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Abstract

We describe here a mathematical model of the adaptive dynamics of a transport network of the true slime mold Physarum

polycephalum, an amoeboid organism that exhibits path-finding behavior in a maze. This organism possesses a network of tubular

elements, by means of which nutrients and signals circulate through the plasmodium. When the organism is put in a maze, the network

changes its shape to connect two exits by the shortest path. This process of path-finding is attributed to an underlying physiological

mechanism: a tube thickens as the flux through it increases. The experimental evidence for this is, however, only qualitative. We

constructed a mathematical model of the general form of the tube dynamics. Our model contains a key parameter corresponding to the

extent of the feedback regulation between the thickness of a tube and the flux through it. We demonstrate the dependence of the behavior

of the model on this parameter.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

There are two fundamental questions regarding informa-
tion processing in a biological system: Firstly, how ‘‘smart’’
is an organism? Secondly, how does the organism realize
this smartness? Even unicellular organisms can demon-
strate a greater capacity than initially thought for proces-
sing information, for example by solving a maze (Nakagaki
et al., 2000a; Nakagaki, 2001; Nakagaki et al., 2004a,b).
Here we provide an answer to the question of how the
amoeboid true slime mold, Physarum polycephalum,
realized this capacity. This organism is useful for study of
biological information processing, since the simplicity and
homogeneity of its body structure assist in the preparation
of mathematical models.

The body of the plasmodium of P. polycephalum

contains a network of tubes, by means of which nutrients
and chemical signals circulate throughout the organism
e front matter r 2006 Elsevier Ltd. All rights reserved.
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(Nakagaki et al., 2000a; Nakagaki, 2001). Circulation is
based on streaming through a complicated network of
tubular channels (TCs). Thus, the geometry of the tube
network is related to the transport of materials and
information within the organism. Since the tubes disas-
semble and reassemble within a period of a few hours in
response to external conditions, this system is very useful
for studying the function and dynamics of natural adaptive
networks (Nakagaki et al., 2004a,b).
When food sources (FSs) were presented to a starved

plasmodium that was spread over the entire agar surface,
regions of the plasmodium concentrated at each FS, as
shown in Fig. 1. Almost the entire plasmodium was taken
up in this accumulation, covering each source in order to
absorb nutrients, and only a few tubes remained connect-
ing the separated components of the plasmodium. It should
be noted that the connecting path traced the shortest route
to the FSs even in the complex geometry of a maze
(Nakagaki et al., 2000a, 2001). This phenomenon can be
applied to both path-finding in a maze and path selection
in a transport network. It is difficult to develop a
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Fig. 1. Schematic illustration of the changes in cell structure in response to

food. At first the plasmodium (PL) has a quasi-elliptic shape and the food

sources (FSs) are placed on the PL at two locations (a). The plasmodium

then gathers around the FSs, connecting them via a thick tube. The shape

resembles a dumbbell (b). The panel (c) gives a cross-sectional view of the

thick tube shown in (b). The sol flows through the tubular channels (TU),

which are made up of the actin-myosin fibers (PE or sponge part). The

actin-myosin fibers around the FSs exhibits rhythmic contractions and

push the sol into the tube (d).
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mathematical algorithm describing this natural form of
computation, because it is not known how the amoeboid
organism tackles this sort of combinatorial optimization
problem.

Since the driving force for transportation is the variation
in hydrostatic pressure along the tube, the hydrodynamic
theory implies that thick, short tubes are, in principle, the
most effective for transportation (Kamiya, 1959). By
forming the thickest, shortest tubes, the organism opti-
mizes its task of survival for the following reasons: (1) the
area of its body lying over the FS and working to absorb
nutrients is maximized and (2) intracellular communication
via the exchange of chemical signals between the positions
of FSs is at its most effective. Hence, this rather smart
strategy implies that the plasmodium is capable of solving
complex problems. In order to investigate the mechanisms
by which the path finding is achieved, we have developed a
mathematical model to simulate the adaptive dynamics of
tube networks.
2. Physiological background

Two empirical rules describe changes in the tubular
structure of the plasmodium: first, open-ended tubes, which
are not connected to a FS, tend to disappear; second, when
two or more tubes connect the same two FSs, the longer
tubes tend to disappear (Nakagaki et al., 2001). These
changes are closely related to the spatio-temporal dynamics
of cellular rhythms, as described below.

