
Centrality Measures

Vincenzo Bonifaci

March 16, 2017

1 Degree centrality

A crude measure of the importance of a node in a network is its degree. For example, the number
of friends in a social network. For a directed network, we have a choice between the in-degree or the
out-degree of nodes. For example, in a citation network, where the nodes are scientific articles and
the links represent citations, it makes sense to consider the in-degree as a measure of importance.

The degree centrality is easy to compute in linear time – if the graph is stored in adjacency list format,
just count the number of incident edges to each node with one pass over the graph, increasing the
appropriate counter when an edge is encountered.

2 Closeness centrality

Let dij denote the distance, in a network, between nodes i and j, measured as the minimum number
of hops needed to move from i to j. The mean distance from i to any other node of the network is
given by

`i =
1

n

∑
j

dij .

If a node has small `i, then roughly speaking it is close to many nodes of the network. So taking the
reciprocal gives a centrality measure, called the closeness centrality of i:

Ci = 1/`i =
n∑
j dij

.

Note, we could also use the definition Ci = n−1∑
j 6=i dij

, but the relative ordering of the nodes would be

exactly the same.

The closeness centrality vector can be computed by computing `i for each node i. Each `i can be
computed with a single BFS visit of the graph (how?). Therefore the complete centrality vector can
be computed in time O((m+ n)n). This is still quite slow for large networks, so faster approximation
algorithms have been proposed. See the paper by Eppstein and Wang in the project proposals – you
could implement this algorithm as your project.

The closeness centrality suffers from a couple of drawbacks:

1

3 BETWEENNESS CENTRALITY 2

• The numerical range of the centrality values is often small. There is no easy fix for this. For
example, in a measure on the largest component of the actor collaboration network (using
IMDB data), the node with best closeness is Christopher Lee (who played Saruman in Lord of
the Rings), with a closeness of 1/2.4138, while the node with worst closeness is Leia Zanganeh,
an Iranian actress with closeness of 1/8.6681.

• If the network is disconnected, all nodes have centrality zero (why?). An alternative is to use
the harmonic mean of the distances from i to other nodes:

C ′i =
1

n− 1

∑
j 6=i

1

dij
.

The average closeness of a node gives one possible global measure of how closely a network is connected.
We define it as:

` =
1

n

∑
i

`i.

If the network is not connected however, ` =∞ so in that case it may be preferable to use the inverse
mean of the harmonic centralities:

`′ =

(
1

n

∑
i

C ′i

)−1
.

3 Betweenness centrality

The betweenness centrality of a node i captures, roughly speaking, how often node i is found on a
shortest path between two random nodes of the network. To define it, let

• gst be the number of shortest paths between s and t

• nist be the number of shortest paths between s and t that pass through node i.

The betweenness centrality of i is the value

xi =
∑
s,t∈V

nist
gst

,

with the convention that nist/gst = 0 if both nist and gst are 0.

Note, the above value is not normalized between 0 and 1. If normalized values are required, the value
can be divided by n2 to ensure normalization.

• In the same actor collaboration network we already discussed (based on IMDB data), the node
with best betweenness is Fernando Rey, an actor who appeared in both European and American
films, played roles in several different languages, and worked extensively in both film and televi-
sion. He is perhaps most famous for acting in films by Luis Buñuel, like The discreet charm of
the bourgeoisie.

4 EIGENVECTOR CENTRALITY 3

Betweenness can also be defined for links, not just nodes. If we define nijst as the number of shortest
paths between s and t that use edge (i, j), then the edge betweenness of (i, j) can be defined as

xij =
∑
s,t∈V

nijst
gst

.

The notion of edge betweenness is used by certain clustering methods that we will study later on.

The node betweenness scores can be easily computed if edge betweenness scores are available, since
nist =

∑
j∈V :(j,i)∈E n

ji
st, and therefore

xi =
∑

j∈V :(j,i)∈E

xji.

An alternative interpretation of edge betweenness is in terms of flows: for every pair s, t, let node s
send a unit flow to t, split equally along all possible shortest paths from s to t. Then, the overall
combined flow on edge (i, j) is exactly the edge betweenness of (i, j).

To see why, note that if P is the set of all oriented shortest paths in the graph,

xij =
∑
s,t∈V

nijst
gst

=
∑
s,t∈V

∑
P∈P:(i,j)∈P

source(P)=s,sink(P)=t

1

gsource(P),sink(P)
=

∑
P∈P:(i,j)∈P

1

gsource(P),sink(P)
.

