value it takes over all possible choices of flow paths. 

In terms of our information analogy, one can think of flow be-
tweenness as measuring the betweenness of vertices in a network in 
which a maximal amount of information is continuously pumped 

Figure 7.3: Edge-independent paths in 
a small network. The vertices 5 and t 
in this network have two independent 
paths between them, but there are two 
distinct ways of choosing those paths, 
represented by the solid and dashed 
curves. 

between all sources and targets. Flow betweenness takes account of more than 
just the geodesic paths between vertices, since flow can go along non-geodesic 
paths as well as geodesic ones. (For example, the paths through vertices A 
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and B in the example above are not geodesic.) Indeed, in some cases none of the 
paths that appear in the solution of the maximum flow problem are geodesic 
paths, so geodesic paths may not be counted at all by this measure. 

But this point highlights a problem with flow betweenness: although it 
typically counts more paths than the standard shortest-path betweenness, flow 
betweenness still only counts a subset of possible paths, and some important 
ones (such as geodesic paths) may be missed out altogether. One way to look at 
the issue is that both shortest-path betweenness and flow betweenness assume 
flows that are optimal in some sense-passing only along shortest paths in the 
first case and maximizing total flow in the second. Just as there is no reason to 
suppose that information or other traffic always takes the shortest path, there 
is no reason in general to suppose it should act to maximize flow (although of 
course there may be special cases in which it does). 

A betweenness variant that does count all paths is the random-walk between-
ness [243]. In this variant traffic between vertices sand t is thought of as per-
forming an (absorbing) random walk that starts at vertex s and continues un-
til it reaches vertex t. The betweenness is defined according to Xi = Lsi 
but with ";, now being the number of times that the random walk from s to t 
passes through i on its journey, averaged over many repetitions of the walk. 

Note that in this case i- in general, even on an undirected network. 
For instance, consider this portion of a network: 

A 

s t 

A random walk from s to t may pass through vertex A before returning to sand 
stepping thence to t, but a walk from t to s will never pass through A because 
its first step away from t will always take it to s and then the walk will finish. 

Since every possible path from 5 to t occurs in a random walk with some 
probability (albeit a very small one) the random-walk betweenness includes 
contributions from all paths16 Note, however, that different paths appear in 
general with different probabilities, so paths do not contribute equally to the 

16 All paths, that is, that terminate at the target vertex t the first time they reach it. Since we use 
an absorbing random walk, paths that visit the target, move away again, and then return are not 
included in the random-walk betweenness. 
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betweenness scores, longer paths typically making smaller contributions than 
shorter ones, a bias that is plausible in some but by no means all cases. 

Random walk betweenness would be an appropriate betweenness measure 
for traffic that traverses a network with no idea of where it is going-it sim-
ply wanders around at random until it reaches its destination. Shortest-path 
betweenness is the exact opposite. It is the appropriate measure for informa-
tion that knows exactly where it is going and takes the most direct path to get 
there. It seems likely that most real-world situations fall somewhere in be-
tween these two extremes. However, it is found in practice [243] that the two 
n1easures often give quite similar results, in which case one can with reason-
able justification assume that the "correct" answer, the one lying between the 
limits set by the shortest-path and random-walk measures, is similar to both. 
In cases where the two differ by a considerable margin, however, we should 
be wary of attributing too much authority to either measure-there is no guar-
antee that either is telling us a great deal about true information flow in the 
network. 

Other generalizations of betweenness are also possible, based on other mod-
els of diffusion, transmission, or flow along network edges. We refer the inter-
ested reader to the article by Borgatti [51], which draws together many of the 
possibilities into a broad general framework for betweenness measures. 

7.8 GROUPS OF VERTICES 

Many networks, including social and other networks, divide naturally into 
groups or communities. Networks of people divide into groups of friends, 
coworkers, or business partners; the World Wide Web divides into groups of 
related web pages; biochemical networks divide into functional modules, and 
so forth. The definition and analysis of groups within networks is a large and 
fruitful area of network theory. In Chapter 11 we discuss some of the sophisti-
cated computer methods that have been developed for detecting groups, such 
as hierarchical clustering and spectral partitioning. In this section we discuss 
some simpler concepts of network groups which can be useful for probing and 
describing the local structure of networks. The primary constructs we look at 
are cliques, plexes, cores, and cOlnponents. 

7.S.1 CLIQUES, PLEXES, AND CORES 

A clique is a maximal subset of the vertices in an undirected netvvork such that 
every member of the set is connected by an edge to every other. The word 
"maximal" here means that there is no other vertex in the network that can 
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be added to the subset while preserving the property that every vertex is con-
nected to every other. Thus a set of four vertices in a netvvork would be a clique 
if (and only if) each of the four is directly connected by edges to the other three 
and if there is no other vertex anywhere in the network that could be added to 
make a group of five vertices all connected to each other. Note that cliques can 
overlap, meaning that they can share one or more of the same vertices. 

The occurrence of a clique in an otherwise sparse network is normally an 
indication of a highly cohesive subgroup. In a social network, for instance, one 
might encounter a set of individuals each of whom was acquainted with each 
of the others, and such a clique would probably indicate that the individuals 
in question are closely connected-a set of coworkers in an office for example 
or a group of classmates in a school. 

However, it's also the case that many circles of friends form only near-
cliques, rather than perfect cliques. There may be some members of the group 
who are unacquainted, even if most members know one another. The require-
ment that every possible edge be present within a clique is a very stringent 
one, and it seems natural to consider how we might relax this requirement. 
One construct that does this is the Ie-plex. A Ie-plex of size n is a maximal subset 
of n vertices within a network such that each vertex is connected to at least 
n - k of the others. If k = 1, we recover the definition of an ordinary clique-a 
1-plex is the same as a clique. If k = 2, then each vertex must be connected 
to all or all-but-one of the others. And so forth17 Like cliques, k-plexes can 
overlap one another; a single vertex can belong to more than one Ie-plex. 

The k-plex is a useful concept for discovering groups within networks: in 
real life many groups in social and other networks form k-plexes. There is 
no solid rule about what value k should take. Experimentation starting from 
small values is the usual way to proceed. Smaller values of k tend to be mean-
ingful for smaller groups, whereas in large groups the smaller values impose 
too stringent a constraint but larger values often give useful results. This sug-
gests another possible generalization of the clique idea: one could specify that 
each member be connected to a certain fraction of the others, say 75% or 50%. 
(As far as we know, this variant doesn't have a name and it is not in wide use, 
but perhaps it should be.) 

Many other variations on the clique idea have been proposed in the litera-
ture. For instance Flake et al. [122] proposed a definition of a group as a subset 

17This definition is slightly awkward to remember, since the members of a k-plex are allowed 
to be unconnected to k 1 other members and not k. It would perhaps have been more sensible to 
define k such that a O-plex was equivalent to a normal clique, but for better or worse we are stuck 
with the definition we have. 
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of vertices such that each has at least as many connections to vertices inside the 
group as to vertices outside. Radicchi et al. [276] proposed a weaker definition 
of a group as a subset of vertices such that the total number of connections of 
all vertices in the group to others in the group is greater than the total number 
of connections to vertices outside.18 

Another concept closely related to the Ie-plex is the lc-core. A Ie-core is a 
Inaximal subset of vertices such that each is connected to at least k others in 
the subset19 It should be obvious (or you can easily prove it for yourself) that 
a Ie-core of n vertices is also an (n - k)-plex. However, the set of all k-cores 
for a given value of k is not the same as the set of all Ie-plexes for any value 
of k, since n, the size of the group, can vary from one k-core to another. Also, 
unlike Ie-plexes (and cliques), lc-cores cannot overlap, since by their definition 
two k-cores that shared one or more vertices would just form a single larger 
k-core. 

The k-core is of particular interest in network analysis for the practical rea-
son that it is very easy to find the set of all Ie-cores in a network. A simple 
algorithm is to start with your whole network and remove from it any vertices 
that have degree less than Ie, since clearly such vertices cannot under any cir-
cumstances be members of a k-core. In so doing, one will normally also reduce 
the degrees of some other vertices in the network-those that were connected 
to the vertices just removed. So we then go through the network again to see 
if there are any more vertices that now have degree less than k and if there are 
we remove those too. And so we proceed, repeatedly pruning the network to 
remove vertices with degree less than k until no such vertices remain.20 What 
is left over will, by definition, be a Ie-core or a set of k-cores, since each vertex is 
connected to at least Ie others. Note that we are not necessarily left with a single 
k-core-there's no guarantee that the network will be connected once we are 
done pruning it, even if it was connected to start with. 

Two other generalizations of cliques merit a brief mention. A Ie-clique is a 
maximal subset of vertices such that each is no more than a distance k away 
from any of the others via the edges of the network. For k = 1 this just recovers 

18Note that for the purposes of this latter definition, an edge between two vertices A and B 
within the group counts as two connections, one from A to B and one from B to A. 

19We have to be careful about the meaning of the word "maximal" here. It is possible to have a 
group of vertices such that each is connected to at least k others and no single vertex can be added 
while retaining this property, but it may be possible to add more than one vertex. Such groups, 
however, are not considered to be k-cores. A group is only a k-core if it is not a subset of any larger 
group that is a k-core. 

20 A closely related process, bootstrap percolation, has also been studied in statistical physics, 
prinCipally on regular lattices. 
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the definition of an ordinary clique. For larger lc it constitutes a relaxation 
of the stringent requirements of the usual clique definition. Unfortunately it 
is not a very well-behaved one, since a k-clique by this definition need not 
be connected via paths that run within the subset (see figure). If we restrict 
ourselves to paths that run only within the subset then the resulting object is 
known as either a Ie-clan or a Ie-club. (The difference between the two lies in 
whether we impose the restriction that paths stay within the group from the 
outset, or whether we first find Ie-cliques and then discard those with outside 
paths. The end results can be different in the two cases. For more details see 
Wasserman and Faust [320].). 