Tubular structures are formed in a specific direction
when shuttle streaming of the protoplasm, driven by
hydrostatic pressure due to rhythmic contractions, persists
in that direction for a certain period (Nakagaki et al.,
2000b). This experimental result can be explained at the
molecular level. Actomyosin fibers are arranged along the
length of the cortex of a tube, forming the basic framework
of the tube (Naib-Majani et al., 1982; Stockem and Brix,
1994). A similar kind of fiber orientation is induced by
artificial stretching of plasmodial tissue. This phenomenon
is known as the stretch activation effect (Kamiya, 1959;
Nagai et al., 1978) and is a natural property of fibrous
molecules. For instance, when a sheet made of vinyl
chloride is stretched, randomly oriented molecules tend to
reorient in the direction of the stretching force. This implies
that if there were a stretching force within the organism, it
could act to organize the tubular structures. A candidate
force is the shear stress exerted by fast flowing (1mm/s)
protoplasm. The estimated magnitude of the shear stress is
great enough to produce stretch activation. In summary,
then, it can be hypothesized that shear stress exerted by the
flow of protoplasm induces the stretching effect, which in
turn leads to regular orientation of the actomyosin fibers as
the basic framework of the tubes. What does this mean for
the regulation of tube formation? The answer lies in
positive feedback control between flux and thickness of the
tube, as described below.
The plasmodium consists of two parts: a ‘‘sponge’’

section including distributed actin-myosin fibers and a
‘‘tube’’ section made up of actin-myosin fibers. As
illustrated in Fig. 1, the protoplasmic sol in the sponge
section flows in and out of the tube section.
The tube widens with sufficient flux. This leads to a

further increase of flux because the resistance to the flow of
sol decreases in the wider channel. Hence, tubes with a
large flux grow, while those with a small flux disappear.
Clearly this dynamic behavior of the tube diameter is
autocatalytic. In other words, the network has the ability to
adapt to variations of flux. We therefore included this
adaptability in our model. However, since the experimental
data are not quantitative but qualitative, there remained a
large degree of freedom in formulating the model.
In order to understand the tube dynamics, we have to

consider another issue: how is the motive force of
protoplasmic flow determined? The actin-myosin fibers in
the sponge section exhibit rhythmic contractions with a
period of 2min. These contractions exert pressure on the
protoplasmic sol, which makes it flow into the tube,
through it, and out at the other end. The flow in the tube is
not unidirectional; the direction of flow can be observed to
switch back and forth. These periodic changes in direction
are known as protoplasmic shuttle streaming.
When FSs are presented to the organism, the oscillations

are out of phase between one FS and its neighboring tube.
This means that the sol in the FS flows in and out of the
tube. When there are two FSs, the two of them push the
sol, sometimes in phase and sometimes out of phase. In any
case, the sol is exchanged between the two FSs over longer
periods of time: even in in-phase oscillation, the sol flows
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through the tube between the FSs because baseline and
amplitude of pressure oscillation are different from each
other. Hence it is reasonable to assume that, at any given
moment, one FS is the source and the other the sink of sol
flow. Moreover, we assume that only the component of the
organism at the FS can generate pressure, and that the tube
is a passive element, since most of the organism lies over
the FSs and produces mechanical force synchronously at
each FS.

There have been many studies of patterns of rhythmic
contractions in relation to cell behavior (Matsumoto et al.,
1988; Miyake et al., 1996; Takamatsu et al., 2001; Oster
and Odell, 1984; Teplov et al., 1991; Takahashi et al., 1997;
Tero et al., 2005). However we will not consider this matter
further here: instead we propose to shed light on the
regulation of tube thickness by flux. Based on the above
assumptions, we will clarify the dynamical behavior of the
adaptive tube network.
3. Formulation of the mathematical model

Before deriving model equations, let us recall the way
in which the plasmodium of Physarum solves a maze.
The maze is initially filled by the plasmodium as shown in
Fig. 2(a); the tubular network then appears, and the tubes
in the dead end degenerate (b); finally, the shortest path
remains (c). We will adopt this particular maze as an
example for our simulations. The conformation of the
initial tubular network of the organism is represented by
the graph in Fig. 2(d), where each edge of the graph
represents a tube segment. The two special nodes
Fig. 2. Panels (a)–(c) illustrate the plasmodial maze-solving process: (a)

initial state; (b) intermediate state; (c) final state. Panel (d) is a graphical

representation of the maze. The source node N1 and the sink node N2 are

indicated by solid circles and other nodes are shown by solid squares.
corresponding to the FSs are named N1 and N2 and other
nodes are designated N3, N4, N5, and so forth. As
proposed in the previous section, one of the FS nodes
ðN1Þ always acts as a source and the other ðN2Þ as a sink.
The edge between Ni and Nj is designated Mij . If there are
several edges between the same nodes, they are designated
M1

ij , M2
ij, and so forth.

