Probability: Basic Notions

Vincenzo Bonifaci

April 10, 2013

1 Probability Spaces and Random Variables

Definition 1.1. A probability space has three components:

- a sample space Ω , the set of "outcomes";
- a family \mathcal{F} of subsets of Ω , the *events*;
- a probability function $\Pr: \mathcal{F} \to \mathbb{R}$.

The probability function is any function $Pr : \mathcal{F} \to \mathbb{R}$ that satisfies:

- $0 \leq \Pr(E) \leq 1$ for any event E;
- $\Pr(\Omega) = 1;$
- for any finite or countable sequence of mutually disjoint events E_1, E_2, \ldots ,

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) = \sum_{i\geq 1} \Pr(E_i).$$

When Ω has finite or countable cardinality we say that the probability space is *discrete*. In that case, \mathcal{F} can be taken to be the set of all subsets of Ω .

Proposition 1.1. For any two events E_1 , E_2 ,

$$\Pr(E_1 \cup E_2) = \Pr(E_1) + \Pr(E_2) - \Pr(E_1 \cap E_2)$$

Lemma 1.2 (Union Bound). For any finite or countable sequence of events E_1, E_2, \ldots ,

$$\Pr\left(\bigcup_{i\geq 1} E_i\right) \leq \sum_{i\geq 1} \Pr(E_i).$$

Definition 1.2. Two events E and F are *independent* when $Pr(E \cap F) = Pr(E) \cdot Pr(F)$. In general, events E_1, E_2, \ldots, E_k are *mutually independent* if for any subset $I \subseteq \{1, \ldots, k\}$,

$$\Pr\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} \Pr(E_i).$$

Definition 1.3. The conditional probability that event E occurs given that event F occurs is

$$\Pr(E|F) = \frac{\Pr(E \cap F)}{\Pr(F)}.$$

Theorem 1.3 (Law of Total Probability). If E_1, E_2, \ldots, E_n are mutually disjoint events in Ω such that $\bigcup_{i=1}^{n} E_i = \Omega$, then for any event B,

$$\Pr(B) = \sum_{i=1}^{n} \Pr(B|E_i) \cdot \Pr(E_i).$$

Theorem 1.4 (Bayes' Law). If E_1, E_2, \ldots, E_n are mutually disjoint events in Ω such that $\bigcup_{i=1}^n E_i = \Omega$, then for any event B,

$$\Pr(E_j|B) = \frac{\Pr(B|E_j) \cdot \Pr(E_j)}{\sum_{i=1}^{n} \Pr(B|E_i) \cdot \Pr(E_i)}$$

Definition 1.4. A random variable X on sample space Ω is a function $X : \Omega \to \mathbb{R}$. When the codomain of X is finite or countable, then X is a *discrete* random variable.

For a discrete random variable, we use the notation

$$\Pr(X = a) = \sum_{s \in \Omega: X(s) = a} \Pr(s).$$

Clearly, $\sum_{a} \Pr(X = a) = 1$ since X must take some value.

Definition 1.5. Two discrete random variables X, Y are *independent* if for all values x, y,

$$\Pr((X = x) \cap (Y = y)) = \Pr(X = x) \cdot \Pr(Y = y).$$

Definition 1.6. The *expectation* of a discrete random variable X, denoted by $\mathbb{E}[X]$, is defined by $\mathbb{E}[X] = \sum_{i} i \cdot \Pr(X = i)$.

For a continuous random variable X there must exist a function p(x) (probability density function or pdf) such that for any set $B \subseteq \mathbb{R}$,

$$\Pr(X \in B) = \int_B p(x) dx.$$

Similarly to the discrete case, the probability density function must satisfy $\int_{-\infty}^{\infty} p(x) dx = 1$.

The probability density function can be used to find out the probability of certain events. For example,

$$\Pr(a \le X \le b) = \int_a^b p(x) dx.$$

2 FUNDAMENTAL PROBABILITY DISTRIBUTIONS

Definition 1.7. The *expectation* of a continuous random variable X with pdf f is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x p(x) dx.$$

Theorem 1.5 (Linearity of Expectations). For a finite collection of random variables X_1, X_2, \ldots, X_n (with finite expectations),

$$\mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i].$$

Moreover, for any constant c, $\mathbb{E}[cX] = c \mathbb{E}[X]$.

Theorem 1.6 (Jensen's Inequality). If f is a convex function, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$).

Proof. We prove the theorem assuming that f has a Taylor expansion. Let $\mu = \mathbb{E}[X]$. By Taylor's theorem there is a $c \in \mathbb{R}$ such that

$$f(x) = f(\mu) + f'(\mu)(x - \mu) + \frac{f''(c)(x - \mu)}{2}$$

$$\geq f(\mu) + f'(\mu)(x - \mu),$$

since $f''(c) \ge 0$. Taking expectations,

$$\mathbb{E}[f(x)] \ge \mathbb{E}[f(\mu)] + f'(\mu)(\mathbb{E}[x] - \mu)$$

= $\mathbb{E}[f(\mu)] = f(\mu) = f(\mathbb{E}[X]).$

Proposition 1.7. If X, Y are independent random variables, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

Definition 1.8. The variance of a random variable X is $\operatorname{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$.