7.8.2 COMPONENTS AND k-COMPONENTS 

In Section 6.11 we introduced the concept of a component. A component in an 
undirected network is a maximal subset of vertices such that each is reachable 
by some path from each of the others. A useful generalization of this concept 
is the Ie-component. A k-component (sometimes also called a k-connected compo-
nent) is a maximal subset of vertices such that each is reachable from each of 
the others by at least k vertex-independent paths-see Fig. 7.4. (Recall that two 
paths are said to be vertex-independent if they share none of the same vertices, 
except the starting and ending vertices-see Section 6.12.) For the common 
special cases k = 2 and Ie = 3, Ie-components are also called bicomponents and 
tricomponents respectively. 

A I-component by this definition is just an ordinary component-there is 
at least one path between every pair of vertices-and k-components for Ie :> 2 
are nested within each other. A 2-component or bicomponent, for example, is 
necessarily a subset of a 1-component, since any pair of vertices that are con-
nected by at least two paths are also connected by at least one path. Similarly 
a tricomponent is necessarily a subset of a bicomponent, and so forth. (See 
Fig. 7.4 again.) 

As discussed in Section 6.12, the number of vertex-independent paths be-
tween two vertices is equal to the size of the vertex cut set between the same 
two vertices, Le., the number of vertices that would have to be removed in or-
der to disconnect the two. So another way of defining a k-component would 
be to say that it is a maximal subset of vertices such that no pair of vertices can 
be disconnected from each other by removing less than k vertices. 

A variant of the k-component can also be defined using edge-independent 
paths, so that vertices are in the same k-component if they are connected by k or 
more edge-independent paths, or equivalently if they cannot be disconnected 
by the removal of less than k edges. In principal this variant could be useful in 
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I-component 
2-component 
3-component 

Figure 7.4: The k-components in a small network. The shaded regions denote the 
components in this small network, which has a single 1-component, tvvo 2-components, 
one 3-component, and no k-components for any higher value of k. Note that the 
Ie-components are nested within one another, the 2-components falling inside the 1-
component and the 3-component falling inside one of the 2-components. 

certain circumstances but in practice it is rarely used. 
The idea of a k-component is a natural one in network analysis, being con-

nected with the idea of network robustness. For instance, in a data network 
such as the Internet, the number of vertex-independent paths between two 
vertices is also the number of independent routes that data might take be-
tween the same two vertices, and the size of the cut set between them is the 
number of vertices in the network-typically routers-that would have to fail 
or otherwise be knocked out to sever the data connection between the two end-
points. Thus a pair of vertices connected by two independent paths cannot be 
disconnected from one another by the failure of any single router. A pair of 
vertices connected by three paths cannot be disconnected by the failure of any 
two routers. And so forth. A k-component with k :> 2 in a network like the 
Internet is a subset of the network that has robust connectivity in this sense. 
One would hope, for instance, that most of the network backbone-the system 
of high volume world-spanning links that carry long-distance data (see Sec-
tion 2.1)-is a k-component with high Ie, so that it would be difficult for points 
on the backbone to lose connection with one another. 

Note that for k :> 3, the k-components in a network can be non-contiguous 
(see figure). Ordinary components (I-components) and bicomponents, by con-
trast, are always contiguous. Within the social networks literature, where non-
contiguous components are often considered undesirable, k-components are 

The two highlighted ver-
tices in this network form a 
tricomponent, even though 
they are not directly con-
nected to each other. The 
other three vertices are not 
in the tricomponent. 
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sometimes defined slightly differently: a Ie-component is defined to be a max-
imal subset of vertices such that every pair in the set is connected by at least Ie 
vertex-independent paths that themselves are contained entirely within the subset. 
This definition rules out non-contiguous k-components, but it is also mathe-
matically and computationally more difficult to work with than the standard 
definition. For this reason, and because there are also plenty of cases in which 
it is appropriate to count non-contiguous k-cornponents t the standard defini-
tion remains the most widely used one in fields other than sociology. 

7.9 TRANSlTlVITY 

A property very important in social networks, and useful to a lesser degree in 
other networks too, is transitivity. In mathematics a relation "a" is said to be 
transitive if a 0 band b 0 c together imply a 0 c. An example would be equality. 
If a = band b = c, then it follows that a = c also, so "=" is a transitive relation. 
Other examples are "greater than," "less than," and "implies." 

In a network there are various relations between pairs of vertices, the sim-
plest of which is "connected by an edge." If the "connected by an edge" re-
lation were transitive it would mean that if vertex u is connected to vertex V, 

and v is connected to 70, then u is also connected to w. In common parlance, 
"the friend of my friend is also my friend." Although this is only one possi-
ble kind of network transitivity-other network relations could be transitive 
too-it is the only one that is commonly considered, and networks showing 
this property are themselves said to be transitive. This definition of network 
transitivity could apply to either directed or undirected networks, but let us 
take the undirected case first, since it's simpler. 

Perfect transitivity only occurs in networks where each component is a 
fully connected subgraph or clique, i.e., a subgraph in which all vertices are 
connected to all others.21 Perfect transitivity is therefore pretty much a useless 
concept in networks. However, partial transitivity can be very useful. In many 
networks, particularly social networks, the fact that u knows v and v knows IV 

21To see this suppose we have a component that is perfectly transitive but not a clique, i.e., there 
is at least one pair of vertices u, w in the component that are not directly connected by an edge. 
Since II and ware in the same component they must therefore be cOlllected by some path of length 
greater than one, II, V1, V2, V3,"" w. Consider the first two links in this path. Since II is connected 
by an edge to Vj and VI to '02 it follows that u must be connected to V2 if the network is perfectly 
transitive. Then consider the next two links. Since u is connected to '02 and V2 to V3 it follows that 
u must be connected to V3. Repeating the argument all the way along the path, we can then see 
that u must be connected by an edge to w. But this violates the hypothesis that u and ware not 
directly connected. Hence no perfectly transitive components exist that are not cliques. 

doesn't guarantee that u knows w, but makes it much more likely. The friend 
of my friend is not necessarily my friend, but is far more likely to be my friend 
than some randomly chosen member of the population. 

We can quantify the level of transitivity in a network as follows. If u knows 
v and v knows w, then we have a path uvw of two edges in the network. If u 
also knows w, we say that the path is closed-it forms a loop of length three, 
or a triangle, in the network. In the social network jargon, u, v, and ware said 
to form a closed triad. We define the clustering coefficient'2 to be the fraction of 
paths of length two in the network that are closed. That is, we count all paths 
of length two, and we count how many of them are closed, and we divide the 
second number by the first to get a clustering coefficient C that lies in the range 
from zero to one: 

c = (number of closed paths of length two) . 
(number of paths of length two) 

(7.39) 

c = 1 implies perfect transitivity, i.e., a network whose components are all 
cliques. C = 0 implies no closed triads, which happens for various topologies, 
such as a tree (which has no closed loops of any kind-see Section 6.7) or a 
square lattice (which has closed loops with even numbers of vertices only and 
no closed triads). 

Note that paths in networks, as defined in Section 6.10 have a direction and 
two paths that traverse the same edges but in opposite directions are counted 
separately in Eq. (7.39). Thus uvw and IVVU are distinct paths and are counted 
separately. Similarly, closed paths are counted separately in each direction.'3 

An alternative way to write the clustering coefficient is 

c = (number of triangles) x 6 
(number of paths of length two) 

(7.40) 

Why the factor of six? It arises because each triangle in the network gets 
counted six times over when we count up the number of closed paths of length 
two. Suppose we have a triangle uvw. Then there are six paths of length two 

22It's not entirely clear why the clustering coefficient has the name it has. The name doesn't 
appear to be connected with the earlier use of the word clustering in sodal network analysis to 
describe groups or clusters of vertices (see Section 11.11.2). The reader should be careful to avoid 
confusing these two uses of the word. 

231n fact, we could count each path just in one direction, provided we did it for both the nu-
merator and denominator of Eq. (7.39). Doing so would decrease both counts by a factor of two, 
but the factors would cancel and the end result would be the same. In most cases, and particularly 
when writing computer programs, it is easier to count paths in both directions-it avoids having 
to remember which paths you have counted before. 
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in it: uvw, V'WU, WUV, 'WVU, VU'W, and uwv. Each of these six is closed, so the 
number of closed paths is six times the number of triangles. 

Yet another way to write the clustering coefficient would be to note that 
if we have a path of length two, LlVW, then it is also true to say that vertices 
u and w have a common neighbor in v-they share a mutual acquaintance 
in social network terms. If the triad uvw is closed then u and 10 are them-
selves acquainted, so the clustering coefficient can be thought of also as the 
fraction of pairs of people with a common friend who are themselves friends 
or equivalently as the mean probability that two people with a common friend 
are themselves friends. This is perhaps the most common way of defining the 
clustering coefficient. In mathematical notation: 

c = (number of triangles) x 3 __ 
(number of connected triples) 

(7.41 ) 

Here a "connected triple" means three vertices uv10 with edges (LI, v) and (v, w). 
(The edge (LI, 10) can be present or not.) The factor of three in the numerator 
arises because each triangle gets counted three times when we count the con-
nected triples in the network. The triangle uvw for instance contains the triples 
UVW, VWU, and wuv. In the older social networks literature the clustering coef-
ficient is sometimes referred to as the "fraction of transitive triples," which is a 
reference to this definition of the coefficient. 

Social networks tend to have quite high values of the clustering coefficient. 
For example, the network of film actor collaborations discussed earlier has 
been found to have C = 0.20 [241]; a network of collaborations between bi-
ologists has been found to have C = 0.09 [236]; a network of who sends email 
to whom in a large university has C = 0.16 [103]. These are typical values for 
social networks. Some denser networks have even higher values, as high as 0.5 
or 0.6. (Technological and biological networks by contrast tend to have some-
what lower values. The Internet at the autonomous system level, for instance, 
has a clustering coefficient of only about 0.01. This point is discussed in more 
detail in Section 8.6.) 

