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Submodular Maximization

Constrained Submodular Maximization

Family of allowed subsets M C 2V

max f(9S)
st SeM
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Constrained Maximization - Problem |
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Constrained Maximization - Problem | (Cont.)

Problem | - Submodular Welfare

Input:

@ Collection Q of unsplittable items.

Q f;: 29 — R monotone submodular utility, 1 < i < k.
Goal: Assign all items to maximize social welfare: ):5'(:1 £i(Q)).

Arises in the context of combinatorial auctions. [Lehman-Lehman-Nisan-01]
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Constrained Maximization - Problem Il

Problem Il - Submodular Maximization Over a Matroid

Input: Matroid M = (\, Z) and submodular f : 2V — R .
Goal: Find S € Z maximizing f(S).

Case of monotone f captures: Submodular Welfare, Max-k-Coverage,
Generalized-Assignment . . .
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Constrained Maximization - Problem Il

Problem Il - Submodular Maximization Over a Matroid

Input: Matroid M = (\, Z) and submodular f : 2V — R .
Goal: Find S € Z maximizing f(S).

Case of monotone f captures: Submodular Welfare, Max-k-Coverage,
Generalized-Assignment . . .

Combinatorial Approach:
@ Greedy and local search techniques.
@ For some cases provides best-known/tight approximations:

Knapsack constraint [Sviridenko-04]
intersection of k matroids [Lee-Sviridenko-Vondrak-09],[Ward-12]
k-exchange systems [Feldman-Naor-S-Ward-11]
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The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f
over a matroid.
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The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f
over a matroid.

Uniform Matroid:
@ Greedyis a (1 — %)-approximation [Nemhauser-Wolsey-Fisher-78].

@ Captures Max-k-Coverage.
@ Tight for coverage functions [Feige-98].
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The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f
over a matroid.

Uniform Matroid:
@ Greedyis a (1 — %)-approximation [Nemhauser-Wolsey-Fisher-78].
@ Captures Max-k-Coverage.
@ Tight for coverage functions [Feige-98].

Non-monotone f over a matroid:
@ =~ (0.309-approximation (fractional local search). [Vondrak-09]
@ =~ (.325-approximation (simulated annealing). [Gharan-Vondrak-11]
@ =~ 0.478-hard absolute! [Gharan-Vondrak-11]
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Uniform Matroid

Notation: fs(u) = f(SUu) — £(S)

Greedy Algorithm

@ Sy — 0.
Q fori=1tokdo:

uj « argmax,gs,  {fs,_, (1)}
© Return ;.
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Notation: fs(u) = f(SUu) — £(S)

Q Sy — 0.
Q fori=1tokdo:

uj — argmax,gs, {fs, (1)}
© Return ;.

V.

Theorem [Nemhauer-Wolsey-Fisher-78]

For monotone submodular f,

£(50) > (1 - (1- ,ﬁ)k> -foPT) > (1-3) - fl0PT)
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Notation: fs(u) = f(SUu) — £(S)

Q Sy — 0.
Q fori=1tokdo:

uj — argmax,gs, {fs, (1)}
© Return ;.

V.

Theorem [Nemhauer-Wolsey-Fisher-78]

For monotone submodular f,
k
£(50) > (1 -(1-%) ) -foPT) > (1-3) - fl0PT)

Non-Monotone Submodular Functions

@ 1/e s best factor (continuous approach via multilinear extension)
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Uniform Matroid

Randomized Greedy Algorithm

@ Sy 0.

Q fori=1tokdo:
u; < uniformly choose in random an element from M;.
S; — S;_1Uu;.

© Return S;.
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Uniform Matroid
Randomized Greedy Algorithm

@ Sy 0.
Q fori=1tokdo:
u; < uniformly choose in random an element from M;.

S; — S;_1Uu;.
© Return S;.
How is M; defined?
Mi g N\ Si,li

max Y fs  (u) st [M;| =k
ueM;

Assumptions: (w.l.0.g. by adding dummy elements)
o IN\Si1| >k
@ Yu e N\ Si*l/fs,;l (u) >0
comment: “empty” iteration if a dummy element is chosen.
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Performance of Randomized Greedy

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For monotone submodular f,

E[f(S)] > (1 — (1= i)k> - f(OPT) > (1= ) -£(0PT)

Seffi Naor Submodular Maximization



Performance of Randomized Greedy

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For monotone submodular f,

E[f(S)] > (1 — (1= i)k> - f(OPT) > (1= ) -£(0PT)

v

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For non-monotone submodular f,

E[f(S0)] > (1 - i)k . F(OPT) > (%) . f(OPT)

Seffi Naor Submodular Maximization



Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

Elfs )] = ¢ L fsa > 1+ ¥ fo,@
ueM; u€OPT\S; 1
o f(OPTUS; 1) = f(Si-1) o f(OPT) = f(Si-1)
= k = k
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Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

- Y fs(w) > Y s (w

Elfs,_, (u)] =
ucM; u€OPT\S;_1

> f(OPTUSi—kl)—f(Si—l) > f(OPT);f(Si—l)

=1
==

taking expectations over all outcomes:

Elfs, ,(u)] > LD B Gi1) J
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Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

Elfs )] = ¢ L fsa > 1+ ¥ fo,@

ucM; u€OPT\S;_1
_ fOPTUS;1) = f(Si1) - f(OPT) — f(Siy)
= k = k

taking expectations over all outcomes:

Elfs, ,(u)] > LD B Gi1) J

rearranging: (E[f(S;)] = E[f(S;-1)] + E[fs,_, (u:)])

£(OPT) ~Blf(5)] < (1 3 ) - (OPT) ~BLf(S:)] J
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Monotone Submodular Functions

implying:

£(0PT) ~Elf(s)] < (13 ) - LF(OPT) ~ EIf(s0)]

< (1 - %)1 . f(OPT)

Seffi Naor Submodular Maximization



Monotone Submodular Functions

implying:

£(0PT) ~Elf(s)] < (13 ) - LF(OPT) ~ EIf(s0)]

< (1 - %)1 . f(OPT)

thus:

E[f(S0)] > <1 - (1- i)k> -forn) > (1-3) - forT) J

completing the proof.
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Non-Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

E[fs:’—l(ui)] = % Z fSi—l(u) 2 % Z fsi—l(u)
ueM; u€OPT\S;_1
o f(OPTUS; 1) = f(Si-1)
- k

Seffi Naor Submodular Maximization



Non-Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

Blfs )] = g T fa@) > 5o T o)
ueM; uc€OPT\S;_y
o f(OPTUS; 1) = f(Si-1)
- k

but what is f(OPT U S;_1) for non-monotone f?
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Non-Monotone Submodular Functions

condition on first i — 1 steps:

expected gain at ith step:

e

Blfs ()] = £ L fo ) > 1+ ¥ fo ()
ueM; u€OPT\S;_1
o f(OPTUS; 1) = f(Si-1)
- k

but what is f(OPT U S;_1) for non-monotone f?

Forall 0 <i <k,

E[f(OPTUS;)] > (1 - )i . f(OPT)

proof deferred for now ...
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Non-Monotone Submodular Functions

taking expectations over all outcomes:

Elfs, ,(u;)] > E|:f(OPTUS’k1) f(sz_l)}
(1 D)™ £(0PT) ~ E[f(5;-1)]
k
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Non-Monotone Submodular Functions

taking expectations over all outcomes:

Elfs, ,(u;)] > E|:f(OPTUS’k1) f(sz_l)}
(1 D)™ £(0PT) ~ E[f(5;-1)]
k

it can be proved by induction that:

s> L (1-1) - soem) J
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Non-Monotone Submodular Functions

taking expectations over all outcomes:

Elfs, ,(u;)] > E|:f(OPTUS’k1) f(sz_l)}
(1 D)™ £(0PT) ~ E[f(5;-1)]
k

it can be proved by induction that:

s> L (1-1) - soem) J

setting i = k:

=
Q|

1 k—1
Blf(s0l > - (1-%)  f(0PT) > 3+ f(0PT) J

completing the proof
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Non-Monotone Submodular Functions

we first prove:

Lemma [closely related to Feige-Mirrokni-Vondrak-11]

Let NV (p) be a random subset where each element is chosen with probability
at most p (not necessarily independently). Then,

EfV(p)] = (1 -p)f(2)
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Non-Monotone Submodular Functions

we first prove:

Lemma [closely related to Feige-Mirrokni-Vondrak-11]

Let NV (p) be a random subset where each element is chosen with probability
at most p (not necessarily independently). Then,

EfV(p)] = (1 -p)f(2)

Proof:

N is sorted with respect to probability of inclusion in A/ (p):

Vi< j: Prlu; € N(p)] = Prlu; € N(p)]
Terminology:
o Ni={uy,..,u}
@ p; - probability that u; is chosen
@ X; - indicator for the event that u; is chosen
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Non-Monotone Submodular Functions

Thus:

E[f(V(p))] =E

f(@

) + i X; 'f/\/,-lﬁj\f(p)(ui):|

i=1

n
@)+ Y Xi- fai, (ui)} (submodularity)
i=1

—F(2) + i E (X fa_, (wi)

i=1

=f(@) + z”: pi ‘f/\/}—l(ui)

=(1-p1)-

2(1-p)-

i pz 1_p1 (M)

(smcep>p1>p2/...

f(2)

> Pn)

+ - f(Nn)

O

Submodular Maximization




Non-Monotone Submodular Functions

Forall 0 <i <k,

E[f(OPTUS,)] > (1 - Ilc) . F(OPT)

<

observations:

@ g(S) = f(SUOPT) is a submodular function

@ in iteration i, each element of A"\ S;_; is not chosen to S; with
probability at least 1 — 1 /k

@ an element belongs to S; with probability at most 1 — (1 — 1/k)!
e reminder: E[g(N(p))] = (1 —p)g(@)
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Non-Monotone Submodular Functions

Forall 0 <i <k,

E[f(OPTUS,)] > (1 - Ilc) . F(OPT)

<

observations:

@ g(S) = f(SUOPT) is a submodular function

@ in iteration i, each element of A"\ S;_; is not chosen to S; with
probability at least 1 — 1 /k

@ an element belongs to S; with probability at most 1 — (1 — 1/k)!
e reminder: E[g(N(p))] = (1 —p)g(@)

completing the proof:

Blf(OPTUS)] = Elg(s\ 0PT)) > (1- 1) -5(0) = (1- ) - f(OPT)

v
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Non-Monotone Functions: Beyond 1/e

Random greedy: |M;| has variable size

@ If the marginal values of the additional elements is significant, then the
performance improves.

@ Otherwise, OPT is “mostly” contained in M; and then a continuous
version of the double greedy algorithm can be used, since |M;| is O(k).
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Non-Monotone Functions: Beyond 1/e

Random greedy: |M;| has variable size

@ If the marginal values of the additional elements is significant, then the
performance improves.

@ Otherwise, OPT is “mostly” contained in M; and then a continuous
version of the double greedy algorithm can be used, since |M;| is O(k).

Theorem [Buchbinder-Feldman-N-Schwartz-14]

There is an efficient algorithm that achieves an approximation factor of
1 +0.004 for non-monotone submodular function maximization over a
uniform matroid.
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