3.1. The flux of sol through the tubes

The variable Qij is used to express the flux through Mij

from Ni to Nj. Let us assume that the flow along the tube is
approximately Poiseuille flow. The flux Qij can then be
expressed by the formula

Qij ¼
pa4

ij

8k

pi � pj

Lij

,

where Lij and aij are the length and radius, respectively, of
the tube corresponding to the edge Mij , k is the viscosity
coefficient of the sol and pi is the pressure at the node Ni.
By setting Dij ¼ pa4

ij=8k what we call the conductivity of
the edge Mij, the above equation can be rewritten as

Qij ¼
Dij

Lij

ðpi � pjÞ. (1)

We assume zero capacity at each node; hence by
considering the conservation law of sol we haveX

i

Qij ¼ 0 ðja1; 2Þ. (2)

For the source node N1 and the sink node N2, the
following two equations holdX

i

Qi1 þ I0 ¼ 0;
X

i

Qi2 � I0 ¼ 0, (3)

where I0 is the flux flowing from the source node (or into
the sink node). It should be noted that I0 is a constant in
our model, which means that the total flux is fixed constant
throughout the process.
3.2. Adaptation

Experimental observation shows that tubes with larger
fluxes are reinforced, while those with smaller fluxes
degenerate. In order to describe such adaptation of tubular
thickness we assume that the conductivity Dij changes over
time according to the flux Qij . We propose the following
equation for the evolution of DijðtÞ

d

dt
Dij ¼ f ðjQijjÞ � rDij ; ð4Þ

where r is a decay rate of the tube. This equation implies
that the conductivity tends to vanish if there is no flux
along the edge, while it is enhanced by the flux. It is natural
to assume that f is a monotonically increasing continuous
function satisfying f ð0Þ ¼ 0. Note that the edge lengths,
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Fig. 3. (a) Illustration of the graph of Type I function f ðQÞ ¼ Qm ðm40Þ;
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Lij ’s are kept constant throughout the adaptation process
in contrast to Dij’s.

3.3. Dimensionless model equations

Let us take a characteristic magnitude of flux I0, and
take a characteristic conductivity D̄ so that the relation
f ðI0Þ � rD̄ ¼ 0 holds. By setting t ¼ ð1=rÞ~t and Dij ¼ D̄ ~Dij

and Qij ¼ I0 ~Qij , we have d=d~t ~Dij ¼
~f ðj ~QijjÞ �

~Dij , where
~f ð ~QÞ ¼ f ðI0 ~QÞ=f ðI0Þ.
In this paper, we will consider two types of functions

f ðQÞ which are given by f ðQÞ ¼ mQm and f ðQÞ ¼

dðQ=QhÞ
m=1þ ðQ=QhÞ

m where the exponent m is positive.
The former f ðQÞ is a simple choice which is a mono-
tonically increasing continuous function satisfying
f ð0Þ ¼ 0. The latter f ðQÞ also satisfies these conditions
and saturates where Qh gives a half of the saturation level.
The former f ðQÞ derives a dimensionless function form
~f ð ~QÞ ¼ ~Q

m
, and the latter f ðQÞ derives ~f ð ~QÞ ¼ ð1þ

aÞ ~Q
m
=1þ a ~Q

m
, where a ¼ ðI0=QhÞ

m. Hereafter, we call the
former dimensionless function form Type I, and the latter
Type II. Note that Type I function has one parameter m,
while Type II function has two parameters m and a.

By omitting ~ from the dimensionless variables and
function, we obtain the following dimensionless model
equation

d

dt
Dij ¼ f ðjQijjÞ �Dij , (5)

which we call an adaptation equation. Also, the character-
istic length L̄ is taken to be the shortest edge length, and
the characteristic pressure p̄ is given by the relation p̄ ¼

I0L̄=D̄, and we set Lij ¼ L̄ ~Lij and pi ¼ p̄ ~pi. Then the
network Poisson equation1 for the pressure is derived from
Eqs. (1)–(3) as follows:

X
i

Dij

Lij

ðpi � pjÞ ¼

�1 for j ¼ 1;

þ1 for j ¼ 2;

0 otherwise:

8><
>: (6)

Note that � is already omitted in Eq. (6) from each
dimensionless variable and constant as performed when
obtaining Eq. (5). By setting p2 ¼ 0 as the basic pressure
level, all pi’s can be determined by solving the equation
system (6), and each Qij ¼ Dij=Lijðpi � pjÞ is also obtained.

What should be emphasized is how our model expresses
the process of evolution. The variable Dij’s evolve
according to the adaptation Eq. (5), and variables such
as pi and Qij are determined by solving the network Poisson
equation (6) characterized by the value of the Dij’s (and
Lij ’s) at each moment.

