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1 Probability Spaces and Random Variables

Definition 1.1. A probability space has three components:

• a sample space Ω, the set of “outcomes”;

• a family F of subsets of Ω, the events;

• a probability function Pr : F → R.

The probability function is any function Pr : F → R that satisfies:

• 0 ≤ Pr(E) ≤ 1 for any event E;

• Pr(Ω) = 1;

• for any finite or countable sequence of mutually disjoint events E1, E2, . . .,

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr(Ei).

When Ω has finite or countable cardinality we say that the probability space is discrete. In that case,
F can be taken to be the set of all subsets of Ω.

Proposition 1.1. For any two events E1, E2,

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2)− Pr(E1 ∩ E2).

Lemma 1.2 (Union Bound). For any finite or countable sequence of events E1, E2, . . . ,

Pr

⋃
i≥1

Ei

 ≤∑
i≥1

Pr(Ei).
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Definition 1.2. Two events E and F are independent when Pr(E ∩ F ) = Pr(E) · Pr(F ). In general,
events E1, E2, . . . , Ek are mutually independent if for any subset I ⊆ {1, . . . , k},

Pr

(⋂
i∈I

Ei

)
=
∏
i∈I

Pr(Ei).

Definition 1.3. The conditional probability that event E occurs given that event F occurs is

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

Theorem 1.3 (Law of Total Probability). If E1, E2, . . . , En are mutually disjoint events in Ω such
that ∪ni=1Ei = Ω, then for any event B,

Pr(B) =
n∑
i=1

Pr(B|Ei) · Pr(Ei).

Theorem 1.4 (Bayes’ Law). If E1, E2, . . . , En are mutually disjoint events in Ω such that ∪ni=1Ei = Ω,
then for any event B,

Pr(Ej |B) =
Pr(B|Ej) · Pr(Ej)∑n
i=1 Pr(B|Ei) · Pr(Ei)

.

Definition 1.4. A random variable X on sample space Ω is a function X : Ω → R. When the
codomain of X is finite or countable, then X is a discrete random variable.

For a discrete random variable, we use the notation

Pr(X = a) =
∑

s∈Ω:X(s)=a

Pr(s).

Clearly,
∑

a Pr(X = a) = 1 since X must take some value.

Definition 1.5. Two discrete random variables X, Y are independent if for all values x, y,

Pr((X = x) ∩ (Y = y)) = Pr(X = x) · Pr(Y = y).

Definition 1.6. The expectation of a discrete random variable X, denoted by E[X], is defined by
E[X] =

∑
i i · Pr(X = i).

For a continuous random variable X there must exist a function p(x) (probability density function
or pdf ) such that for any set B ⊆ R,

Pr(X ∈ B) =

∫
B
p(x)dx.

Similarly to the discrete case, the probability density function must satisfy
∫∞
−∞ p(x)dx = 1.

The probability density function can be used to find out the probability of certain events. For
example,

Pr(a ≤ X ≤ b) =

∫ b

a
p(x)dx.
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Definition 1.7. The expectation of a continuous random variable X with pdf f is

E[X] =

∫ ∞
−∞

xp(x)dx.

Theorem 1.5 (Linearity of Expectations). For a finite collection of random variables X1, X2, . . . , Xn

(with finite expectations),

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].

Moreover, for any constant c, E[cX] = cE[X].

Theorem 1.6 (Jensen’s Inequality). If f is a convex function, then f(E[X]) ≤ E[f(X)]).

Proof. We prove the theorem assuming that f has a Taylor expansion. Let µ = E[X]. By Taylor’s
theorem there is a c ∈ R such that

f(x) = f(µ) + f ′(µ)(x− µ) +
f ′′(c)(x− µ)

2
≥ f(µ) + f ′(µ)(x− µ),

since f ′′(c) ≥ 0. Taking expectations,

E[f(x)] ≥ E[f(µ)] + f ′(µ)(E[x]− µ)

= E[f(µ)] = f(µ) = f(E[X]).

Proposition 1.7. If X, Y are independent random variables, then E[XY ] = E[X]E[Y ].

Definition 1.8. The variance of a random variable X is Var[X] = E[X2]− (E[X])2.

2 Fundamental Probability Distributions

Recall that
(
n
k

)
= n!

k!(n−k)! .

Definition 2.1. A Bernoulli random variable Y with parameter p is defined by Pr(Y = 1) = p,
Pr(Y = 0) = 1− p.

Proposition 2.1. The expectation of a Bernoulli random variable with parameter p is p.

Proof. E[Y ] = 1 · p+ 0 · (1− p) = p.

Definition 2.2. A binomial random variable X with parameters n and p is defined by

Pr(X = j) =

(
n

j

)
pj(1− p)n−j .

Proposition 2.2. The expectation of a binomial random variable with parameters n and p is np.
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Proof. X can be written as
∑n

i=1Xi where each Xi is a Bernoulli random variable with parameter p.
So

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = np.

The Euler beta function is related to the binomial distribution. It is defined for x > 0, y > 0 by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt.

Proposition 2.3. When x and y are positive integers,

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
.

Definition 2.3. A geometric random variable X with parameter p is defined by

Pr(X = n) = (1− p)n−1p.

Proposition 2.4. The expectation of a geometric random variable with parameter p is 1/p.

Proof. Define q = 1− p. From the definition of expectation we get

E[X] =
∞∑
k=1

kpqk−1 =
p

q

∞∑
k=1

kqk

=
p

q

∞∑
k=1

k∑
j=1

qk =
p

q

∞∑
j=1

∞∑
k=j

qk

=
p

q

∞∑
j=1

qj
1

1− q
=

1

q

∞∑
j=1

qj

=
1

q
· q

1− q
=

1

p
.

Definition 2.4. A discrete power-law random variable X with parameter α > 1 is defined by

Pr(X = x) = C · x−α,

for all x ≥ 1, where C is a normalization constant. Similarly, a continuous power-law random variable
is defined by a pdf

p(x) = C · x−α

for all x ≥ 1 and an appropriate constant C.
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Notice that C = (
∑∞

x≥1 x
−α)−1 in the discrete case. In the continuous case, it can be shown that

C = α− 1.
Note: The power-law distribution could be defined also when α ≤ 1, but in that case it is necessary

to truncate the distribution at some large value M (so all values of X would be in [1,M ]).

Proposition 2.5. The expectation of a discrete power-law random variable with parameter α is
C
∑∞

x=1
1

xα−1 .

Proof. The expectation is
∞∑
x=1

xCx−α = C
∞∑
x=1

1

xα−1
.

Notice that this expectation is finite only when α > 2, since the series
∑

x≥1
1
xγ has finite value only

for γ > 1.

Proposition 2.6. The expectation of a continuous power-law random variable with parameter α is
(α− 1)/(α− 2).

Proof. The expectation is∫ ∞
1

xCx−αdx = C

∫ ∞
1

1

xα−1
dx =

C

α− 2
=
α− 1

α− 2
.

Power-law distributions are also called scale-free because their density function is scale-free, that
is, for every constant a there is a constant b such that p(ax) = bp(x) for all x ≥ 1. Indeed,

p(ax) =
C

(ax)α
=

1

aα
C

xα
=

1

aα
p(x).

The power-law distribution is the only scale-free distribution.
Notice that ln p(x) = lnC − α lnx, therefore if we draw the density function of a power-law

distribution on a log-log scale plot, its graph is a straight line, with slope −α.
A famous example of power-law distribution is the distribution of occurrences of words in texts.


