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1 Probability Spaces and Random Variables
Definition 1.1. A probability space has three components:

e a sample space (), the set of “outcomes”;

e a family F of subsets of €2, the events;

e a probability function Pr: F — R.

The probability function is any function Pr : F — R that satisfies:

e 0 <Pr(E) <1 for any event E;

e Pr(Q) =1;

e for any finite or countable sequence of mutually disjoint events Eq, s, .. .,

Pr(|JE:| =) Pr(E).

i>1 i>1

When € has finite or countable cardinality we say that the probability space is discrete. In that case,
F can be taken to be the set of all subsets of 2.

Proposition 1.1. For any two events Ey, Fo,
PI‘(El U Eg) = Pr(El) + PY(EQ) - PI‘(El N EQ)
Lemma 1.2 (Union Bound). For any finite or countable sequence of events Ey, Es, . ..,

Pr(|JEi| <) Pr(E)).

i>1 i>1
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Definition 1.2. Two events E and F are independent when Pr(E N F) = Pr(E) - Pr(F). In general,
events F1, B, ..., E are mutually independent if for any subset I C {1,...,k},

Pr (ﬂ E) = [[Pr(E).

iel iel
Definition 1.3. The conditional probability that event E occurs given that event F' occurs is
Pr(ENF)
Pr(F)

Theorem 1.3 (Law of Total Probability). If Ey, Es, ..., E, are mutually disjoint events in Q0 such
that U E; = Q, then for any event B,

Pr(E|F) =

n
Pr(B) =Y _Pr(B|E;) - Pr(E;).
i=1
Theorem 1.4 (Bayes’ Law). If E1, Es, ..., E, are mutually disjoint events in § such that U}_, E; = Q,
then for any event B,
Pr(B|E;) - Pr(E;)
Pr(E;|B) = J L
) = S PeBIE) - Pr(E)
Definition 1.4. A random wvariable X on sample space 2 is a function X : @ — R. When the
codomain of X is finite or countable, then X is a discrete random variable.

For a discrete random variable, we use the notation
Pr(X =a)= Z Pr(s).
s€Q:X(s)=a

Clearly, Y, Pr(X = a) = 1 since X must take some value.

Definition 1.5. Two discrete random variables X, Y are independent if for all values x, y,
Pr(X=2)n(Y =y) =Pr(X =2) -Pr(Y =y).

Definition 1.6. The ezpectation of a discrete random variable X, denoted by E[X], is defined by
EX] =) ,i-Pr(X =1).

For a continuous random variable X there must exist a function p(z) (probability density function
or pdf) such that for any set B C R,

Pr(X € B) = /Bp(ac)dac.

Similarly to the discrete case, the probability density function must satisfy ffooo p(x)dx = 1.
The probability density function can be used to find out the probability of certain events. For
example,

Prla< X <b) = /bp(:r)dac.
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Definition 1.7. The expectation of a continuous random variable X with pdf f is

E[X] = / ~ op(a)da.

—00

Theorem 1.5 (Linearity of Expectations). For a finite collection of random variables X1, Xo,..., X,

(with finite expectations),
n n
> x| - 3oan)
i=1 i=1

Moreover, for any constant ¢, E[cX] = cE[X].

E

Theorem 1.6 (Jensen’s Inequality). If f is a convex function, then f(E[X]) < E[f(X)]).

Proof. We prove the theorem assuming that f has a Taylor expansion. Let p = E[X]. By Taylor’s
theorem there is a ¢ € R such that

N f”(C)(; — )

since f”(c) > 0. Taking expectations,

E[f(2)] = E[f ()] + ' () (E[z] — )
= E[f ()] = f(n) = f(E[X]). =

Proposition 1.7. If X, Y are independent random variables, then E[XY] = E[X]E[Y].

Definition 1.8. The variance of a random variable X is Var[X] = E[X?] — (E[X])%.

2 Fundamental Probability Distributions
Recall that (}) = ﬁl]ﬁ),

Definition 2.1. A Bernoulli random variable Y with parameter p is defined by Pr(Y = 1) = p,
Pr(Y =0)=1-p.

Proposition 2.1. The expectation of a Bernoulli random variable with parameter p is p.
Proof. EY]=1-p+0-(1—p)=p. O
Definition 2.2. A binomial random variable X with parameters n and p is defined by

prx =)= ()

Proposition 2.2. The expectation of a binomial random variable with parameters n and p is np.
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Proof. X can be written as Y . ; X; where each X; is a Bernoulli random variable with parameter p.

So . .
> XZ-] =Y E[Xi] = np.
=1 =1

E[X]=E

The Fuler beta function is related to the binomial distribution. It is defined for x > 0, y > 0 by

1
Bl y) = / 11— )t
0
Proposition 2.3. When x and y are positive integers,

(x =Dy —1)!
(x4+y—-1)!

B(z,y) =
Definition 2.3. A geometric random variable X with parameter p is defined by

Pr(X =n)=(1-p)""'p.
Proposition 2.4. The expectation of a geometric random variable with parameter p is 1/p.

Proof. Define ¢ =1 — p. From the definition of expectation we get

ElX] = Zk’qulzzikq’“

Definition 2.4. A discrete power-law random variable X with parameter o > 1 is defined by
Pr(X=2)=C- 279,

for all x > 1, where C is a normalization constant. Similarly, a continuous power-law random variable
is defined by a pdf

plz)=C-x™°

for all x > 1 and an appropriate constant C.
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Notice that C' = (3°°%, 27%)~! in the discrete case. In the continuous case, it can be shown that
C=a-1 -

Note: The power-law distribution could be defined also when o < 1, but in that case it is necessary
to truncate the distribution at some large value M (so all values of X would be in [1, M]).

Proposition 2.5. The expectation of a discrete power-law random variable with parameter o is

C Z;O::l ;1:0‘1*1 :

Proof. The expectation is

[e.e] oo 1
o
et =0y L
rx=1 =1
Notice that this expectation is finite only when a > 2, since the series ) -, ac% has finite value only

for v > 1. O

Proposition 2.6. The expectation of a continuous power-law random variable with parameter « is

(@ =1)/(er = 2).

Proof. The expectation is

0 00 _
/ zCx™ %z = C/ 1 dr = ¢ _ ¢ 1 O
1 1

go—l a—2 a-—2

Power-law distributions are also called scale-free because their density function is scale-free, that
is, for every constant a there is a constant b such that p(ax) = bp(z) for all > 1. Indeed,

c 10 1

PUT) = gy = e = gaP)

The power-law distribution is the only scale-free distribution.

Notice that Inp(z) = InC — alnz, therefore if we draw the density function of a power-law
distribution on a log-log scale plot, its graph is a straight line, with slope —a.

A famous example of power-law distribution is the distribution of occurrences of words in texts.



