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1 Games: examples and definitions

Game theory deals with situations in which multiple rational, self-interested entities (individuals,
firms, nations, etc.) have to interact.

A normal-form game tries to model a situation in which the entities have to take their decisions
simultaneously and independently.

An example is the following Rock-Paper-Scissors game. We can represent it by a table in which
the rows correspond to decisions of Player 1, and the columns to decisions of Player 2.

P1, P2 rock paper scissors

rock draw P2 wins P1 wins

paper P1 wins draw P2 wins

scissors P2 wins P1 wins draw

Definition 1.1. A normal form game is given by:

• a set N (set of players); often we use N = {1, 2, . . . , n}

• for each i ∈ N , a nonempty set Si (strategies of player i)

The set S := S1 × S2 × . . .× Sn is called the set of states of the game.

• for each i ∈ N , a function ui : S → R (utility or payoff function)

Example 1.2 (Rock-Paper-Scissors).

u1, u2 rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Notice that Rock-Paper-Scissors is a zero-sum game: in any state of the game, the sum of the utilities
of the players is constant. The Rock-Paper-Scissors game is also finite: the set N of players has finite
cardinality, as do the strategy sets S1, . . . , Sn.
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Example 1.3 (Prisoner’s dilemma). Two suspects are interrogated in separate rooms. Each of them
can confess or not confess their crime. If both confess, they get 4 years each in prison. If one confess
and the other does not, the one that confessed gets 1 year and the other 5. If both are silent, they get
2 years each.

Like in this case, sometimes it is more natural to use cost functions (ci)i∈N instead of utility
functions (ui)i∈N ; it is equivalent, since we can always define ui := −ci.

c1, c2 confess silent

confess 4, 4 1, 5

silent 5, 1 2, 2

Notice that the Prisoner’s dilemma is not a zero-sum game; however it is a finite game.
So far we saw two-player games, but obviously there are games with more players.

Example 1.4 (Bandwidth sharing). A group of n users has to share a common Internet connection
with finite bandwidth. Each user can decide what fraction of the bandwidth to use (any amount
between none and all). The payoff of each user is higher if this fraction is higher, but is lower if the
remaining available bandwidth is too small (packets get delayed too much).

We can model this by defining

• N := {1, . . . , n};

• Si := [0, 1] for each i ∈ N ;

• ui(s) := si · (1 −
∑

j∈N sj), where si ∈ Si is the strategy selected by player i and s =
(s1, s2, . . . , sn).

Notice that this game is not finite: the set of players is finite, but the strategy sets have infinite
cardinality.

Example 1.5 (“Chicken”). Two drivers are headed against each other on a single lane road. Each of
them can continue straight ahead or deviate. If both deviate, they both get low payoff. If one deviates
while the other continues, he is a “Chicken” and will get low payoff, while the payoff for the other
player will be high. If both continue straight ahead, however, a disaster will occur which will cost a
lot to the players, as both cars will be destroyed.

u1, u2 deviate straight

deviate 0, 0 -1, 5

straight 5, -1 -100, -100

Notice that the type of games we discussed (normal-form games) are “one-shot” in the sense that
players move simultaneously and interact only once. There are also model of games in which players
move one after the other (extensive games) or in which the same game is played many times (repeated
games). However, in the course we will focus on normal-form games.
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2 Solution concepts

After we have modeled a game, we would like to know which states of the game represent outcomes
that are likely to occur, assuming that players are self-interested and rational. There are different
ways to do this; each of them gives rise to a different solution concept. Different solution concepts
have different interpretations, advantages and drawbacks.

2.1 Dominant strategy equilibrium

Consider a state of a game Γ = (N, (Si)i∈N , (ui)i∈N ). The utility of a player i in state s ∈ S will
depend on both the action of player i himself (si) as well as on the actions of the other players, which
we denote conventionally by s−i. So we can rewrite ui(s) (utility of player i in state s) as ui(si, s−i).
Be careful when reading (or using) this notation: we are not reordering the components of the vector
s, we are just writing them differently. For example, with (zi, s−i) we simply mean the state vector
that is obtained from s by replacing the i-th component of state s with zi.