How can we compute the betweenness values? We use the alternative characterization of betweenness.
We first compute the flow sent from a given node s towards all other nodes of the network. We repeat
this for all nodes s. The sum of these flows will give us the betweenness for all edges of the network.

For each s ∈ V , the algorithm proceeds in three main steps:

1. Perform a BFS visit of the network starting from s.

2. Determine the number of shortest paths from s to each other node.

3. Determine the amount of flow from s to all other nodes, on each edge.

For the details, see the algorithm description in the book by Easley and Kleinberg, Section 3.B.
Overall, the algorithm runs in time O(n(m+ n)). Again, this is too large for very large networks, so
you are invited to implement fast algorithms to approximate the betweenness in your project, such
as the algorithm by Riondato and Kornaropoulos (see the references in the projects proposals on the
website).

4 Eigenvector centrality

A limitation of the degree measure is that it gives the same weight to all the neighbors of a node when
computing its importance. However, it may make more sense to give a larger weight to nodes that are

4 EIGENVECTOR CENTRALITY 4

themselves important. In a social network, for example, one node may be important because it has
social ties with few but important nodes (instead of just participating in many ties).

We come to the notion of eigenvector centrality. The idea is that we would like to associate a score
xi with every node i ∈ V , and in such a way that the score of a node is proportional to the combined
score of its neighbors. Thus, we would like to find a vector x ∈ Rn such that

xi = α
∑

j∈V : (i,j)∈E

xj = α
∑
j∈V

Ajixj ,

or in vector notation, x = αA>x, where α is some constant of proportionality. For an undirected
graph, the adjacency matrix is symmetric, so A = A> and the problem is equivalent to solving

Ax = α−1x. (1)

Now, there is always a special vector v1 such that Av1 = κ1v1, where κ1 is the largest eigenvalue of the
matrix A. This vector is what we call the eigenvector centrality vector; (v1)i measures the centrality
score of node i. Note that the eigenvector centrality vector solves equation (1) when α = κ−11 .

How do we compute vector v1? We start with some appropriate initial vector x(0) ∈ Rn, and repeatedly
perform the update

x(t) = Ax(t− 1),

until the direction of the vector x stabilizes (here A is the adjacency matrix of the graph). This is
called the power method.

The power method can be used to compute v1 starting from any x(0), as we now show. Notice that
we don’t care for the actual scaling of v1 (indeed, if Av1 = κ1v1, then Acv1 = κ1cv1 for any constant
c). What matters is the relative magnitude of the different entries of v1. If we want, we can normalize
the vector at each step; for example, we could always normalize it so that

∑
i |xi(t)|

2 = n for all t. In
the analysis below we do not normalize the vectors.

Since the eigenvectors of A form a basis of Rn, we can always write x(0) =
∑

i civi where the vi are
the n normalized eigenvectors of A, and ci are some appropriate constants. Then,

x(t) = Atx(0) =
∑
i

ciκ
t
ivi = κt1

∑
i

ci

(
κi
κ1

)t
vi. (2)

In particular, if |κi|/κ1 < 1, then (κi/κ1)
t → 0 as t → ∞. So, if we can prove that |κi| < κ1 for all

i 6= 1, we will have shown that x(t)/κt1 will tend to c1v1 (plus a vanishing error term), that is, the
power method will work correctly, because the vector x(t) will gradually become parallel to v1.

One useful property of the power method is that every iteration can be implemented efficiently if the
graph is sparse: O(m+ n) operations are sufficient to multiply A with any vector (why?).

However, we still have to clarify:

1. Convergence: Why |κi| < κ1 for all i 6= 1;

2. Initialization: How to initialize x(0) appropriately;

3. Running time: How large a t do we need to consider before stopping the process.

4 EIGENVECTOR CENTRALITY 5

4.1 Convergence of the Power Method

The theorems that we state below justify the correctness of the power method. They are a special
case of the so-called Perron-Frobenius theorem about irreducible nonnegative matrices.

The support digraph of a real-valued matrix A ∈ Rn×n is a digraph Supp(A) = (V,E) with node set
V = {1, . . . , n} and such that (i, j) ∈ E if and only if Aij 6= 0. Note that the support digraph of the
adjacency matrix of a digraph G is the initial digraph: Supp(A(G)) = G. A matrix is called irreducible
if its support digraph is strongly connected.