In what sense are these clustering coefficients for social networks high? 
Well, let us assume, to make things simple, that everyone in a network has 
about the same number c of friends. Consider one of my friends in this net-
work and suppose they pick their friends completely at random from the whole 
population. Then the chance that one of their c friends happens to be a partic-
ular one of my other friends would be c/n, where n is the size of the network. 
Thus in this network the probability of two of my friends being acquainted, 
which is by definition the clustering coefficient, would be just c/n. Of course 
it is not the case that everyone in a network has the same number of friends, 

and we will see how to perform better calculations of the clustering coefficient 
later (Section 13.4), but this crude calculation will serve our purposes for the 
Inoment. 

For the networks cited above, the value of c/ n is 0.0003 (film actors), 0.00001 
(biology collaborations), and 0.00002 (email messages). Thus the measured 
clustering coefficients are much larger than this estimate based on the assump-
tion of random network connections. Even though the estimate ignores, as 
we have said, any variation in the number of friends people have, the dispar-
ity between the calculated and observed values of the clustering coefficient 
is so large that it seems unlikely it could be eliminated just by allowing the 
number of friends to vary. A much more likely explanation is that our other 
assumption, that people pick their friends at random, is seriously flawed. The 
numbers suggest that there is a much greater chance that two people will be 
acquainted if they have another common acquaintance than if they don't. 

Although this argument is admittedly crude, we will see in Section 8.6 how 
to make it more accurate and so show that our basic conclusion is indeed cor-
rect. 

Some social networks, such as the email network above, are directed net-
works. In calculating clustering coefficients for direct networks, scientists have 
typically just ignored their directed nature and applied Eq. (7.41) as if the edges 
were undirected. It is however possible to generalize transitivity to take ac-
count of directed links. If we have a directed relation between vertices such 
as "u likes v" then we can say that a triple of vertices is closed or transitive if 
u likes v, v likes w, and also LI likes w. (Note that there are many distinct ways 
for such a triple to be transitive, depending on the directions of the edges. The 
example given here is only one of six different possibilities.) One can calculate 
a clustering coefficient or fraction of transitive triples in the obvious fashion for 
the directed case, counting all directed paths of length two that are closed and 
dividing by the total number of directed paths of length two. For some reason, 
however, such measurements have not often appeared in the literature. 

7.9.1 LOCAL CLUSTERING AND REDUNDANCY 

We can also define a clustering coefficient for a single vertex. For a vertex i, we 
define24 

C;= 
(number of pairs of neighbors of i that are cOf\l1!,cted) 

(number of pairs of neighbors of i) 
(7.42) 

24The notation Ci is used for both the local clustering coefficient and the closeness centrality 
and we should be careful not to confuse the two. 
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That is, to calculate C, we go through all distinct pairs of vertices that are neigh-
bors of i in the network, count the number of such pairs that are connected to 
each other, and divide by the total number of pairs, which is ki (k i - 1) where 
ki is the degree of i,. Ci is sometimes called the local clustering coefficient and it 
represents the average probability that a pair of i's friends are friends of one 
another. 

Local clustering is interesting for several reasons. First, in many networks 
it is found empirically to have a rough dependence on degree, vertices with 
higher degree having a lower local clustering coefficient on average. This point 
is discussed in detail in Section 8.6.1. 

Second, local clustering can be used as a probe for the existence of so-called 
"structural holes" in a network. While it is common in many networks, es-
pecially social networks, for the neighbors of a vertex to be connected among 
themselves, it happens sometimes that these expected connections between 
neighbors are missing. The missing links are called structural holes and were 
first studied in this context by Burt [60]. If we are interested in efficient spread 
of information or other traffic around a network, as we were in Section 7.7, 
then structural holes are a bad thing-they reduce the number of alternative 
routes information can take through the network. On the other hand structural 
holes can be a good thing for the central vertex i whose friends lack connec-
tions, because they give i power over information flow between those friends. 
If two friends of i are not connected directly and their information about one 
another comes instead via their mutual connection with i then i can control the 
flow of that information. The local clustering coefficient measures how influ-
ential i is in this sense, taking lower values the more structural holes there are 
in the network around i. Thus local clustering can be regarded as a type of 
centrality measure, albeit one that takes small values for powerful individuals 
rather than large ones. 

In this sense, local clustering can also be thought of as akin to the between-
ness centrality of Section 7.7. Where betweenness measures a vertex's control 
over information flowing between all pairs of vertices in its component lo-
cal clustering is like a local version of betweenness that measures control over 
flows between just the immediate neighbors of a vertex. One measure is not 
necessarily better than another. There may be cases in which we want to take 
all vertices into account and others where we want to consider only immedi-
ate neighbors-the choice will depend on the particular questions we want to 
answer. It is worth pointing out however that betweenness is much more com-
putationally intensive to calculate than local clustering (see Section 10.3.6), and 
that in practice betweenness and local clustering are strongly correlated [60]. 
There may in many cases be little to be gained by performing the more costly 

full calculation of betweenness and much to be saved by sticking with cluster-
ing, given that the two contain much the same information.25 

In his original studies of structural holes, Burt [60] did not in fact 
make use of the local clustering coefficient as a measure of the pres-
ence of holes."6 Instead, he used another measure, which he called 
redundancy. The original definition of redundancy was rather com-
plicated, but Borgatti [50] has shown that it can be simplified to the 
following: the redundancy Ri of a vertex i is the mean number of 
connections from a neighbor of i to other neighbors of i. Consider 
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the example shown in Fig. 7.5 in which vertex i has four neighbors. 
Each of those four could be acquainted with any of the three others, 
but in this case none of them is connected to all three. One is con-
nected to none of the others, two are connected to one other, and 
the last is comlected to two others. The redundancy is the average 
of these numbers R, = HO + 1 + 1 + 2) = 1. The minimum possi-
ble value of the redundancy of a vertex is zero and the maximum is 

Figure 7.5: Redundancy. The neigh-
bors of the centra1 vertex in this fig-
ure have 0, I, I, and 2 connections to 
other neighbors respectively. The re-
dundancy is the mean of these values: 
Ri = i(O+1+1+2) =1. 

ki - 1, where ki is the degree of vertex i. 
It's probably obvious that Ri is related to the local clustering Ci. To see 

precisely what the relation is, we note that if the average number of connec-
tions from a friend of i to other friends is Rif then the total number of connec-
tions between friends is And the total number of pairs of friends of i is 
!k,(ki -1). The local clustering coefficient, Eq. (7.42), is the ratio of these two 
quantities: 

Ri 
ki -1' (7.43) 

Given that ki - 1 is the maximum value of Ri, the local clustering coefficient 
can be thought of as simply a version of the redundancy rescaled to have a 
maximum value of 1. Applying Eq. (7.43) to the example of Fig. 7.5 implies 
that the local clustering coefficient for the central vertex should be Ci = and 
the reader can easily verify that this is indeed the case. 

A third context in which the local clustering coefficient arises is in the cal-
culation of the global clustering coefficient itself. Watts and Strogatz [323] pro-
posed calculating a clustering coefficient for an entire network as the mean of 

25 As an example, in Section 11.11.1 we study methods for partitioning networks into clusters 
or communities and we will see that effective computer algorithms for this task can be created 
based on betweenness measures, but that almost equally effective and much faster algorithms can 
be created based on local clustering. 

26 Actually, the local clustering coefficient hadn't yet been invented. It was first proposed to this 
author's knowledge by Watts [321] a few years later. 
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the local clustering coefficients for each vertex: 

1 n 
Cws = LCi, 

n i=l 
(7.44) 

where n is the number of vertices in the network. This is a different defini-
tion for the clustering coefficient from the one given earlier, Eq. (7.41), and 
the two definitions are not equivalent. Furthermore, they can give substan-
tially different numbers for a given network and because both definitions are 
in reasonably common use this can give rise to confusion, We favor our first 
definition for C, Eq. (7.41), because it has a simple interpretation and because 
it is normally easier to calculate. Also the second definition, Eq. (7.44), tends 
to be dominated by vertices with low degree, since they have small denom-
inators in Eq. (7.42), and the measure thus gives a rather poor picture of the 
overall properties of any newark with a significant number of such vertices.27 

It's worth noting, however, that the definition of Eq. (7.44) was actually pro-
posed before Eq. (7.41) and, perhaps because of this, it finds moderately wide 
use in network studies. So you need at least to be aware of both definitions 
and clear which is being used in any particular situation. 

7.10 RECIPROCITY 

The clustering coefficient of Section 7.9 measures the frequency with which 
loops of length three-triangles-appear in a network. Of course, there is 
no reason why one should concentrate only on loops of length three, and 
people have occasionally looked at the frequency of loops of length four or 
more [44,61,133,140,238]. Triangles occupy a special place however because in 
an undirected simple graph the triangle is the shortest loop we can have (and 
usually the most commonly occurring). However, in a directed network this is 
not the case. In a directed network, we can have loops of length two-a pair of 
vertices between which there are directed edges running in both directions-
and it is interesting to ask about the frequency of occurrence of these loops 
also. 

The frequency of loops of length two is measured by the reciprocity, and tells 
you how likely it is that a vertex that you point to also points back at you. For 
instance, on the World Wide Web if my web page links to your web page, how 
likely is it, on average, that yours link back again to mine? In general, it's found 

27 As discussed in Section 8.6.1, vertices with low degree tend to have high values of C; in most 
networks and this means that Cws is usually larger than the value given by Eq. (7.41), sometimes 
much larger. 

that you are much more likely to link to me if I link to you than if I don't. (That 
probably isn't an Earth-shattering surprise, but it's good to know when the 
data bear out one's intuitions.) Similarly in friendship networks, such as the 
networks of schoolchildren described in Section 3.2 where respondents were 
asked to name their friends, it is much more likely that you will name me if I 
name you than if I do not. 