The idea of a dominant strategy equilibrium is that if a player has an action that is the best among
his actions independently of what the other players do, then this is certainly a possible outcome of the
game. This is formalized as follows.

Definition 2.1. State s ∈ S is a dominant strategy equilibrium if for all i ∈ N and for all s′ ∈ S,

ui(si, s
′
−i) ≥ ui(s

′
i, s
′
−i).

(In terms of costs: ci(si, s
′
−i) ≤ ci(s

′
i, s
′
−i).)

Example 2.2 (Dominant strategy in the Prisoner’s dilemma). Is (silent,silent) a dominant strategy
in the Prisoner’s dilemma game? The answer is no: if s =(silent,silent), there is a player (i = 1) and
there is an alternative state s′ =(confess,silent) for which c1(silent, silent) > c1(confess, silent). This
contradicts the definition.

Is (confess,confess) a dominant strategy? We have to check 8 cases (2 players times 4 states) to
be sure, but the answer is yes. The point is that no matter what the other player is doing, for each
player it is cheaper to confess. So (confess,confess) is a dominant strategy.

A dominant strategy equilibrium represents a “strong” type of equilibrium: every player can rely
on his strategy independently of what the others are doing. Unfortunately, it has a big drawback: it
does not always exist!

Exercise 2.1. Show that the Chicken game has no dominant strategy equilibrium.

Since it does not always exist, we cannot use the dominant strategy equilibrium concept to predict
what will happen in a game : the players will certainly do something, and this something will not in
general be a dominant strategy equilibrium, simply because the game might not admit one.

2.2 Pure Nash equilibrium

The idea of a pure Nash equilibrium is of that of calling a state an equilibrium if for every player,
assuming that other players are not changing their action, the player is selecting his “best” action.
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That is, no player has an incentive to deviate unilaterally from his action; no one has an interest to
alter the “status quo”.

Definition 2.3. A state s ∈ S is a pure Nash equilibrium (PNE) if for all i ∈ N and for all s′i ∈ Si,

ui(si, s−i) ≥ ui(s
′
i, s−i).

The definition is superficially very similar to that of dominant strategy: take your time to appre-
ciate the difference.

However, there is a similarity and in fact every dominant strategy equilibrium is also a pure Nash
equilibrium (can you see why?).

The converse is not true: some games without dominant strategy equilibriums have pure Nash
equilibria.

Example 2.4 (PNE in the Chicken game). Is the state s =(straight,straight) a PNE in the Chicken
game? The answer is no: there is a player (i = 1) and an alternative strategy s′i (deviate) such that
−1 = u1(straight,straight) < u1(deviate,straight) = −100. This contradicts the definition.

Is the state s =(deviate,straight) a PNE in the Chicken game? Let’s see. If player 1 knows
that player 2 is going straight, deviating (-1) is better than going straight (-100). On the other
hand, if player 2 knows that player 1 is deviating, going straight (5) is better than deviating (0). So
(deviate,straight) is a PNE.

Notice that PNE need not be unique: in fact, in the Chicken game, there are two PNE (which is
the other one?).

Let’s look at a more complicated example.

Example 2.5 (PNE in the Bandwidth sharing game). Let’s see what player i will do when the
strategies of the other players are s1, . . . , si−1, si+1, . . . , sn. Let’s define t :=

∑
j 6=i si. From the point

of view of player i, the quantity t is a constant. By definition of the payoffs we have ui(s) = si·(1−t−si).
Player i can control the one-dimensional variable si ∈ [0, 1]. If we take the derivative of ui(s) with
respect to si we obtain

∂

∂si
ui(s) = 1− t− 2si.

By standard analysis we know that the maximum of ui is achieved when ∂
∂si

ui(s) = 0 (or, possibly,
when si is at an extreme point of [0, 1], but this is not the case in our example because we get the
worst possible payoff in that case). So the player will select si = 1

2(1− t) = 1
2(1−

∑
j 6=i sj). This will

be true for all i ∈ N , so by symmetry we find out that si = 1/(n + 1) for all i.