Theorem 4.1 (Perron-Frobenius). Let A ∈ Rn×n be an irreducible nonnegative matrix, with complex
eigenvalues κ1, . . . , κn ∈ C. Then:

• Among the eigenvalues with maximum modulus, there is one that is real and positive: that is,
there is an eigenvalue µ of A such that µ ∈ R and µ ≥ maxni=1 |κi| ≥ 0.

• If A is symmetric and Supp(A) is not bipartite, then the eigenvalue with maximum modulus is
unique, it has multiplicity 1, and the corresponding eigenvector has nonnegative components.

We will prove this only partially. We first prove the following.

Theorem 4.2. Let A be a symmetric nonnegative matrix, with eigenvalues κ1 ≥ κ2 ≥ . . . ≥ κn. Then
the eigenvalue with largest absolute magnitude is κ1, and κ1 ≥ 0. In other words, |κi| ≤ κ1 for all i.

Proof. Note that A has n real eigenvalues because it is symmetric. Let µ ∈ R, w ∈ Rn \ {0} be any
eigenpair of A, that is, Aw = µw. Using w>w > 0,

|µ|w>w =
∣∣∣µw>w∣∣∣ =

∣∣∣w>Aw∣∣∣ ≤∑
i,j

|Aijwiwj | =
∑
i,j

Aij |wi| |wj | = x>Ax

where x has components |wi|. We have used the triangle inequality: |a+ b| ≤ |a|+ |b|. Rewriting,

|µ| ≤ x>Ax

w>w
=
x>Ax

x>x
.

Let x =
∑

i civi, where vi are the normalized eigenvectors of A. Then

x>Ax

x>x
=

∑
j cjv

>
j A

∑
i civi∑

j cjv
>
j

∑
i civi

=

∑
j cjv

>
j

∑
i ciκivi∑

j cjv
>
j

∑
i civi

=

∑
i c

2
iκi∑
i c

2
i

≤
∑

i c
2
iκ1∑
i c

2
i

= κ1.

(Notice, incidentally, that equality is possible only when c1 = 1 and ci = 0 for i 6= 1). Therefore,
|µ| ≤ (x>Ax)/(x>x) ≤ κ1, which means that κ1 is larger than the absolute value of any eigenvalue of
A.

The eigenvalue κ1 is also called the dominant eigenvalue of A. Note that, for the Power Method to
converge, we require |κi| < κ1 for i 6= 1, but above we only proved |κi| ≤ κ1. The reader may wonder
if it can happen for example that |κn| = κ1. Indeed it is possible to show that, if A is the adjacency
matrix of a connected graph, this happens only when the graph is bipartite (this is the second part of
the Perron-Frobenius theorem). Intuitively, the power method is not guaranteed to work in that case,
because the vector x(t) will “flip-flop”.

4 EIGENVECTOR CENTRALITY 6

4.2 How to choose x(0)

From (2) one can see that the power method will not work if x(0) is such that c1 = 0, that is, if the
initial vector x(0) is orthogonal to v1. To avoid this, we select x(0) so that all its components are
positive. Then, using the following theorem, we can ensure that v>1 · x(0) > 0, so we can be sure that
x(0) will not be orthogonal to v1.

Theorem 4.3. Let A be a symmetric nonnegative matrix, with eigenvalues κ1 ≥ κ2 ≥ . . . ≥ κn. The
components of the dominant eigenvector v1 (the eigenvector associated to the dominant eigenvalue κ1)
are all, without loss of generality, nonnegative.

Proof. Let v1 be any eigenvector corresponding to κ1. Recall that κ1 ≥ 0 because of Theorem 4.2.
We have

κ1v
>
1 v1 =

∣∣∣κ1v>1 v1∣∣∣ =
∣∣∣v>1 Av1∣∣∣ ≤∑

i,j

|Aijv1iv1j | =
∑
i,j

Aij |v1i| |v1j | = x>Ax

where x has components |v1i|. Rewriting,

κ1 ≤
x>Ax

v>1 v1
=
x>Ax

x>x

and moreover, the last fraction is at most κ1, by what we have shown in the proof of Theorem
4.2. Therefore, we must have equalities everywhere and x must be an eigenvector of κ1, too, with
nonnegative components.