2 Fundamental Probability Distributions

Recall that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Definition 2.1. A *Bernoulli* random variable Y with parameter p is defined by Pr(Y = 1) = p, Pr(Y = 0) = 1 - p.

Proposition 2.1. The expectation of a Bernoulli random variable with parameter p is p.

Proof. $\mathbb{E}[Y] = 1 \cdot p + 0 \cdot (1 - p) = p.$

Definition 2.2. A binomial random variable X with parameters n and p is defined by

$$\Pr(X=j) = \binom{n}{j} p^j (1-p)^{n-j}.$$

Proposition 2.2. The expectation of a binomial random variable with parameters n and p is np.

Proof. X can be written as $\sum_{i=1}^{n} X_i$ where each X_i is a Bernoulli random variable with parameter p. So

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = np.$$

The Euler beta function is related to the binomial distribution. It is defined for x > 0, y > 0 by

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt.$$

Proposition 2.3. When x and y are positive integers,

$$B(x,y) = \frac{(x-1)!(y-1)!}{(x+y-1)!}.$$

Definition 2.3. A geometric random variable X with parameter p is defined by

$$\Pr(X = n) = (1 - p)^{n-1}p.$$

Proposition 2.4. The expectation of a geometric random variable with parameter p is 1/p.

Proof. Define q = 1 - p. From the definition of expectation we get

$$\begin{split} \mathbb{E}[X] &= \sum_{k=1}^{\infty} kpq^{k-1} = \frac{p}{q} \sum_{k=1}^{\infty} kq^k \\ &= \frac{p}{q} \sum_{k=1}^{\infty} \sum_{j=1}^k q^k = \frac{p}{q} \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} q^k \\ &= \frac{p}{q} \sum_{j=1}^{\infty} q^j \frac{1}{1-q} = \frac{1}{q} \sum_{j=1}^{\infty} q^j \\ &= \frac{1}{q} \cdot \frac{q}{1-q} = \frac{1}{p}. \end{split}$$

Definition 2.4. A discrete *power-law* random variable X with parameter $\alpha > 1$ is defined by

$$\Pr(X = x) = C \cdot x^{-\alpha},$$

for all $x \ge 1$, where C is a normalization constant. Similarly, a *continuous power-law* random variable is defined by a pdf

$$p(x) = C \cdot x^{-\alpha}$$

for all $x \ge 1$ and an appropriate constant C.

2 FUNDAMENTAL PROBABILITY DISTRIBUTIONS

Notice that $C = (\sum_{x\geq 1}^{\infty} x^{-\alpha})^{-1}$ in the discrete case. In the continuous case, it can be shown that $C = \alpha - 1$.

Note: The power-law distribution could be defined also when $\alpha \leq 1$, but in that case it is necessary to truncate the distribution at some large value M (so all values of X would be in [1, M]).

Proposition 2.5. The expectation of a discrete power-law random variable with parameter α is $C \sum_{x=1}^{\infty} \frac{1}{x^{\alpha-1}}$.

Proof. The expectation is

$$\sum_{x=1}^{\infty} xCx^{-\alpha} = C\sum_{x=1}^{\infty} \frac{1}{x^{\alpha-1}}$$

Notice that this expectation is finite only when $\alpha > 2$, since the series $\sum_{x \ge 1} \frac{1}{x^{\gamma}}$ has finite value only for $\gamma > 1$.

Proposition 2.6. The expectation of a continuous power-law random variable with parameter α is $(\alpha - 1)/(\alpha - 2)$.

Proof. The expectation is

$$\int_{1}^{\infty} x C x^{-\alpha} dx = C \int_{1}^{\infty} \frac{1}{x^{\alpha-1}} dx = \frac{C}{\alpha-2} = \frac{\alpha-1}{\alpha-2}.$$

Power-law distributions are also called *scale-free* because their density function is scale-free, that is, for every constant a there is a constant b such that p(ax) = bp(x) for all $x \ge 1$. Indeed,

$$p(ax) = \frac{C}{(ax)^{\alpha}} = \frac{1}{a^{\alpha}} \frac{C}{x^{\alpha}} = \frac{1}{a^{\alpha}} p(x).$$

The power-law distribution is the only scale-free distribution.

Notice that $\ln p(x) = \ln C - \alpha \ln x$, therefore if we draw the density function of a power-law distribution on a log-log scale plot, its graph is a straight line, with slope $-\alpha$.

A famous example of power-law distribution is the distribution of occurrences of words in texts.