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In this note I present a concise proof of the existence and uniqueness of the limit
distribution of an ergodic markov chain. This nice proof was described to me by
David Gilat of Hebrew University during a hot summer afternoon in Perugia.

A finite n×n transition probability matrix P := [pij] is a stochastic matrix where
pij is the transition probability of going from state i to state j. We can think of
a directed graph whose edges are weighted with transition probabilities. Note that
since P is stochastic, the sum of the probabilities of the arcs outgoing from a vertex
i sum up to 1, i.e.

∑
j pij = 1.

We are interested in keeping track of the random walk of a pebble. The pebble
is initially placed on the graph according to an initial distribution X0 and then it
proceeds by traversing the edges ij’s with their associated probabilities pij’s. X0 is
a probability distribution, X i

0 being the probability of placing the pebble on vertex
i initially. After one step the position of the pebble is given by the probability
distribution

X1 = X0P

and in general after t steps we have

Xt = Xt−1P = X0P
t.

The infinite sequence X0, X1, X2, . . . is called a markov chain. In what follows we shall
use the term markov chain somewhat loosely, sometimes referring to the sequence
proper, sometimes to the transition matrix P or the underlying graph. The meaning
will be clear from the context.

We want to study the convergence of Xt. Under what conditions does it converge
to a (unique) limit for any starting distribution? As we shall see there are two
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conditions that P should satisfy. Each of them is by itself necessary. It is remarkable
that together they are also sufficient.

Let us start by asking what conditions might imply that the limit distribution
is not unique or does not exist. Assume that the graph has a two sinks, i.e. two
connected components where it is possible to enter but from which it is not possible
to get out. In this case the limit, if it exists, is certainly not unique. Therefore strong
connectivity of the underlying graph (the one defined by edges with strictly positive
weight) is certainly a necessary condition. A strongly connected markov chain is also
called irreducible.

Consider now a bipartite graph and assume that X0 places the pebble with prob-
ability 1 on a specific vertex i. At even times the pebble can only be on the same
side of the bipartition, while at odd times it is on the opposite side. Therefore Xt

oscillates forever and does not converge to any limit. This motivates the following
definitions and lemmata.

Definition 1 The period of a state i is defined as

p(i) := gcd{n ≥ 1 : pn
ii > 0}.

A state i is aperiodic if its period is 1. A markov chain is aperiodic if every state is.

Consider a markov chain in which a state i is at the intersection of two cycles, one
of length 4 and the other of length 5. The reader can verify that for all t ≥ 12, pt

ii > 0.
This is no coincidence.

Lemma 1 If a markov chain is aperiodic then there exists N such that, for all i, if
t ≥ N then pn

ii > 0.1

Strong connectivity and aperiodicity imply the following useful lemma.

Lemma 2 If a markov chain is strongly connected and aperiodic then there exists
N such that, for all i and j, if t ≥ N then pt

ij > 0.

Proof: Exercise.

We want to show that if a markov chain is strongly connected and aperiodic then
there exist a unique limit distribution, and moreover this distribution is stationary.
A distribution X is stationary if X = XP . Both results will be derived as corollary
of the following theorem.

1For the proof see for instance the nice booklet Finite Markov Chains and Algorithmic Apllica-
tions by Olle Häggström. Recall that we consider here finite transition matrices.
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Theorem 1 Let P be the transition matrix of a markov chain that is aperiodic and
strongly connected. Then, limt→∞ P t = P∞ where

P∞ :=


π1 π2 . . . πn

π1 π2 . . . πn

. . . . . .
π1 π2 . . . πn


Before the proof let us derive some consequences of the theorem. Let π :=

(π1, π2, . . . , πn).

Corollary 1 π is a stationary distribution.

Proof:

P∞P =
(

lim
t→∞

P t
)

P

=
(

lim
t→∞

P t+1
)

= P∞.

The claim follows.

Corollary 2 For any initial distribution X0, the sequence Xt = Xt−1P = X0P
t

converges to π, i.e. limt→∞Xt = π.

Proof:

lim
t→∞

Xt = lim
t→∞

(
X0 P t

)
= X0

(
lim
t→∞

P t
)

= X0P
∞

=
n∑

i=1

X i
0 π

=

(
n∑

i=1

X i
0

)
π

= π.
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Thus, if the chain is irreducible and aperiodic there is a unique limit, stationary
distribution.

Proof of Theorem 1: The idea of the proof is to keep track of the smallest and
largest values of a fixed column j of P t, as t goes to infinity. Fix j, and let mt and
Mt be the smallest and largest values of the jth column, respectively. By lemma 2
we can assume without loss of generality that pij > 0. Let

δ := min
ij

pij.

Since P is stochastic, from the assumption above we have

0 < δ := min
ij

pij ≤
1

2
.

We ill prove that:

1. The sequence {mt} is non-decreasing;

2. The sequence {Mt} is non-increasing;

3. ∆t := Mt −mt goes to zero (exponentially fast!).

Exercise 1 Show that thee 3rd condition does not imply that mt and Mt converege
to the same limit, while the three conditions together do.

We now prove that the first condition holds.

mt+1 = min
i

pt+1
kj

= min
i

∑
k

pik pt
kj

≥ min
i

∑
k

pik mt

= min
i

(∑
k

pik

)
mt

= mt.

The second condition can be established similarly. Let us now establish the 3rd
condition. Let ` be the row where Mt lies, i.e. Mt = pt

`j. Then,

mt+1 = min
i

pt+1
kj
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= min
i

∑
k

pik pt
kj

= min
i

p`j Mt +
∑
k 6=`

pikp
t
kj

≥ min
i

p`j Mt +
∑
k 6=`

pikmt

= min
i

p`j Mt + (1− p`j) mt

≥ min
i

δ Mt + (1− δ) mt

= δ Mt + (1− δ) mt.

Similarly,
Mt ≤ δmt + (1− δ)Mt.

Taking the two together we get,

∆t+1 = Mt+1 −mt+1

≤ (1− 2δ)(Mt −mt)

≤ (1− 2δ)∆t

≤ (1− 2δ)t.
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