Can there be any other eigenvector (different from x) with eigenvalue κ1? It turns out that this is
impossible in a connected and non-bipartite undirected graph, but we omit the proof. In summary,
apart from the scaling factor the eigenvector with eigenvalue κ1 is unique, and it can be chosen with
all components nonnegative.

4.3 Number of iterations required

We have already argued that every iteration of the power method can be implemented in time O(m+n),
which, assuming the network is connected, simplifies to O(m). But a crucial question is, how many
iterations are necessary if we want to achieve a small error, say less than some ε?

If v1 is the centrality eigenvector, then let us measure our error by the formula∥∥∥∥ x(t)

c1κt1
− v1

∥∥∥∥
where ‖y‖ is the Euclidean norm of a vector y, that is, ‖y‖ =

√
y21 + . . .+ y2n.

We have seen that after t iterations, we have

x(t) = κt1

n∑
i=1

ci

(
κi
κ1

)t
vi,

4 EIGENVECTOR CENTRALITY 7

or
x(t)

c1κt1
= v1 +

c2
c1

(
κ2
κ1

)t
v2 + . . .+

cn
c1

(
κn
κ1

)t
vn

Thus the error at time t can be bounded above by

∑
i 6=1

∣∣∣∣ cic1
∣∣∣∣ (|κi|κ1

)t
‖vi‖ =

∑
i 6=1

∣∣∣∣ cic1
∣∣∣∣ (|κi|κ1

)t
≤
(
κ′

κ1

)t∑
i 6=1

∣∣∣∣ cic1
∣∣∣∣ ,

where κ′ = max(|κ2| , |κn|).

Let’s consider the coefficients ci as constants. In order to have an error of at most ε we therefore need
(κ′/κ1)

t · (constant) ≤ ε, that is,

t ≥ Ω

(
log(1/ε)

log(κ1/κ′)

)
.

In practice, what is typically done is to iterate the method until the variation between x(t+1)/ ‖x(t+ 1)‖
and x(t)/ ‖x(t)‖ is negligible enough.

4.4 Some examples

Consider the following graph.

1 3
2

4

The eigenvalues of the adjacency matrix (computed with Octave) are approximately κ1 = 2.17, κ2 =
0.31, κ3 = −1 and κ4 = −1.48, while κ′ = 1.48. If we run the power method, we find the eigenvector
centrality vector v1 = (0.85, 0.85, 1.0, 0.46) (we have chosen to normalize it so that its maximum entry
is 1). Thus node 3 has the highest centrality, and node 4 has the lowest. In this particular example,
the ranking of the nodes is the same as the one dictated by the degrees.

Let’s add one node.

1 3
2

54

The eigenvalues of the adjacency matrix are now approximately 2.21, 1, −0.54, −1, −1.68. If we run
the power method, we find the eigenvector centrality vector v1 = (0.82, 0.82, 1.0, 0.57, 0.26). Note that,
even though node 2 and node 4 have the same degree, node 2 obtained a higher eigenvector centrality
than node 4.

If instead we consider the path on 5 nodes,

1 32 54

4 EIGENVECTOR CENTRALITY 8

the eigenvalues of the adjacency matrix are approximately 1.73, 1, 0, −1 and −1.73. Note that
in this case κ′ = |−1.73| = κ1 and the power method is not guaranteed to converge! This is be-
cause the graph is bipartite. Nevertheless, if we start with x(0) = 1 the method does converge,
to the vector (0.5, 0.75, 1, 0.75, 0.5), but this is not the eigenvector centrality vector v1, which is
(0.5, 0.866, 1, 0.866, 0.5). What happened? Instead of converging to v1, the method converged to a
linear combination of v1 and vn (in fact, vn = (0.5,−0.866, 1,−0.866, 0.5)). The exact combination
depends on the starting point x(0).

4.5 Computing the second dominant eigenvalue and eigenvector

The Power Method allows us to compute the dominant eigenvalue and the associated eigenvector. But
sometimes, we may not want to compute the dominant eigenvalue (and the associated eigenvector),
but we want instead the second dominant eigenvalue, that is, the eigenvalue with the second largest
absolute value (and the associated eigenvector).