If there is a directed edge from vertex i to vertex j in a directed network and 
there is also an edge from j to i then we say the edge from i to j is reciprocated. 
(Obviously the edge from ito i is also reciprocated.) Pairs of edges like this are 
also sometimes called co-links, particularly in the context of the World Wide 
Web [104], 

The reciprocity r is defined as the fraction of edges that are reciprocated. 
Noting that the product of adjacency matrix elements AijAJi is 1 if and only if 
there is an edge from i to j and an edge from j to i and is zero otherwise, we 
can sum over all vertex pairs i, j to get an expression for the reciprocity: 

(7.45) 

where m is, as usual, the total number of (directed) edges in the network. 
Consider for example this small network of four vertices: 

There are seven directed edges in this network and four of them are recipro-
cated, so the reciprocity is r = :::e 0.57. In fact, this is about the same value as 
seen on the World Wide Web. There is about a 57% percent chance that if web 
page A links to web page B then B also links back to A. 28 As another example, 
in a study of a network of who has whom in their email address book it was 
found that the reciprocity was about r = 0.23 [248]. 

28Yhis figure is an unusually high one among directed networks, but there are reasons for it. 
One is that many of the links between web pages are between pages on the same website, and it is 
common for such pages to link to each other. If you exclude links between pages on the same site 
the value of the reciprocity is lower. 
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7.11 SIGNED EDGES AND STRUCTURAL BALANCE 

In some social networks, and occasionally in other networks, edges are al-
lowed to be either "positive" or "negative." For instance, in an acquaintance 
network we could denote friendship by a positive edge and animosity by a 
negative edge: 

Friends 

One could also consider varying degrees of friendship or animosity-networks 
with more strongly positive or negative edges in them-but for the moment 
let's stick to the simple case where each edge is in just one of two states, pos-
itive or negative, like or dislike. Such networks are called signed networks and 
their edges are called signed edges. 

It is important to be clear here that a negative edge is not the same as the 
absence of an edge. A negative edge indicates, for example, two people who 
interact regularly but dislike each other. The absence of an edge represents two 
people who do not interact. Whether they would like one another if they did 
interact is not recorded. 

Now consider the possible configurations of three edges in a triangle in a 
signed network, as depicted in Fig. 7.6. If "+" and "-" represent like and 
dislike, then we can imagine some of these configurations creating social prob-
lems if they were to arise between three people in the real world. Configura-
tion (a) is fine: everyone likes everyone else. Configuration (b) is probably also 
fine, although the situation is more subtle than (a). Individuals u and v like one 
another and both dislike w, but the configuration can still be regarded as sta-
ble in the sense that u and v can agree over their dislike of wand get along just 
fine, while w hates both of them. No one is conflicted about their allegiances. 

Put another way, w is u's enemy and v is w's enemy, but there isno problem 
with u and v being friends if one considers that the "enemy of my enemy is my 
friend." 

Configuration (c) however could be problematic. Individual u likes indi-
vidual v and v likes w, but u thinks w is an idiot. This is going to place a strain 
on the friendship between u and v because u thinks v's friend is an idiot. Alter-
natively, from the point of view of v, v has two friends, u and wand they don't 
get along, which puts v in an awkward position. In many real-life situations 
of this kind the tension would be resolved by one of the acquaintances being 
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w n 
u + v u + v u v 

(a) (b) (c) (d) 

Figure 7.6: Possible triad configurations in a signed network. Configurations (a) and 
(b) are balanced and hence relatively stable, but configurations (c) and (d) are unbal-
anced and liable to break apart. 

broken, i.e., the edge would be removed altogether. Perhaps v would simply 
stop talking to one of his friends, for instance. 

Configuration (d) is somewhat ambiguous. On the one hand, it consists 
of three people who all dislike each other, so no one is in doubt about where 
things stand: everyone just hates everyone else. On the other hand, the" en-
emy of my enemy" rule does not apply here. Individuals u and v might like to 
form an alliance in recognition of their joint dislike of w, but find it difficult to 
do so because they also dislike each other. In some circumstances this might 
cause tension. (Think of the uneasy alliance of the US and Russia against Ger-
many during World War II, for instance.) But what one can say definitely is 
that configuration (d) is often unstable. There may be little reason for the three 
to stay together when none of them likes the others. Quite probably three ene-
mies such as these would simply sever their connections and go their separate 
ways. 

The feature that distinguishes the two stable configurations in Fig. 7.6 from 
the unstable ones is that they have an even number of minus signs around the 
100p.29 One can enumerate similar configurations for longer loops, of length 
four or greater, and again find that loops with even numbers of minus signs 
appear stable and those with odd numbers unstable. 

This alone would be an observation of only slight interest, where it not 
for the intriguing fact that this type of stability really does appear have an 
effect on the structure of networks. In surveys it is found that the unstable 
configurations in Fig. 7.6, the ones with odd numbers of minus signs, occur 

29This is similar in spirit to the concept of "frustration" that arises in the physics of magnetic 
spin systems. 

Two stable configurations 
in loops of length fOUf. 
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far less often in real social networks than the stable configurations with even 
numbers of minus signs. 

Networks containing only loops with even numbers of minus signs are 
said to show structural balance, or sometimes just balance. An important conse-
quence of balance in networks was proved by Harary [154]: 

A balanced network can be divided into connected groups of vertices 
such that all connections between members of the same group are 
positive and all connections between members of different groups are 
negative. 

Note that the groups in question can consist of a single vertex or many vertices, 
and there may be only one group or there may be very many. Figure 7.7 shows 
a balanced network and its division into groups. Networks that can be divided 
into groups like this are said to be elusterable. Harary's theorem tells us that all 
balanced networks are clusterable. 

Harary's theorem is straightforward to prove, and the proof is 
"constructive," meaning that it shows not only when a network is 
clusterable but also tells us what the groups are.3I) We consider ini-
tially only networks that are connected-they have just one compo-
nent. In a moment we will relax this condition. We will color in the 
vertices of the network each in one of two colors, denoted by the 
open and filled circles in Fig. 7.7, for instance. We start with any 

Figure 7.7: A balanced, clusterable vertex we please and color it with whichever color we please. Then 
we color in the others according to the following algorithm: network. Every loop in this network 

1. A vertex v connected by a positive edge to another u that has 
already been colored gets colored the same as u. 

contains an even number of minus 
signs. The dotted lines indicate the di-
vision of the network into clusters such 2. A vertex v COIDlected by a negative edge to another u that has 
that all acquaintances within clusters 
have positive connections and all ac-

already been colored gets colored the opposite color from u. 
For most networks it will happen in the course of this coloring pro-
cess that we sometimes come upon a vertex whose color has already 
been assigned. When this happens there is the possibility of a con-

quaintances in different clusters have 
negative connections. 

208 

flict arising between the previously assigned color and the one that 
we would like to assign to it now according to the rules above. However, as 
we now show, this conflict only arises if the network as a whole is unbalanced. 

If in coloring in a network we come upon a vertex that has already been 
colored in, it immediately implies that there must be another path by which 
that vertex can be reached from our starting point and hence that there is at 
least one, and possibly more than one, loop in the network to which this ver-

3IJThe proof we give is not Harary's proof, which was quite different and not constructive. 
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Figure 7.8: Proof that a balanced network is c1usterable. If we fail to color a network in 
two colors as described in the text, then there must exist a loop in the network that has 
one or other of the two configurations shown here, both of which have an odd number 
of minus signs around them (counting the one between the vertices u and v), and hence 
the network is not balanced. 

tex belongs-the loop consisting of the two paths between the starting point 
and the vertex. Since the network is balanced, every loop to which our ver-
tex belongs must have an even number of negative edges around it. Now let 
us suppose that the color already assigned to the vertex is in conflict with the 
one we would like to assign it now. There are two ways in which this could 
happen, as illustrated in Fig. 7.8. In case (a), we color in a vertex u and then 
move onto its neighbor v, only to find that v has already been colored the op-
posite color to u, even though the edge between them is positive. This presents 
a problem. But if u and v are opposite colors, then around any loop contain-
ing them both there must be an odd number of minus signs, so that the color 
changes an odd number of times and ends up the opposite of what it started 
out as. And if there is an odd number of minus signs around the loop, then the 
network is not balanced. 

In case (b) vertices u and v have the same color but the edge between them 
is negative. Again we have a problem. But if u and v are the same color then 
there must be an even number of negative edges around the rest of the loop 
connecting them which, along with the negative edge between u and v, gives 
us again an odd total number of negative edges around the entire loop, and 
hence the network is again not balanced. 

Either way, if we ever encounter a conflict about what color a vertex should 
have then the network must be unbalanced. If the network is balanced, there-
fore, we will never encounter such a conflict and we will be able to color the 
entire network with just two colors while obeying the rules. 

Once we have colored the network in this way, we can immediately deduce 
the identity of the groups that satisfy Harary's theorem: we simply divide 
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the network into contiguous clusters of vertices that have the same color-see 
Fig. 7.7 again. In every such cluster, since all vertices have the same color, 
they must be jOined by positive edges. Conversely, all edges that connected 
different clusters must be negative, since the clusters have different colors. (If 
they did not have different colors they would be considered the same cluster.) 

Thus Harary's theorem is proved and at the same time we have deduced a 
method for constructing the clusters3 ! It only remains to extend the proof to 
networks that have more than one component, but this is trivial, since we can 
simply repeat the proof above for each component separately. 

The practical importance of Harary's result rests on the fact that, as men-
tioned earlier, many real social networks are found naturally to be in a bal-
anced or mostly balanced state. In such cases it would be possible, therefore, 
for the network to form into groups such that everyone likes others within 
their group with whom they have contact and dislikes those in other groups. 
It is widely assumed in social network theory that this does indeed often hap-
pen. Structural balance and cluster ability in networks are thus a model for 
cliquishness or insularity, with people tending to stick together in like-minded 
groups and disdaining everyone outside their immediate community. 