Here we refer to the numerical schemes shortly. The
network Poisson equation (6) yields a linear equation
system with sparse symmetric matrix which is numerically
solved by standard ICCG (Incomplete Cholesky Conjugate
1Note that the left-hand side of (6) is a non-uniform discrete Laplacian

of the pressure p.
Gradient) method. We solved the adaptation equation (5)
using a semi-implicit scheme as follows:

Dnþ1
ij �Dn

ij

dt
¼ f ðjQn

ijjÞ �Dnþ1
ij ,

where dt is a time mesh size and the upper index n indicates
a time step.
The conductivity is closely related to the thickness of the

tube. Therefore, the disappearance of tubes is expressed by
the extinction of the conductivity of edges. During the
evolution of the model system, some edges grow or remain
while others disappear. We consider that our system has
solved the maze when the remaining edges form a path (or
paths) connecting the two special nodes N1 and N2.
Because the total flux is kept constant, there is, in a

sense, competition between edges—with each scrambling
for more flux. It is clear that positive feedback is included
in our model equations, since f ðQÞ is an increasing
function. However, it is not easy to predict how the system
evolves and what the asymptotic behavior will be for a
given function form f ðQÞ and given parameter values of the
parameters, as we will see in the next section.
4. Simulations of maze solving

In this section, we show that the model can solve a maze
in a manner similar to that used by the plasmodium of
Physarum. That is, our system automatically eliminates
some edges by reducing their conductivity, and reinforces
other edges, to arrive at a solution of the maze. Therefore,
we are especially interested in the asymptotic behavior of
the system—i.e. which edges survive in the long run.
We will describe simulations using the model equations

(5) and (6) adopting Type I function f ðQÞ ¼ Qm and Type
II function f ðQÞ ¼ ð1þ aÞQm=1þ aQm. In type II function,
the parameter m is taken in the range m41 to keep the
sigmoidal profile as indicated in Fig. 3(b).
The graph presented in Fig. 2(d) is adopted here. The

basic structure of the graph is expressed by the list of edges,
fMijgi;j, and their lengths, fLijgi;j, which are fixed through-
out the simulation. The path in the graph in Fig. 2(a)
corresponding to the real path a2 has one edge, while the
path corresponding to a1 has two edges. Similarly, the
(b) illustration of the graph of Type II function f ðQÞ ¼ ð1þ aÞQm=1þ aQm

(m41 and a40). Note that f ð1Þ ¼ 1 holds by definition of dimensionless

functions.
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paths corresponding to b1 and b2 have two and four edges,
respectively. Hereafter, we will designate the path in the
graph by the name of the real path to which it corresponds,
provided that the expression is not confusing. The length of
the path in the graph is the sum of the lengths of the edges
that compose the path. In our graph, the lengths of four
paths a1, a2, b1 and b2 are set as indicated in the table
below. Note that the ratio between the lengths of a1 and a2
is greater than the ratio between the lengths of b1 and b2.
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The initial values of Dij are randomly set, which are
distributed uniformly within the interval ½0:5; 1:0� unless
especially noted.
In all the simulations, the dead end paths vanish first; we

will refer to this hereafter as dead end cutting. Thus the
transition from the initial state indicated in Fig. 4(a) to the
intermediate state in Fig. 4(b) is always observed. Actually
dead end cutting is completed by the time t ¼ 5 as will be
shown in the left panels of Figs. 5–10. However, there are
differences between the asymptotic behaviors for different
choice of the function type and parameter values, which
will be demonstrated in the following subsections.

4.1. Type I: f ðQÞ ¼ Qm

Simulations are shown below for each case: m41,
0omo1, and m ¼ 1.

Case I: m41. Fig. 5(a) and (c) illustrate the evolution of
the system by plotting the conductivities DijðtÞ for all edges.
Rapid dead end cutting is observed, while the key paths
such as g1, g2, and g3 that must be included in the solution

(see Fig. 4(b)) are reinforced and their conductivities
quickly converge to f ð1Þ ¼ 1. (Note that dimensionless
total flux is always set unity by our non-dimensionalization
process.)
After reaching the intermediate form shown in Fig. 4(b),

one of the paths a1 and a2 and one of the paths b1 and b2
are selected at the following stage in this parameter range.
If the initial value of Dij is taken as almost uniform,
paths a1 and b1 always survive, as shown in Fig. 5(a) and
(b). However, the path b2 can remain instead of b1 as in
Fig. 5(c) and (d), if the initial conductivity of the path b1 is
(b) final state corresponding to panel (a); (c) superimposed plots of Dij ’s vs.

pper and lower panels derives from the difference in initial states. In the

et randomly in the interval ½0:25; 0:50�.
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Fig. 6. The parameter is set at m ¼ 2:0: (a) superimposed plots of time vs. Dij ’s; (b) final state.

Fig. 7. The parameter is set at m ¼ 0:9: (a) superimposed plots of Dij ’s vs. time; (b) final state.

Fig. 8. The parameter is set at m ¼ 0:5: (a) superimposed plots of Dij ’s vs. time; (b) final state.

Fig. 9. The parameter is set at m ¼ 1:0: (a) superimposed plots of Dij ’s vs. time; (b) final state. Note that the time-scale in panel (a) is different from that

used in the previous figures.