So, how can we compute the second dominant eigenpair of a matrix A? We have seen how to compute
the dominant eigenpair (κ1, v1). Now instead of starting from an arbitrary vector x, we make sure
that we start the Power Method from a vector y that has no component in the direction of v1. One
way is to first compute v1, and then define

y = x− (v>1 x)v1.

In fact we can check that v>1 y = 0 and v>i y = v>i x for all i 6= 1. So

y =
n∑
i=2

civi

and if we apply the power method we obtain

y(t) = Aty(0) = κt2

n∑
i=2

ci

(
κ2
κi

)t
vi.

If there is a unique eigenvalue of absolute value |κ2|, so that the ratio
∣∣∣κ2κi ∣∣∣ is less than 1 for i > 2, the

method converges.

In practice, numerical errors may generate some noise in the direction of the v1 component, so it may
be necessary to periodically remove from y(t) any component in the direction of v1 (say, once every
K iterations for some appropriate value K that depends on the amount of numerical noise).

As an application, consider for example the Laplacian matrix L, with eigenvalues λ1 ≤ . . . ≤ λn.
We have mentioned that λ2 is a good measure of the connectivity of the graph, so we may want to
compute it. Now, λ2 is the second smallest eigenvalue, not the second largest; but notice that, if vi is
the eigenvector related to λi, then

(λnI − L)vi = (λn − λi)vi,

so vi is also an eigenvector of the matrix λnI −L with eigenvalue λn − λi. That is, the eigenvalues of
the matrix λnI −L are in 1-to-1 correspondence with the eigenvalues of L, but in reverse order. So to
compute the second smallest eigenpair of L we can compute the largest eigenvalue of L (that is, λn)
and then use it to compute the second largest eigenpair of λnI−L using the method described above.

5 KATZ CENTRALITY 9

5 Katz centrality

A shortcoming of the eigenvector centrality is that, for a directed network, only nodes in a strongly
connected component of two or more vertices can have a positive centrality value. In particular, for
networks with few or no cycles, such as citation networks, the eigenvector centrality becomes useless.

One way around this problem is to give every node some value of centrality “for free”. We use the
revised equation

xi = α

n∑
j=1

Ajixj + β,

where α and β are some positive parameters. In matrix terms, we get the linear system

x = αA>x+ β1,

which we can solve for x to get x = β(I −αA>)−1 · 1. Since it just scales the vector x, the parameter
β is irrelevant and we can set β = 1 to get

x = (I − αA>)−1 · 1.

The value of α, however, is relevant. If α is too small, then the measure is not very interesting because
as α → 0, all nodes get the same weight (1). Larger values of α will differentiate more between the
nodes. However, we have to make sure that the matrix I − αA> is invertible, otherwise the linear
system has no solution. The condition det(I − αA>) = 0 is equivalent to

det(A> − α−1I) = 0,

so we see that the largest value of α−1 for which the determinant is zero is exactly the largest eigenvalue
κ1 of A>. In practice, α is often set relatively close to the threshold value 1/κ1, say, α = 1/2κ1.

How to compute the Katz centrality vector? One way of course is to solve the linear system given
by its definition, but this can be very expensive; just storing the matrices requires time Ω(n2), and
inverting an n×n matrix is even more expensive. Instead, similar to the power method, we can iterate
the update

x(0) = 1

x(t+ 1) = αA>x(t) + 1,

until the direction of x does not change significantly.

Why does the above iteration make sense? Let’s see what the first few iterations produce:

x(0) = 1

x(1) = (αA>)x(0) + 1 = (I + αA>)1

x(2) = (αA>)x(1) + 1 = (I + αA> + (αA>)2)1

. . .

6 PAGERANK 10

By induction, it is easy to see that x(t) = (I + αA> + . . .+ (αA>)t)1.

Now, the following identity is true for any square matrix X as long as I −X is invertible:

(I −X)−1 = I +X +X2 +X3 + . . . ,

therefore, taking X = αA>, the matrix (I − αA>)−1 can be expressed as the series

(I − αA>)−1 = (I + αA> + (αA>)2 + (αA>)3 + . . .)

We therefore see that as t→∞, if x(t) converges, it converges to (I−αA>)−11, which is exactly what
we wanted.

6 Pagerank

In some situations, the Katz centrality is still not appropriate because the centrality value is spread
from a node to its successors independently of how many they are. Instead, sometimes it may be more
natural to subdivide the centrality value among all successors. This may also give more resistance
against “spam”. Mathematically:

xi = α
n∑
j=1

Aji
xj

δ+j
+ β,

where δ+j is the out-degree of node j.