It is worth asking whether the inverse of Harary's cluster ability theorem 
is also true. Is it also the case that a network that is clusterable is necessarily 
balanced? The answer is no, as this simple counter-example shows: 

31 As an interesting historical note, we observe that while Harary' 5 proof of his theorem is per-
fectly correct, his interpretation of it was, in this author's opinion, erroneous. In his 1953 pa-
per [154], he describes the meaning of the theorem in the following words: "A psychological in-
terpretation of Theorem 1 is that a 'balanced group' consists of two highly cohesive cliques which 
dislike each other." (Harary is using the word "clique" in a non-technical sense here to mean a 
closed group of people, rather than in the graph theoretical sense of Section 7.8.1.) However, just 
because it is possible to color the network in two colors as described above does not mean the net-
work forms two groups. Since the vertices of a single color are not necessarily contiguous, there 
are in general many groups of each color, and it seems unreasonable to describe these groups as 
forming a single "highly cohesive clique" when in fact they have no contact at all. Moreover, it is 
neither possible nor correct to conclude that the members of two groups of opposite colors dislike 
each other unless there is at least one edge connecting the two. If two groups of opposite colors 
never actually have any contact then it might be that they would get along just fine if they met. 
It's straightforward to prove that such an occurrence would lead to an unbalanced network, but 
Harary's statement says that the present balanced network implies dislike, and this is untrue. Only 
if the network were to remain balanced upon addition of one or more edges between groups of 
unlike colors would his conclusion be accurate. 

-D'-' , ' 
- -
, -, , ' , J 
-"" - \ -"" 

In this network all three vertices dislike each other, so there is an odd number 
of minus signs around the loop, but there is no problem dividing the network 
into three clusters of one vertex each such that everyone dislikes the members 
of the other clusters. This network is clusterable but not balanced. 

7.12 SIMILARITY 

Another central concept in social network analysis is that of similarity between 
vertices. In what ways can vertices in a network be similar, and how can we 
quantify that similarity? Which vertices in a given network are most similar 
to one another? Which vertex v is most similar to a given vertex u? Answers 
to questions like these can help us tease apart the types and relationships of 
vertices in social networks, information networks, and others. For instance, 
one could imagine that it might be useful to have a list of web pages that are 
similar-in some appropriate sense-to another page that we specify. In fact, 
several web search engines already provide a feature like this: "Click here for 
pages similar to this one." 

Similarity can be determined in many different ways and most of them 
have nothing to do with networks. For example, commercial dating and match-
making services try to match people with others to whom they are similar by 
using descriptions of people's interests, background, likes, and dislikes. In ef-
fect, these services are computing similarity measures between people based 
on personal characteristics. Our focus in this book, however, is on networks, 
so we will concentrate on the more limited problem of determining similar-
ity between the vertices of a network using the information contained in the 
network structure. 

There are two fundamental approaches to constructing measures of net-
work similarity, called structural equivalence and regular equivalence. The names 
are rather opaque, but the ideas they represent are simple enough. Two ver-
tices in a network are structurally equivalent if they share many of the same 
network neighbors. In Fig. 7.9a we show a sketch depicting structural equiv-
alence between two vertices i and j-the two share, in this case, three of the 
same neighbors, although both also have other neighbors that are not shared. 

Regular equivalence is more subtle. Two regularly equivalent vertices do 
not necessarily share the same neighbors, but they have neighbors who are 
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(a) Struchual equivalence (b) Regular equivalence 

Figure 7.9: Structural equivalence and regular equivalence. (a) Vertices i and j are 
structurally equivalent if they share many of the same neighbors. (b) Vertices i and j 
are regularly equivalent if their neighbors are themselves equivalent (indicated here by 
the different shades of vertices). 

themselves similar. Two history students at different universities, for example, 
may not have any friends in common, but they can still be similar in the sense 
that they both know a lot of other history students, history instructors, and so 
forth. Similarly, two CEOs at two different companies may have no colleagues 
in common, but they are similar in the sense that they have professional ties to 
their respective CFO, CIO, members of the board, company president, and so 
forth. Regular equivalence is illustrated in Fig. 7.9b. 

In the next few sections we describe some mathematical measures that 
quantify these ideas of similarity. As we will see, measures for structural 
equivalence are considerably better developed than those for regular equiv-
alence. 

7.12.1 COSINE SIMILARITY 

We start by looking at measures of structural equivalence and we will concen-
trate on undirected networks. Perhaps the simplest and most obvious mea-
sure of structural equivalence would be just a count of the number of common 
neighbors two vertices have. In an undirected network the number nij of com-
mon neighbors of vertices i and j is given by 

nij = LAikAkj, 
k 

(7.46) 

which is the ijth element of A2. This quantity is closely related to the "co-
citation" measure introduced in Section 6.4.1. Cocitation is defined for directed 

nc.hN'nrb whereas we are here considering undirected ones, but otherwise it is 
esserltiillly the same thing. 

However, a simple count of cornman neighbors for two vertices is not on 
own a very good measure of similarity. If two vertices have three cornman 

nE:ighboTE is that a lot or a little? It's hard to tell unless we know, for instance, 
the degrees of the vertices are, or how many common neighbors other 
of vertices share. What we need is some sort of normalization that places 

similarity value on some easily understood scale. One strategy might be 
to divide by the total number of vertices in the network 11, since this is 

maximum number of cornman neighbors two vertices can have in a simple 
(Technically the maximum is actually 11 - 2, but the difference is small 

n is large.) However, this unduly penalizes vertices with low degree: if 
vertex has degree three, then it can have at most three neighbors in common 

another vertex, but the two vertices would still receive a small similarity 
if the divisor 11 were very large. A better measure would allow for the 

,,"nnn<' degrees of vertices. Such a measure is the cosine similarity, sometimes 
called Salton's cosine. 

In geometry, the inner or dot product of two vectors x and y is given by 
. Y = Ixllyl cos e, where Ixl is the magnitude of x and e is the angle between 

two vectors. Rearranging, we can write the cosine of the angle as 

x·y 
case = NTYi" (7.47) 

[290] proposed that we regard the ith and jth rows (or columns) of the 
adjac:en,cy matrix as two vectors and use the cosine of the angle between them 

our similarity measure. Noting that the dot product of two rows is simply 
AikAkj for an undirected network, this gives us a similarity 

(7.48) 

As.suming our network is an unweighted simple graph, the elements of the 
adiaoenc:y matrix take only the values 0 and 1, so that AD = A;] for all i, j. Then 

Aik = Lk A;k = Ie;, where Ie; is the degree of vertex i (see Eq. (6.19». Thus 

_ Lk A;kAkj "U 
(Tij - = --. 

vk;kj vlc;kj 
(7.49) 

cosine similarity of i and j is therefore the number of common neighbors 
the two vertices divided by the geometric mean of their degrees. For the 
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vertices i and j depicted in Fig. 7.9a, for instance, the cosine similarity would 
be 

3 
(J";j = V 4 x 5 = 0.671 ... (7.50) 

Notice that the cosine similarity is technically undefined if one or both of the 
vertices has degree zero, but by convention we normally say in that case that 
(Jij = O. 

The cosine similarity provides a natural scale for our similarity measure. 
Its value always lies in the range from 0 to 1. A cosine similarity of 1 indicates 
that two vertices have exactly the same neighbors. A cosine similarity of zero 
indicates that they have none of the same neighbors. Notice that the cosine 
similarity can never be negative, being a sum of positive terms, even though 
cosines in general can of course be negative. 

7.12.2 PEARSON COEFFICIENTS 

An alternative way to normalize the count of common neighbors is to compare 
it with the expected value that count would take on a network in which ver-
tices choose their neighbors at random. This line of argument leads us to the 
Pearson correlation coefficient. 

Suppose vertices i and j have degrees Ie; and lej respectively. How many 
common neighbors should we expect them to have? This is straightforward to 
calculate if they choose their neighbors purely at random. Imagine that vertex i 
chooses k; neighbors uniformly at random from the n possibilities open to it (or 
n - 1 on a network without self-loops, but the distinction is slight for a large 
network), and vertex j similarly chooses Ie] neighbors at random. For the first 
neighbor that j chooses there is a probability of k;/n that it will choose one of 
the ones Ie; chose, and similarly for each succeeding choice. (We neglect the 
possibility of choosing the same neighbor twice, since it is small for a large 
network.) Then in total the expected number of common neighbors between 
the two vertices will be kj times this, or k;k] / n. 

A reasonable measure of similarity between two vertices is the actual num-
ber of common neighbors they have minus the expected number that they 

have if they chose their neighbors at random: 

" k;k] " 1 " " L.., A;kAjk - - = L.., AkAjk - - L.., Ak L.., Ajl 
k n k n k I 

= LA;kAjk - n(A;)(Aj) 
k 

= L[A;kAjk - (A;)(A])] 
k 

= DA;k - (A) )(Ajk - (Aj ), 
k 

(7.51) 

(A;) denotes the mean n-1 Lk A;k of the elements of the ith row of the 
adJac:ency matrix. Equation (7.51) will be zero if the number of common neigh-

of i and j is exactly what we would expect on the basis of random chance. 
it is positive, then i and j have more neighbors than we would expect by 

ch,ance, which we take as an indication of similarity between the two. Equa-
(7.51) can also be negative, indicating that i and j have fewer neighbors 
we would expect, a possible sign of dissimilarity. 

Equation (7.51) is simply n times the covariance cov(A;, Ai) of the two rows 
the adjacency matrix. It is common to normalize the covariance, as we did 

the cosine similarity, so that its maximum value is 1. The maximum value 
the covariance of any two sets of quantities occurs when the sets are exactly 

same, in which case their covariance is just equal to the variance of either 
which we could write as o-f or err or in symmetric form as erjerj' Normaliz-
by this quantity then gives us the standard Pearson correlation coefficient: 

(7.52) 

quantity lies strictly in the range -1 :S Y;j :S 1. 
The Pearson coefficient is a widely used measure of similarity. It allows 
to say when vertices are both similar or dissimilar compared with what we 

expect if connections in the network were formed at random. 