A. Tero et al. / Journal of Theoretical Biology 244 (2007) 553–564558
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Fig. 10. The parameter is set at m ¼ 3:0: (a) superimposed plots of Dij ’s vs. time for a ¼ 15:0; (b) final state corresponding to panel (a); (c) superimposed

plots of Dij ’s vs. time for a ¼ 22:0; (d) final state corresponding to panel (c); (e) superimposed plots of Dij ’s vs. time for a ¼ 27:0; (f) final state

corresponding to panel (e).

A. Tero et al. / Journal of Theoretical Biology 244 (2007) 553–564 559
set smaller than the one of b2. Note that the path a2 can
also survive instead of a1 if its initial conductivity is
sufficiently larger than the one of a1.

By comparing Figs. 5 and 6, it can be observed that the
choice between competing paths is made more rapidly for
larger values of m. However, the basin of attraction to the
shortest path (combination of paths a1 and b1) becomes
narrower as m goes larger, which were confirmed by a lot of
simulations. Generally, the selection of the final path is
dependent on the initial state in the parameter region m41,
and any pair of the four possible combinations of paths
remain stable to small perturbations.

Case II: 0omo1. In this parameter range, the final state
is quite different from that of the previous case. All of the
paths a1, a2, b1, and b2 survive at the end, as indicated in
Figs. 7 and 8. Also, a large number of simulations have
confirmed that the final state is the same, regardless of the
initial state. Comparing the final conductivities of parallel
paths such as a1 and a2, it is found that the shorter path
finally achieves higher conductivity. Thus, the path b1
attains higher conductivity than b2 although the difference
is smaller than the difference in conductivities of a1 and a2,
as shown in Fig. 7(a).
If the parameter m is taken as smaller, the convergence to

the final state is more rapid, and the differences between
the conductivities of the parallel paths are smaller than in
the case shown in Fig. 7.

Case III: m ¼ 1. This special value of m makes f ðQÞ linear
and leads to results that are somewhat different from the
previous cases, while the dead end cutting process is exactly
the same. Fig. 9(b) shows that the shortest path is selected
as the final state. Although it looks similar to the result of
the case where m41, there are essential differences. In this
case, the final state does not depend on the initial state,
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which means that the shortest path always survives whether
the distribution of conductivities in the initial state is
random or biased. Furthermore, Fig. 9(a) shows that
selection of the paths a1, a2, b1 and b2 is slower than in the
previous cases.

4.2. Type II: f ðQÞ ¼ ð1þ aÞQm=1þ aQm

Here we examine how the asymptotic behavior varies
corresponding to the change of the parameter a in Type II
function. For smaller values of a the situation is similar to
the case of Type I, m41, where only one of the competing
paths remains, as shown in Fig. 10(a) and (b). On the other
hand, Fig. 10(e) and (f) shows that all the competing paths
can survive with larger values of a. For intermediate values
of a, the result is also intermediate: only one of the pair a1
and a2 survives, while both of the pair b1 and b2 remain, as
indicated in Fig. 10(c) and (d).

The Type II function with sigmoidal profile was
motivated by the observation that the plasmodium makes
many thinner tubes rather than a single very thick tube
when the total sol flux is strong (corresponds to larger I0,
thus to larger a), while only a small number of tubes are
retained when the sol flux is weak.

5. Simple graphs and analysis

In the previous section we observed a rich variety of
network behavior that is not easy to analyse in a general
form. In this section, we concentrate on graphs that are
simple enough to permit of mathematical analysis but can
still provide broadly applicable insights.

5.1. T-shaped graph

In both experiments and simulations of maze solving,
rapid dead end cutting is always observed at the very
outset. In order to demonstrate this property more clearly,
we performed an experiment in which T-shaped initial
tubes were prepared and food was supplied at the left and
lower ends. The tubes in the upper branch then dis-
appeared quickly, as shown in Fig. 11(a) and (b).
Fig. 11. Panels (a) and (b) indicate the initial and final states, respectively,

of the T-shaped graph experiment. Panels (c) and (d) show, respectively,

the initial and the final state of the simulation, which consisted of four

nodes and three edges. The width of the black lines reflects the

conductivity of each path.
We used the graph in Fig. 11(c) to reproduce this
experimental outcome. In this simple example, Q13 ¼

Q32 ¼ 1 and Q34 ¼ 0, regardless of the form of the function
f ðQÞ. Thus, D34 vanishes exponentially, while D13 and D32

converge to f ð1Þ ¼ 1. The conductivity of the dead end
path vanishes exponentially because there is no flux in it at
any time. In the general graph, the dead end path also
vanishes exponentially for the same reason.
5.2. Ring-shaped graph—Type I: f ðQÞ ¼ Qm