However, some nodes have δ+j = 0 (the sinks), which would cause a division by zero in the above

definition. What to do? In this case we add a loop from j to j, to force δ+j = 1. Note that these nodes
still do not contribute any value to the centrality of other nodes.

Let D to be the out-degree matrix of the modified digraph. We want x to be the solution to

x = αA>D−1x+ β1.

This centrality measure is called the Pagerank; it is a central idea behind Google’s webpage ranking
algorithm.

The value of the scalar β does not matter much, since it is simply a scaling factor. To see more clearly
what is happening, take β = (1− α)/n; then the original equation becomes the following

x = αWx+ (1− α)
1

n
,

where W = A>D−1 is the walk matrix 1. The equation above is nothing but the stationary distribution
equation for a random walk. In fact, Pagerank has the following alternative interpretation, called the
random surfer model : from a given node j, with probability α pick randomly an outgoing edge and

1In the random walks literature, the walk matrix is more commonly defined as W = D−1A, so that the sum of the
entries in each row is 1, and the stationary distribution is given by a row vector. However, we follow the linear algebra
convention, where we seek for column vectors (instead of row vectors).

6 PAGERANK 11

follow it; and with probability (1− α), restart from completely random node, i.e., any of the n nodes
of the digraph, with identical probability, 1/n.

Reasoning as with Katz’s centrality, the value of α should be less than the inverse of the largest
eigenvalue of A>D−1. This eigenvalue has value 1, so we need α < 1. Web search publications
mention that α values around 0.85 seems to yield reasonable tradeoffs between speed and accuracy
(but there is nothing special about the number 0.85).

Theorem 6.1. The dominant eigenvalue of A>D−1 has value 1.

Proof. Note that each column of A>D−1 sums to 1, or in other words, each row of P = D−1A sums
to 1. Also, the eigenvalues of A>D−1 and the eigenvalues of P are the same. To show that the largest
eigenvalue of P is at most 1, apply Gershgorin’s circle theorem. For any row of P , either the value on
the diagonal is 0 and the sum of the other entries is 1, or (if it corresponds to a sink in the original
graph) the value on the diagonal is 1 and the all the remaining entries are 0. Thus the eigenvalues
are contained in the union of two types of circles: some circles centered in 0 with radius 1, and some
circles centered in 1 with radius 0.

To show that the largest eigenvalue of P is at least 1, consider the product P ·1 and notice that P ·
1 = 1. Therefore, 1 is an eigenvalue of P (with eigenvector 1), and so 1 is also an eigenvalue of A>D−1.
(We remark however, that the eigenvectors of P and of A>D−1 will in general be different).

By using non-uniform values βi instead of the same value β for all nodes, we can give more or less
importance to certain “seed” pages. We then obtain the so-called “personalized Pagerank” score,
defined as the solution of

xi = α
n∑
j=1

Aji
xj

δ+j
+ βi,

which is, in matrix notation, the same as

x = αA>D−1x+ β,

and thus has solution
x = (I − αA>D−1)−1β.

Take β = (1 − α)v (again, the scaling factor in front of the vector v does not really matter). The
random surfer interpretation is now that, with probability α, we move to an adjacent node as before,
and with probability (1−α), we follow the random distribution given by the vector v (in the uniform
case, v was just 1

n · 1):

x = αA>D−1x+ (1− α)v.

As for the Katz centrality, the Pagerank vector is computed in practice not by inverting a matrix, but
by interpreting the definition as an update rule and iterating it until convergence.

Again, we can apply the matrix inversion identity

(I −X)−1 = I +X +X2 +X3 + . . . ,

6 PAGERANK 12

this time with X = αW = αA>D−1, so the Pagerank vector can also be written as

x = (I + αW + α2W 2 + α3W 3 + . . .)β

=
∑
t≥0

αtW tβ.

Each term of the sum can be computed from the previous term by one multiplication by the (sparse)
matrix αW , so our update rule is equivalent to

x(0) = β

x(t+ 1) = αWx(t) + β.

In a sparse graph, every such iteration requires O(m) time and typically a small number of iterations
is sufficient for the centrality vector to stabilize (clearly, it also depends on how close α is to 1).