OTHER MEASURES OF STRUCTURAL EQUIVALENCE 

are many other possible measures of structural equivalence. For in-
Malice, one could also normalize the number n;j of common neighbors by di-

by (rather than subtracting) the expected value of k;k/ n. That would 
us a similarity of 

(7.53) 
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This quantity will be 1 if the number of common neighbors is exactly as ex-
pected on the basis of chancef greater than one if there are more common 
neighbors than that, and less than one for dissimilar vertices with fewer com-
mon neighbors than we would expect by chance. It is never negative and has 
the nice property that it is zero when the vertices in question have no common 
neighbors. This measure could be looked upon as an alternative to the cosine 
similarity: the two differ in that one has the product of the degrees leile j in the 
denominator while the other has the square root of the product Jleilej. It has 
been suggested that Eq. (7.53) may in some cases be a superior measure to the 
cosine similarity because, by normalizing with respect to the expected number 
of common neighbors rather than the maximum numberf it allows us to eas-
ily identify statistically surprising coincidences between the neighborhoods of 
vertices, which cosine similarity does not [195]. 

Another measure of structural equivalence is the so-called Euclidean dis-
tance,32 which is equal to the number of neighbors that differ between two 
vertices. That is, it is the number of vertices that are neighbors of i but not of j, 
or vice versa. Euclidean distance is really a dissimilarity measure, since it is 
larger for vertices that differ more. 

In terms of the adjacency matrix the Euclidean distance dij between two 
vertices can be written 

diJ = I::<Atk - Ajk)2 (7.54) 
k 

As with our other measures it is sometimes convenient to normalize the Eu-
clidean distance by dividing by its possible maximum value. The maximum 
value of dij occurs when two vertices have no neighbors in common, in which 
case the distance is equal to the sum of the degrees of the vertices: dij = lei + lej. 
Dividing by this maximum value the normalized distance is 

L,,(Aik - Ajk)2 Lk(Atk + Alk - 2AikAjk) 
lei + lej - lei + le j 

(7.55) 

where we have made use of the fact that AD = Ai) because Ai) is always zero or 
one, and nij is again the number of neighbors that i and j have in common. To 
within additive and multiplicative constants, this normalized Euclidean dis-
tance can thus be regarded as just another alternative normalization of the 
number of common neighbors. 

32This is actually a bad name for it-it should be called Hamming distance, since it is essentially 
the same as the Hamming distance of computer science and has nothing to do with Euclid. 

7.12.4 REGULAR EQUIVALENCE 

The similarity measures discussed in the preceding sections are all measures of 
structural equivalence, i.e., they are measures of the extent to which two ver-
tices share the same neighbors. The other main type of similarity considered 
in social network analysis is regular equivalence. As described above, regu-
larly equivalent vertices are vertices that, while they do not necessarily share 
neighbors, have neighbors who are themselves Fig. 7.9b again. 

Quantitative measures of regular equivalence are less well developed than 
measures of structural equivalence. In the 1970s social network analysts came 
up with some rather complicated computer algorithms, such as the "REGE" 
algorithm of White and Reitz [320,327], that were intended to discover regular 
equivalence in networks, but the operation of these algorithms is involved and 
not easy to interpret. More recently, however, some simpler algebraic measures 
have been developed that appear to work reasonably well. The basic idea [45, 
162, 195J is to define a similarity score (Tij such that i and j have high similarity 
if they have neighbors k and I that themselves have high similarity. For an 
undirected network we can write this as 

(Tij = IX [.AikAj/(Tkl' 
kl 

(7.56) 

or in matrix terms (j = aA(j A. Although it may not be immediately clear, 
this expression is a type of eigenvector equation, where the entire matrix (j of 
similarities is the eigenvector. The parameter IX is the eigenvalue (or more cor-
rectly, its inverse) and, as with the eigenvector centrality of Section 7.2, we are 
normally interested in the leading eigenvalue, which can be found by standard 
methods. 

This formula however has some problems. First, it doesn't necessarily give 
a high value for the "self-similarity" (Tii of a vertex to itself, which is counter-
intuitive. Presumably, all vertices are highly similar to themselves! As a conse-
quence of this, Eq. (7.56) also doesn't necessarily give a high similarity score to 
vertex pairs that have a lot of common neighbors, which in the light of our ex-
amination of structural equivalence in the preceding few sections we perhaps 
feel it should. If we had high self-similarity scores for all vertices, on the other 
hand, then Eq. (7.56) would automatically give high similarity also to vertices 
with many common neighbors. 

We can fix these problems by introducing an extra diagonal term in the 
Similarity thus: 

(Tij = IX [. AikAj1(Tkl + 6i), 
kl 

(7.57) 

7.12 SIMILARITY 

Vertices i and j are consid-
ered similar (dashed line) if 
they have respective neigh-
bors k and 1 that are them-
selves similar. 

See Section 11.1 for a dis-
cussion of computer algo-
rithms for finding eigen-
vectors. 
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In the modified definition 
of regular equivalence ver-
tex i is considered similar 
to vertex j (dashed line) if 
it has a neighbor Ie that is it-
self similar to j. 
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or in matrix notation 
a = ",AaA+I. (7.58) 

However, while expressions like this have been proposed as similarity mea-
sures, they still suffer from some problems. Suppose we evaluate Eq. (7.58) by 
repeated iteration, taking a starting value, for example, of aiD) = ° and using 
it to compute a(1) = ",AaA + I, and then repeating the process many times 
until 0' converges. On the first few iterations we will get the following results: 

a(1) = I, 

a (2) = ",A2 + I, 
a(3) = ",2A4 +",A2 +I. 

(7.59a) 

(7.59b) 

(7.59c) 

The pattern is clear: in the limit of many iterations, we will get a sum over 
even powers of the adjacency matrix. However, as discussed in Section 6.10, 
the elements of the rth power of the adjacency matrix count paths of length r 
between vertices, and hence this measure of similarity is a weighted sum over 
the numbers of paths of even length between pairs of vertices. 

But why should we consider only paths of even length? Why not consider 
paths of all lengths? These questions lead us to a better definition of regular 
equivalence as follows: vertices i and j are similar if i has a neighbor k that is 
itself similar to j.33 Again we assume that vertices are similar to themselves, 
which we can represent with a diagonal Oij term in the similarity, and our sim-
ilarity measure then looks like 

or 

(Tij = tX L Aik(Jkj + Oi)! 
k 

a = ",Aa+I, 

(7.60) 

(7.61) 

in matrix notation. Evaluating this expression by iterating again starting from 
aiD) = 0, we get 

all) = I, 

a (2) = ",A + I, 
a(3) = ",2A2 +",A+I. 

(7.62a) 

(7.62b) 

(7.62c) 

33This definition is not obviously symmetric with respect to i and j but, as we see, does in fact 
give rise to an expression for the similarity that is symmetric. 

In the limit of a large number of iterations this gives 

00 

a = I..: (aA)'" = (I - aA)-l, (7.63) 
111=0 

which we could also have deduced directly by rearranging Eq. (7.61). Now 
our similarity measure includes counts of paths at all lengths, not just even 
paths. In fact, we can see now that this similarity measure could be defined 
a completely different way, as a weighted count of all the paths between the 
vertices i and j with paths of length r getting weight ",'-. So long as a < 1, 
longer paths will get less weight than shorter ones, which seems sensible: in 
effect we are saying that vertices are similar if they are connected either by a 
few short paths or by very many long ones. 

Equation (7.63) is reminiscent of the formula for the Katz centrality, Eq. 
(7.10). We could call Eq. (7.63) the "Katz similarity" perhaps, although Katz 
himself never discussed it. The Katz centrality of a vertex would then be sim-
ply the sum of the Katz similarities of that vertex to all others. Vertices that 
are similar to many others would get high centrality, a concept that certainly 
makes intuitive sense. As with the Katz centrality, the value of the parameter 
IX is undetermined-we are free to choose it as we see fit-but it must satisfy 
a < 1/](1 if the sum in Eq. (7.63) is to converge, where ](1 is the largest eigen-
value of the adjacency matrix. 

In a sense, this regular equivalence measure can be seen as a generalization 
of our structural equivalence measures in earlier sections. With those measures 
we were counting the common neighbors of a pair of vertices, but the number 
of cornman neighbors is also of course the number of paths of length two be-
tween the vertices. Our "Katz similarity" measure merely extends this concept 
to counting paths of all lengths. 

Some variations of this similarity measure are possible. As defined it tends 
to give high similarity to vertices that have high degree, because if a vertex 
has many neighbors it tends to increase the number of those neighbors that 
are similar to any other given vertex and hence increases the total similarity 
to that vertex. In some cases this might be desirable: maybe the person with 
many friends should be considered more similar to others than the person with 
few. However, in other cases it gives an unwanted bias in favor of high-degree 
nodes. Who is to say that two hermits are not "similar" in an interesting sense? 
If we wish, we can remove the bias in favor of high degree by dividing by 
vertex degree thus: 

(7.64) 

7.12 SIMILARITY 
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or in matrix notation a = etD- J Au + I, where, as previously, 0 is the diagonal 
matrix with elements Dii = ki . This expression can be rearranged to read:34 

(7.65) 

Another useful variant is to consider cases where the last term in Eqs. (7.60) 
or (7.64) is not simply diagonal, but includes off-diagonal terms too. Such 
a generalization would allow us to specify explicitly that particular pairs of 
vertices are similar, based on some other (probably non-network) information 
that we have at our disposal. Going back to the example of CEOs at compa-
nies that we gave at the beginning of Section 7.12, we might, for example, want 
to state explicitly that the CFOs and CIOs and so forth at different companies 
are similar, and then our similarity measure would, we hope, correctly deduce 
from the network structure that the CEOs are similar also. This kind of ap-
proach is particularly useful in the case of networks that consist of more than 
one component, so that some pairs of vertices are not connected at alL If, for 
instance, we have two separate components representing people in two differ-
ent companies, then there will be no paths of any length between individuals 
in different companies, and hence a measure like (7.60) or (7.64) will never as-
sign a non-zero similarity to such individuals. If however, we explicitly insert 
some similarities between members of the different companies, our measure 
will then be able to generalize and extend those inputs to deduce similarities 
between other members. 