We studied cases in which two paths connecting the
same nodes compete, as indicated by the ring-shaped graph
(Fig. 12). The corresponding graph consists of two nodes,
N1 and N2, and two edges connecting them. For simplicity,
we hereafter replace Li

12, Qi
12, and Di

12 ði ¼ 1; 2Þ by Li, Qi,
and Di, respectively. The fluxes along each path are
calculated as

Q1 ¼
D1=L1

D1=L1 þD2=L2
and Q2 ¼

D2=L2

D1=L1 þD2=L2
. (7)

Since Q1 and Q2 are nonnegative, adaptation equation (5)
becomes

d

dt
D1 ¼ f ðQ1Þ �D1;

d

dt
D2 ¼ f ðQ2Þ �D2:

8>><
>>: (8)

We analyse the equation for the function form f ðQÞ ¼

Qm ðm40Þ in this section. It is clear that there are three
equilibrium points for equation system (8). Two of them
describe the situation in which only one of the two paths
survives and the other vanishes, and are given by
ðD1;D2Þ ¼ ð1; 0Þ and ð0; 1Þ. We name these equilibrium
points A1 and A2, respectively. The third is the equilibrium
point

ðD1;D2Þ ¼
1

1þ ðL1=L2Þ
1=1�m

" #m
;

1

1þ ðL2=L1Þ
1=1�m

" #m !
,

which implies that both of the paths remain, and is
named B. Simulations are performed by controlling the
Fig. 12. Panels (a) and (b) indicate the initial and final state, respectively,

of the ring-shaped network experiment. The lengths of longer and shorter

paths are 42 and 13mm, respectively. The corresponding graph is shown

in panel (c), which has two nodes, N1 and N2, and two edges, M1
12 and

M2
12.
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Fig. 13. Black curves with arrows indicate the orbit, and grey curves are

null clines. The solid circle defines a stable equilibrium point and the open

circle indicates an unstable equilibrium point. (a) The parameters are set at

m ¼ 1:2, L1 ¼ 1:0, and L2 ¼ 1:1. The dashed line given by D1=D2 ¼

ðL1=L2Þ
m=m�1 is a separatrix of the equilibria A1 and A2 which passes

through B. (b) The parameters are set at m ¼ 0:8, L1 ¼ 1:0, and L2 ¼ 1:1.

Fig. 14. Black curves with arrows indicate orbits and grey curves

represent null clines. The solid circle indicates a stable equilibrium point,

and the open circle indicates an unstable equilibrium point. (a) The

parameters are set at m ¼ 1:0 and L1 ¼ 1:0, L2 ¼ 1:1. Every orbit

converges to the equilibrium point A1. (b) The parameters are set at m ¼
1:0 and L1 ¼ L2 ¼ 1:0.
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parameters m, L1, L2 and the initial values, and we
concentrate on the asymptotic behavior of the solution.
�
 m41. Fig. 13(a) shows several orbits in the D1–D2 phase
plane. Each orbit converges to one of the two equilibria
A1 and A2 and the initial values determine which one is
attained in the final state. Tubes of greater length and
lower conductivity, which characterize the initial state,
tend to disappear. To be precise, the tube which has a
greater value of D

m�1
i =L

m
i in the initial state is the one

that ultimately survives.

�
 mo1. In this case, both of the tubes invariably survive,
whatever the initial conditions. The final state is given
by the equilibrium point B, as shown in Fig. 13(b).

�
 m ¼ 1. The behavior of the solution for L1 ¼ L2 differs
from the solution for L1aL2, as described below.

(i) L1aL2. There are two equilibria, A1 and A2, as
indicated in Fig. 14(a). If L1oL2 holds, the final
state is always A1, which means that the shorter tube
survives regardless of initial values. If L14L2, every
orbit converges to A2 since the Eq. (8) is symmetric
for exchanging the indices 1 and 2. In any case, only
the shorter edge survives as long as m ¼ 1.

(ii) L1 ¼ L2. Fig. 14(b) presents the results of the
simulation. In this special case, all points on the
line segment A1A2 are equilibrium points. It is easily
observed that the ratio of D1 and D2 remains
constant along each orbit. Therefore, the final state
is given by the intersection of the line connecting the
initial point and the origin with the line segment
A1A2.
Let us summarize the simulation results in the following
table:
Equilibrium
points
Final
state
Dependence
on the
initial data
m41
 A1;A2;B
 A1 or A2
 Exists

mo1
 A1;A2;B
 B
 None
L1oL2
 A1;A2
 A1
 None

m ¼ 1
 L14L2
 A1;A2
 A2
 None
L1 ¼ L2
 A1A2
 Some point

of A1A2
Exists
We present a linear stability analysis at the equilibrium
points in the various cases listed in the above table. The
Jacobi matrix J on the right-hand side of Eq. (8) is
calculated as