Unfortunately, although the PNE solution concept applies to a larger class of games, it has basically
the same problem as that of a dominant strategy equilibrium: it does not always exist.

Exercise 2.2. Show that the Rock-Paper-Scissors game has no PNE.
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2.3 Mixed Nash equilibrium

So far there was no way for a player to interpolate between two actions: either he selects action si or
he performs another action sj . We now relax this constraint by allowing the player to choose actions
with certain probabilities. For example he might choose action s1 with probability 1/4, action s2 with
probability 1/3, and action s3 with probability 5/12. Such strategies are called mixed, in contrast
with the usual deterministic pure strategies. Pure strategies are perhaps more natural, but often the
strategies arising in a game are in fact mixed strategies.

Definition 2.6. A mixed strategy for player i is a probability distribution on the set of Si of pure
strategies. That is, it is a function pi : Si → [0, 1] such that

∑
si∈Si

pi(si) = 1. A mixed state is a
family (pi)i∈N consisting of one mixed strategy for each player.

Notice that every pure state s has probability p(s) := p1(s1) · p2(s2) · . . . · pn(sn) of being realized.
Thus, a mixed state (pi)i∈N induces an expected payoff for player i equal to

∑
s∈S p(s) · ui(s).

This is the expected payoff of a state selected probabilitically by the players according to their mixed
strategies.

We can now define the notion of mixed Nash equilibrium (MNE).

Definition 2.7. A mixed state is a mixed Nash equilibrium if no player can unilaterally improve his
expected payoff by switching to a different mixed strategy.

Since mixed strategies generalize pure strategies, it is not hard to see that every PNE is also a
MNE. The opposite is not true. In fact, there are games without PNE that admit MNE. More than
that: the surprising fact is that any finite game (game where N and S are finite) admits at least one
mixed Nash equilibrium!

Theorem 2.1 (Nash 1950). Every finite game admits at least one mixed Nash equilibrium.

Example 2.8 (MNE for the Rock-Paper-Scissors game). We saw that the Rock-Paper-Scissors game
has no pure Nash equilibria. According to Nash’s Theorem it should have at least one equilibrium. In
fact, we claim that if we define p := (1/3, 1/3, 1/3), then (p, p) is a MNE.

Let’s verify this. Consider for example player 1. We should check that when player 2 uses probabil-
ity distribution p, player 1 has no incentive to play a mixed strategy different from p. (We should also
do a similar check with the roles of the players reversed, but in this case everything will be symmetric.)

If player 2 uses mixed strategy p, and player 1 uses a generic mixed strategy q = (a, b, c) where
a + b + c = 1, then the expected payoff for player 1 becomes

a · 1/3 · (0) + a · 1/3 · (−1) + a · 1/3 · (+1)+

b · 1/3 · (+1) + b · 1/3 · (0) + b · 1/3 · (−1)+

c · 1/3 · (−1) + c · 1/3 · (+1) + c · 1/3 · (0) = 0.

So the expected payoff is a constant (0) no matter what a, b and c are! This means that there is no
point for player 1 in changing them. Similarly, when player 1 plays (1/3, 1/3, 1/3), player 2 has no
incentive to change his strategy from (1/3, 1/3, 1/3). The two players “lock” each other in the mixed
Nash equilibrium.
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At this point you might wonder why another mixed state, like (1/2, 1/4, 1/4) for both players, is
not a MNE. The reason is that if e.g. player 2 plays something different from (1/3, 1/3, 1/3), then
the player 1 is no longer indifferent between his possible responses. In this case, when player 2 plays
(1/2, 1/4, 1/4), it will be more convenient for player 1 to play (0, 1, 0) than to play (1/2, 1/4, 1/4): since
player 2 is playing Rock more often than Paper or Scissors, it is best for player 1 to always play Paper
(you can check this by computing the expected payoff for player 1). So ((1/2, 1/4, 1/4), (1/2, 1/4, 1/4))
is not a MNE.