This idea of generalizing from a few given similarities arises in other con-
texts too. For example, in the fields of machine learning and information re-
trieval there is a considerable literature on how to generalize known similar-
ities between a subset of the objects in a collection of, say, text documents to 
the rest of the collection, based on network data or other information. 

7.13 HOMOPHILY AND ASSORTATIVE MIXING 

Consider Fig. 7.10, which shows a friendship network of children at an Amer-
ican school, determined from a questionnaire of the type discussed in Sec-
tion 3.2.35 One very clear feature that emerges from the figure is the division of 

34It is interesting to note that when we expand this measure in powers of the adjacency matrix, 
as we did in Eq. (7.63), the second-order (i.e., path-length two) term is the same as the structural 
equivalence measure of Eq. (7.53), which perhaps lends further credence to both expressions as 
natural measures of Similarity. 

35The study used a "name generator"-students were asked to list the names of others they 
considered to be their friends. This results in a directed network, but we have neglected the edge 

,. 
I 
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• Black 
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Figure 7.10: Friendship network at a US high school. The vertices in this network represent 470 students at a US 
high school (ages 14 to 18 years). The vertices are color coded by race as indicated in the key. Data from the National 
Longitudinal Study of Adolescent Health [34,314]. 

the network into two groups. It turns out that this division is principally along 
lines of race. The different shades of the vertices in the picture correspond to 
students of different race as denoted in the legend, and reveal that the school is 
sharply divided between a group composed principally of black children and 
a group composed principally of white. 

This is not news to sociologists, who have long observed and discussed 
such divisions [225]. Nor is the effect specific to race. People are found to 
form friendships, acquaintances, business relations, and many other types of 
tie based on all sorts of characteristics, including age, nationality, language, in-
come, educational level, and many others. Almost any social parameter you 

directions in the figure. In our representation there is an undirected edge between vertices i and j 
if either of the pair considers the other to be their friend (or both). 
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can imagine plays into people's selection of their friends. People have, it ap-
pears, a strong tendency to associate with others whom they perceive as being 
similar to themselves in some way. This tendency is called homophily or assor-
tative mixing. 

More rarely, one also encounters disassortative mixing, the tendency for peo-
ple to associate with others who are unlike them. Probably the most widespread 
and familiar example of disassortative mixing is mixing by gender in sexual 
contact networks. The majority of sexual partnerships are between individu-
als of opposite sex, so they represent connections between people who differ 
in their gender. Of course, same-sex partnerships do also occur, but they are a 
much smaller fraction of the ties in the network. 

Assortative (or disassortative) mixing is also seen in some nonsocial net-
works. Papers in a citation network, for instance, tend to cite other papers in 
the same field more than they do papers in different fields. Web pages written 
in a particular language tend to link to others in the same language. 

In this section we look at how assortative mixing can be quantified. As-
sortative mixing by discrete characteristics such as race, gender, or nationality 
is fundamentally different from mixing by a scalar characteristic like age or 
income, so we treat the two cases separately. 

7.13.1 ASSORTATIVE MIXING BY ENUMERATIVE CHARACTERISTICS 

Suppose we have a network in which the vertices are classified according to 
some characteristic that has a finite set of possible values. The values are 
merely enumerative-they don't fall in any particular order. For instance, the 
vertices could represent people and be classified according to nationality, race, 
or gender. Or they could be web pages classified by what language they are 
written in, or biological species classified by habitat, or any of many other pos-
sibilities. 

The network is assortative if a significant fraction of the edges in the net-
work run between vertices of the same type, and a simple way to quantify 
assortativity would be to measure that fraction. However, this is not a very 
good measure because, for instance, it is 1 if all vertices belong to the same 
Single type. This is a trivial sort of assortativity: all friends of a human be-
ing, for example, are also human beings,36 but this is not really an interesting 
statement. What we would like instead is a measure that is large in non-trivial 
cases but small in trivial ones. 

A good measure turns out to be the following. We find the fraction of edges 

36Ignoring, for the purposes of argument, dogs, cats, imaginary friends, and so forth. 
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that run between vertices of the same type, and then we subtract from that fig-
ure the fraction of such edges we would expect to find if edges were positioned 
at random without regard for vertex type. For the trivial case in which all ver-
tices are of a single type, for instance, 100% of edges run between vertices of 
the same type, but this is also the expected figure, since there is nowhere else 
for the edges to fall. The difference of the two numbers is then zero, telling us 
that there is no non-trivial assortativity in this case. Only when the fraction of 
edges between vertices of the same type is significantly greater than we would 
expect on the basis of chance will our measure give a positive score. 

In mathematical terms, let us denote by Ci the class or type of vertex i, which 
is an integer 1 ... n" with n, being the total number of classes. Then the total 
number of edges that run between vertices of the same type is 

L J(Ci,Cj) = LAjJ(Ci,Cj), (7.66) 
edges (i,j) ij 

where J (m, n) is the Kronecker delta and the factor of accounts for the fact 
that every vertex pair i, j is counted twice in the second sum. 

Calculating the expected number of edges between vertices if edges are 
placed at random takes a little more work. Consider a particular edge attached 
to vertex i, which has degree lei. There are by definition 2m ends of edges in 
the entire network, where m is as usual the total number of edges, and the 
chances that the other end of our particular edge is one of the k j ends attached 
to vertex j is thus lej 12m if connections are made purely at random.37 Counting 
all lei edges attached to i, the total expected number of edges between vertices i 
and j is then kik;l2m, and the expected number of edges between all pairs of 
vertices of the same type is 

(7.67) 

where the factor of !, as before, prevents us from double-counting vertex pairs. 
Taking the difference of (7.66) and (7.67) then gives us an expression for the 
difference between the actual and expected number of edges in the network 

37Teclmically, we are making connections at random while preserving the vertex degrees. We 
could in principle ignore vertex degrees and make connections truly at random, but in practice 
this is found to give much poorer results. 
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that join vertices of like types: 

(7.68) 

Conventionally, one calculates not the number of such edges but the fraction, 
which is given by this same expression divided by the number m of edges: 

(7.69) 

This quantity Q is called the modularity [239,250] and is a measure of the extent 
to which like is connected to like in a network. It is strictly less than 1, takes 
positive values if there are more edges between vertices of the same type than 
we would expect by chance, and negative ones if there are less. 

For Fig. 7.10, for instance, where the types are the three ethnic classifica-
tions "black," "white," and "other," we find a modularity value of Q = 0.305, 
indicating (positive) assortative mixing by race in this particular network.3S 

Negative values of the modularity indicate disassortative mixing. We might 
see a negative modularity, for example, in a network of sexual partnerships 
where most partnerships were between individuals of opposite sex. 

The quantity 
kikJ B0 =A0--2 m 

in Eq. (7.69) appears in a number of situations in the study of networks. We will 
encounter it, for instance, in Section 11.8 when we study community detection 
in netvvorks. In some contexts it is useful to consider Bij to be an element of a 
matrix B, which itself is called the modularity matrix. 

The modularity, Eq. (7.69), is always less than 1 but in general it does not 
achieve the value Q = 1 even for a perfectly mixed network, one in which 
every vertex is connected only to others of the same type. Depending on the 
sizes of the groups and the degrees of vertices, the maximum value of Q can 
be considerably less than 1. This is in some ways unsatisfactory: how is one to 

38 An alternative measure of assortativity has been proposed by Gupta et aI. [152]. That measure 
however gives equal weight to each group of vertices, rather than to each edge as the modularity 
does. With this measure if one had a million vertices of each of two types, which mixed with 
one another entirely randomly, and ten more vertices of a third type that connected only among 
themselves, one would end up with a score of about 0.5 [239], which appears to imply strong 
assortativity when in fact almost all of the network mixes randomly. For most purposes therefore, 
the measure of Eq. (7.69) gives results more in line with our intuitions. 
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know when one has strong assortative mixing and when one doesn't? To rec-
tify the problem, we can normalize Q by dividing by its value for the perfectly 
mixed network. With perfect mixing all edges fall between vertices of the same 
type and hence 6(cj,cj) = 1 whenever Aij = 1. This means that the first term 
in the sum in Eq. (7.69) sums to 2m and the modularity for the perfectly mixed 
network is 

1 ( " kikj ) Qm,,=- 2m-L.,-·""-6(cj,cJ) • 
2m ij 2m 

(7.71) 

Then the normalized value of the modularity is given by 

Q I:jj(Aj - kikj/2m)6(ci,Cj) 
Qm" = 2m - I:ij(lcikj/2;;,)6(cj,cj)· 

(7.72) 

This quantity, sometimes called an assortativity coefficient, now takes a maxi-
mum value of 1 on a perfectly mixed network. 

Although it can be a useful measure in some circumstances, however, Eq. 
(7.72) is only rarely used. Most often, the modularity is used in its unnormal-
ized form, Eq. (7.69). 

An alternative form for the modularity, which is sometimes useful in prac-
tical situations, can be derived in terms of the quantities 

(7.73) 

which is the fraction of edges that join vertices of type,. to vertices of type s, 
and 

1 
a,= [;ki 6(ci,r), 

2m i 
(7.74) 

which is the fraction of ends of edges attached to vertices of type r. Then, 
noting that 

(7.75) 

we have, from Eq. (7.69) 
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A sketch of stratified 
network in which most 
connections run between 
vertices at or near the same 
"level" in the network, 
with level along the ver-
tical axis in this case and 
also denoted by the shades 
of the vertices. 