J ¼

mQ
m�1
1

D2=L2

L1ðD1=L1 þD2=L2Þ
2
� 1 �mQ

m�1
1

D1=L1

L2ðD1=L1 þD2=L2Þ
2

�mQ
m�1
2

D2=L2

L1ðD1=L1 þD2=L2Þ
2

mQ
m�1
2

D1=L1

L2ðD1=L1 þD2=L2Þ
2
� 1

0
BBB@

1
CCCA,

and the Jacobi matrices at each equilibrium point are
denoted JðA1Þ, JðA2Þ, and JðBÞ, respectively. We first
examine the stability of the equilibrium point B. After
some calculation, the following formula is obtained

JðBÞ ¼

mQ�2 � 1 �m
L1

L2
Q�1

�m
L2

L1
Q�2 mQ�1 � 1

0
BB@

1
CCA,

where Q�1 and Q�2 are fluxes along the first and second tubes
at the equilibrium point B. Using the relation Q�1 þQ�2 ¼ 1,
we have

det JðBÞ ¼ 1� m and tr JðBÞ ¼ m� 2

thus,

det JðBÞo0 for m41,

det JðBÞ40; tr JðBÞo0 for 0omo1.

This means that the equilibrium point B is a saddle (and
thus unstable) for m41 and stable for 0omo1.
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Next we analyse the stability of the equilibrium points A1

and A2. When m41,

JðA1Þ ¼
�1 �m

L1

L2

0 �1

0
@

1
A; JðA2Þ ¼

�1 0

�m
L2

L1
�1

0
@

1
A,

hence A1 and A2 are stable. When 0omo1, the right-hand-
side of the equation system (8) is not differentiable at the
equilibrium points A1 and A2. However, it is clear that the
flow on the phase plane is severely repulsive around A1 and
A2, and hence they are unstable. Together with the stability
analysis of the equilibrium point B, these results support
the simulation results shown in Fig. 13. When m ¼ 1 and
L1aL2,

JðA1Þ ¼

�1 �
L1

L2

0
L1

L2
� 1

0
BB@

1
CCA; JðA2Þ ¼

L2

L1
� 1 0

�
L2

L1
�1

0
BB@

1
CCA.

Therefore, A1 is stable and A2 is unstable when L1oL2,
and A1 is unstable and A2 is stable when L14L2 which
agrees with the simulation results in Fig. 14.

5.3. Ring-shaped graph—Type II: f ðQÞ ¼ ð1þ aÞQm=1þ
aQm

In the maze solving simulations, we have already
observed a different type of asymptotic behavior for the
Type II function from the one of Type I. Let us analyse
here how the asymptotic behavior depends on the
parameter a. As in the Type I case, there are two
equilibrium points, A1 and A2 which are given by
ðD1;D2Þ ¼ ð1; 0Þ and ð0; 1Þ, respectively. There is also
another equilibrium point, B, as shown in Fig. 15(a),
located closer to A2 than to A1 due to the asymmetry of L1

and L2. The two equilibria A1 and A2 are stable, while B is
unstable. When the parameter a is increased, the saddle-
node bifurcation occurs at some critical value of ac,
producing the stable equilibrium point C1 and the unstable
equilibrium point C2. Thus, we have three stable equili-
Fig. 15. The black curves with arrows indicate the orbits, and the gray

curves are null clines. The solid circle indicates a stable equilibrium point

and the open circle an unstable equilibrium point. The parameters were set

at m ¼ 3:0, L1 ¼ 1:0, and L2 ¼ 1:1 in both panels: (a) a ¼ 20:0; (b)

a ¼ 27:0. The critical value of a is numerically obtained as ac ¼ 24:73.
brium points, A1, A2, and C1 for a4ac, as indicated in Fig.
15(b). The convergence to the equilibrium point C1 implies
the coexistence of both edges in the final state, which does
not occur for smaller values of a. As seen in panel (b), A1

and A2 can also be final states if the initial state is
sufficiently biased. In contrast to the Type I case, it is
difficult to obtain the expression of the coordinates of the
points B, C1 and C2, and is also difficult to calculate the
critical value ac.

6. Discussion

In this paper, we have described a simple mathematical
model of the adaptive network of a plasmodium capable of
solving a complex maze. The key underlying mechanism in
the model is positive feedback: greater conductivity results
in greater flux, and this in turn increases conductivity. As
shown in the previous sections, the system evolves through
the following two steps:
1.
 Dead end cutting.

2.
 Selection of the solution path from the competitive

paths.