226 

This form can be useful, for instance, when we have network data in the form 
of a list of edges and the types of the vertices at their ends, but no explicit data 
on vertex degrees. In such a case Crs and ar are relatively easy to calculate, 
while Eq. (7.69) is quite awkward. 

7.13.2 ASSORTATIVE MIXING BY SCALAR CHARACTERISTICS 

We can also have homophily in a network according to scalar characteristics 
like age or income. These are characteristics whose values come in a particular 
order, so that it is possible say not only when two vertices are exactly the same 
according to the characteristic but also when they are approximately the same. 
For instance, while two people can certainly be of exactly the same age-born 
on the same day even-they can also be approximately the same age-born 
within a couple of years of one another, say-and people could (and in fact of-
ten do) choose who they associate with on the basis of such approximate ages. 
There is no equivalent approximate similarity for the enumerative characteris-
tics of the previous section: there is no sense in which people from France and 
Germany, say, are more nearly of the same nationality than people from France 
and Spain.39 

If network vertices with similar values of a scalar characteristic tend to be 
connected together more often that those with different values then the net-
work is considered assortatively mixed according to that characteristic. If, for 
example, people are friends with others around the same age as them, then the 
network is assortatively mixed by age. Sometimes you may also hear it said 
that the network is stratified by age, which means the same thing-one can 
think of age as a one-dimensional scale or axis, with individuals of different 
ages forming connected "strata" within the network. 

Consider Fig. 7.11, which shows friendship data for the same set of US 
schoolchildren as Fig. 7.10 but now as a function of age. Each dot in the figure 
corresponds to one pair of friends and the position of the dot along the two 
axes gives the ages of the friends, with ages measured by school grades.40 As 
the figure shows, there is substantial assortative mixing by age among the stu-
dents: many dots lie within the boxes close to the diagonal line that represent 

390f course, one could make up some measure of national differences, based sayan geographic 
distance, but if the question we are asked is, "Are these two people of the same nationality?" then 
under normal circumstances the only answers are "yes" and "no." There is nothing in between. 

4[lIn the US school system there are 12 grades of one year each and to begin grade g students 
normally must be at least of age g + 5. Thus the 9th grade corresponds to children of age 14 and 
15. 
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Figure 7.11: Ages of pairs of friends in high school. In this scatter plot each dot cor-
responds to one of the edges in Fig. 7.10, and its position along the horizontal and 
vertical axes gives the ages of the two individuals at either end of that edge. The ages 
are measured in terms of the grades of the students, which run from 9 to 12. In fact, 
grades in the US school system don't correspond precisely to age since students can 
start or end their high-school careers early or late, and can repeat grades. (Each student 
is positioned at random within the interval representing their grade, so as to spread the 
points out on the plot. Note also that each friendship appears twice, above and below 
the diagonal.) 

friendships between students in the same grade. There is also, in this case, a 
notable tendency for students to have more friends of a wider range of ages 
as their age increases so there is a lower density of points in the top right box 
than in the lower left one. 

One could make a crude measure of assortative mixing by scalar charac-
teristics by adapting the ideas of the previous section. One could group the 
vertices into bins according to the characteristic of interest (say age) and then 
treat the bins as separate "types" of vertex in the sense of Section 7.13.1. For in-
stance, we might group people by age in ranges of one year or ten years. This 
however misses much of the point about scalar characteristics, since it con-
siders vertices falling in the same bin to be of identical types when they may 

227 



MEASURES AND METRICS 

228 

be only approximately so, and vertices falling in different bins to be entirely 
different when in fact they may be quite similar. 

A better approach is to use a covariance measure as follows. Let Xi be the 
value for vertex i of the scalar quantity (age, income, etc.) that we are interested 
in. Consider the pairs of values (x;,x j ) for the vertices at the ends of each 
edge (i, j) in the network and let us calculate their covariance over all edges as 
follows. We define the mean I' of the value of X; at the end of an edge thus: 

(7.77) 

Note that this is not simply the mean value of X; averaged over all vertices. It 
is an average over edges, and since a vertex with degree ki lies at the ends of ki 
edges it appears k; times in the average (hence the factor of Ie; in the sum). 

Then the covariance of Xi and x) over edges is 

(7.78) 

where we have made use of Eqs. (6.21) and (7.77). Note the strong similar-
ity between this expression and Eq. (7.69) for the modularity-only the delta 
function J( c;, cj ) in (7.69) has changed, being replaced by x;xj-

The covariance will be positive if, on balance, values Xi, Xj at either end of 
an edge tend to be both large or both small and negative if they tend to vary in 
opposite directions. In other words, the covariance will be positive when we 
have assortative mixing and negative for disassortative mixing. 

Just as with the modularity measure of Section 7.13.1, it is sometimes con-
venient to normalize the covariance so that it takes the value 1 in a perfectly 
mixed network-one in which all edges fall between vertices with precisely 
equal values of Xi (although in most cases such an occurrence would be ex-
tremely unlikely in practice). Putting Xj = X; in Eq. (7.78) gives a perfect mix-
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ing value of 

(7.79) 

and the normalized measure, sometimes called an assortativity coefficient, is the 
ratio of the two: 

Lij(A;j - k;kjl2m)x;xj 
r -

- L;j(k;J;j - k;kjl2m)x;xj· 
(7.80) 

Although it may not be immediately obvious, this is in fact an example of a 
(Pearson) correlation coefficient, having a covariance in its numerator and a 
variance in the denominator. We encountered another example in a different 
context in Section 7.12.2. The correlation coefficient varies in value between a 
maximum of 1 for a perfectly assortative network and a minimum of -1 for a 
perfectly disassortative one. A value of zero implies that the values of X; at the 
ends of edges are uncorrelated.41 

For the data of Fig. 7.11 the correlation coefficient is found to take a value 
of r = 0.616, indicating that the student friendship network has significant 
assortative mixing by age-students tend to be friends with others who have 
ages close to theirs. 

It would be possible in principle also to have assortative (or disassortative) 
mixing according to vector characteristics, with vertices whose vectors have 
similar values, as measured by some appropriate metric, being more (or less) 
likely to be connected by an edge. One example of such mixing is the for-
mation of friendships between individuals according to their geographic lo-
cations, location being specified by a two-dimensional vector of, for example, 
latitude/longitude coordinates. It is certainly the case that in general people 
tend to be friends with others who live geographically close to them, so one 
would expect mixing of this type to be assortative. Formal treatments of vec-
tor assortative mixing, however, have not been much pursued in the network 
literature so far. 

41There could be non-linear correlations in such a network and we could still have r = 0; the 
correlation coefficient detects only linear correlations. For instance, we could have vertices with 
high and low values of Xi connected predominantly to vertices with intermediate values. This is 
neither assortative nor disassortative by the conventional definition and would give a small value 
of r, but might nonetheless be of interest. Such non-linear correlations could be discovered by 
examining a plot such as Fig. 7.11 or by using alternative measures of correlation such as informa-
tion theoretic measures. ll111S it is perhaps wise not to rely solely on the value of r in investigating 
assortative mixing. 
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7.13.3 ASSORTATIVE MIXING BY DEGREE 

A special case of assortative mixing according to a scalar quantity, and one of 
particular interest, is that of mixing by degree. In a network that shows assorta-
tive mixing by degree the high-degree vertices will be preferentially connected 
to other high-degree vertices, and the low to low. In a social network, for exam-
ple, we have assortative mixing by degree if the gregarious people are friends 
with other gregarious people and the hermits with other hermits. Conversely, 
we could have disassortative mixing by degree, which would mean that the 
gregarious people were hanging out with hermits and vice versa. 

The reason this particular case is interesting is because, unlike age or in-
come, degree is itself a property of the network structure. Having one struc-
tural property (the degrees) dictate another (the positions of the edges) gives 
rise to some interesting features in networks. In particular, in an assortative 
network, where the high-degree nodes tend to stick together, one expects to 
get a clump or core of such high-degree nodes in the network surrounded by 
a less dense periphery of nodes with lower-degree. This core/periphery structure 
is a common feature of social networks, many of which are found to be as-
sortatively mixed by degree. Figure 7.12a shows a small assortatively mixed 
network in which the core/periphery structure is clearly visible. 

On the other hand, if a network is disassortatively mixed by degree then 
high-degree vertices tend to connected to low-degree ones, creating star-like 
features in the network that are often readily visible. Figure 7.12b shows an 
example of a small disassortative network. Disassortatively networks do not 
usually have a core/periphery split but are instead more uniform. 

Assortative mixing by degree can be measured in the same way as mixing 
according to any other scalar quantity. We define a covariance of the type 
described by Eq. (7.78), but with X; now equal to the degree k;: 

(7.81) 

or if we wish we can normalize by the maximum value of the covariance to get 
a correlation coefficient or assortativity coefficient: 

I.;,](A,] - k,k]/2m)k,k] 
r= 

'L,](k,5'1 - k,k]/2m)lc,k] 
(7.82) 

We give examples of the application of this formula to a number of networks 
in Section 8.7. 

One point to notice is that the evaluation of Eq. (7.81) or Eq. (7.82) requires 
only the structure of the network and no other information (unlike the calcu-

PROBLEMS 

(a) (b) 

Figure 7.12: Assortative and disassortative networks. These two small networks are not real networks-they were 
computer generated to display the phenomenon of assortativity by degree. (a) A network that is assortative by degree, 
displaying the characteristic dense core of high-degree vertices surrounded by a periphery of lower-degree ones. (b) A 
disassortative network, displaying the star-like structures characteristic of this case. Figure from Newman and Gir-
van I249]. Copyright 2003 Springer-Verlag Berlin Heidelberg. Reproduced with kind permission of Springer Science 
and Business Media. 

lations for other forms of assortative mixing). Once we know the adjacency 
matrix (and hence the degrees) of all vertices we can calculate r. Perhaps for 
this reason mixing by degree is one of the most frequently studied types of 
assortative mixing. 

PROBLEMS 

7.1 Consider a k-regular undirected network (i.e., a network in which every vertex has 
degree k). 
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