The basis of selection depends on the function form and
parameter values.
From the point of view of maze solving, it is helpful to

adopt a Type I function form with larger values of m (41),
if one wishes to reach a solution as quickly as possible,
ignoring all possibilities of achieving alternative solutions.
The choice of m ¼ 1 as the Type I function is, in a sense, a
special case. As we have shown, convergence is slower than
with the other possible choices, but the shortest path can be
derived without any concern for initial values. Therefore,
there is a trade-off between speed and safety when the Type
I function model is used to find the shortest path to a goal.
On the other hand, the aim is to derive all possible paths
connecting the starting point and the goal, it is useful to
apply a Type I function with a smaller value of m
(0omo1).
Our simulations strongly suggest that the convexity of

the function f ðQÞ essentially affects the asymptotic
behavior of the system in the case of the Type I function.
Although the analysis described above was confined to very
simple graphs, a mathematical analysis of general con-
formation graphs is now underway. For the Type II
function, we did not observe a clear relationship between
the saddle-node bifurcation and the local convexity of the
sigmoidal profile.
We used the sigmoidal function for a flux-conductance

relationship as a more realistic form than the power
function. The observation that there is a maximum tube
diameter clearly motivates that the growth function should
saturate, whatever the mechanism causing the saturation.
This observation makes the functional form of the type II
growth function a reasonable modification from the power-
law growth function. We assumed that the flux was
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proportional to the pressure difference, but the thixotropy
(a property of non-Newtonian fluid) of protoplasm meant
that it barely flowed when the pressure difference was
small. Modeling the complex rheology of the protoplasm is
beyond the scope of this paper. To account for this
observation in our model, we take m41 in the type II
growth law so that the growth is less sensitive to changes in
the flux when the pressure differences are small.

The sigmoidal curve has physiological implications. The
control of the organism’s body shape in response to volume
of available food follows a previously established rule: the
number of remaining paths is larger when less food is
provided to a fixed amount of plasmodial inoculum (see
Nakagaki et al., 2001 for details). This behavior is
considered trade-off between the physiological require-
ments of moving towards the FSs in order to consume the
food and connecting the two FSs to maintain intracellular
communication. When the given amount of food is small,
only a small amount of plasmodium covers the food and
more plasmodium is devoted to making connections, which
makes the total flux of sol larger. Our simulation with the
sigmoidal function could realize the situation in which
multiple paths remain for a larger total flux. We therefore
conclude that the sigmoidal relationship between sol flux
and tube thickness explains the intelligent control of
amoeboid behavior in Physarum.

We discuss a physiological role of contraction oscilla-
tions in path finding in Physarum. A portion of organism
on a FS is regarded as one oscillator (referred to hereafter
as an FS-oscillator) because it oscillates with sufficient
synchrony. The flux flowing out from the source node
depends on pressure difference between the two FS-
oscillators, which is given by amplitudes and phases of
the oscillators. One FS-oscillator is perturbed by the other
as the sol flow mediates physical and chemical interactions
between the two FS-oscillators (Oster and Odell, 1984;
Teplov et al., 1991; Tero et al., 2005). This therefore
represent a system of coupled oscillators with variable
interaction. What is then required is for the coupled
oscillator dynamics to be solved together with the adaptive
network dynamics. However, it is acceptable to ignore the
coupled oscillator dynamics in cases of two FSs, because
sol flows back and forth between the two FSs, irrespective
of the phase difference shown by the oscillators. The time-
scale for adaptive process of tube thickness is much shorter
than that of shuttle flow. It is reasonable to assume that the
shuttle flow rate is averaged over an oscillation period and
that a model takes the form of direct current. In fact, we
confirmed that the simulation results were essentially the
same if we replaced the total flux by cosot, where o gives
the shorter time-scale than that of adaptation.

By contrast, when the number of FSs is larger than three,
one must include the coupled oscillator dynamics, because
the network dynamics cannot be decoupled from the
dynamics of the pressure oscillations at the FSs. Therefore,
the next stage is to write down the oscillator dynamics, with
the aim of reproducing them in mathematical models of
networks containing multiple FSs, as demonstrated in our
previous studies (Nakagaki et al., 2004a,b). The tube
network of true slime mold is a nice experimental system
for studying the self-organization of adaptive transporta-
tion networks in nature.
The model proposed in this paper suggests how the true

slime mold solves a problem to complete a task necessary
for its survival. The dynamic behaviors of the plasmodium,
simulated in our model, can be regarded as a means of
information processing in the absence of a nervous system.
A positive feedback mechanism between the conductance
of sol flow (or tube thickness) and sol flow plays a key role.
It remains unclear how this feedback mechanism is realized
at the material level of the protoplasmic sol and gel.
However, it is possible to conclude that such a system does
not require a central processing unit, but that parallel
dynamics within each part of the protoplasm are sufficient
for its information processing requirements. The algorithm
of slime mold for problem solving is of particular interest
when considering the evolutionary origin of information
processing by the brain. Physarum is a useful model system
for studying the emergence of information processing in
physical terms and its tube network helps to explain how
the self-organization of adaptive transportation networks
develops in nature.
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