Submodular Maximization

Seffi Naor

Lecture 2

4th Cargese Workshop on Combinatorial Optimization

Submodular Maximization

Constrained Submodular Maximization

Family of allowed subsets $\mathcal{M} \subseteq 2^{\mathcal{N}}$.

$$\max f(S)$$

s.t.
$$S \in \mathcal{M}$$

Constrained Maximization - Problem I

Constrained Maximization - Problem I

Constrained Maximization - Problem I (Cont.)

Problem I - Submodular Welfare

Input:

- lacktriangle Collection $\mathcal Q$ of unsplittable items.
- ② $f_i: 2^{\mathcal{Q}} \to \mathcal{R}_+$ monotone submodular utility, $1 \leqslant i \leqslant k$.

Goal: Assign all items to maximize social welfare: $\sum_{i=1}^{k} f_i(Q_i)$.

Arises in the context of combinatorial auctions. [Lehman-Lehman-Nisan-01]

Constrained Maximization - Problem II

Problem II - Submodular Maximization Over a Matroid

Input: Matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and submodular $f : 2^{\mathcal{N}} \to \mathcal{R}_+$.

Goal: Find $S \in \mathcal{I}$ maximizing f(S).

Case of monotone f captures: Submodular Welfare, Max-k-Coverage, Generalized-Assignment . . .

Constrained Maximization - Problem II

Problem II - Submodular Maximization Over a Matroid

Input: Matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and submodular $f : 2^{\mathcal{N}} \to \mathcal{R}_+$. **Goal:** Find $S \in \mathcal{I}$ maximizing f(S).

Case of monotone *f* captures: Submodular Welfare, Max-*k*-Coverage, Generalized-Assignment . . .

Combinatorial Approach:

- Greedy and local search techniques.
- For some cases provides best-known/tight approximations:

Knapsack constraint [Sviridenko-04] intersection of k matroids k-exchange systems [Feldman-Naor-S-Ward-11]

The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f over a matroid.

The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f over a matroid.

Uniform Matroid:

- ullet Greedy is a $\left(1-\frac{1}{e}\right)$ -approximation [Nemhauser-Wolsey-Fisher-78].
- Captures Max-k-Coverage.
- Tight for coverage functions [Feige-98].

The Greedy Approach

[Nemhauer-Wolsey-Fisher-78]

Greedy is a (1/2)-approximation for maximizing a monotone submodular f over a matroid.

Uniform Matroid:

- Greedy is a $\left(1-\frac{1}{e}\right)$ -approximation [Nemhauser-Wolsey-Fisher-78].
- Captures Max-k-Coverage.
- Tight for coverage functions [Feige-98].

Non-monotone f over a matroid:

- $\bullet \approx 0.309$ -approximation (fractional local search). [Vondrák-09]
- $\bullet \approx 0.325$ -approximation (simulated annealing). [Gharan-Vondrák-11]
- $\bullet \approx 0.478$ -hard absolute! [Gharan-Vondrák-11]

Notation: $f_S(u) = f(S \cup u) - f(S)$

Greedy Algorithm

- **2 for** i = 1 **to** k **do**: $u_i \leftarrow argmax_{u \notin S_{i-1}} \{ f_{S_{i-1}}(u) \}.$
- **3** Return S_k .

Notation: $f_S(u) = f(S \cup u) - f(S)$

Greedy Algorithm

- $\circled{0}$ $S_0 \leftarrow \emptyset$.
- **2 for** i = 1 **to** k **do**: $u_i \leftarrow argmax_{u \notin S_{i-1}} \{ f_{S_{i-1}}(u) \}.$
- **3** Return S_k .

Theorem [Nemhauer-Wolsey-Fisher-78]

For monotone submodular f,

$$f(S_k) \geqslant \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot f(OPT) \geqslant \left(1 - \frac{1}{e}\right) \cdot f(OPT)$$

Notation: $f_S(u) = f(S \cup u) - f(S)$

Greedy Algorithm

- \circ $S_0 \leftarrow \emptyset$.
- of for i = 1 to k do: $u_i \leftarrow argmax_{u \notin S_{i-1}} \{f_{S_{i-1}}(u)\}.$
- **3** Return S_k .

Theorem [Nemhauer-Wolsey-Fisher-78]

For monotone submodular f,

$$f(S_k) \geqslant \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot f(OPT) \geqslant \left(1 - \frac{1}{e}\right) \cdot f(OPT)$$

Non-Monotone Submodular Functions

 \bullet 1/e is best factor (continuous approach via multilinear extension)

Randomized Greedy Algorithm

- \circ $S_0 \leftarrow \emptyset$.
- ② for i=1 to k do: $u_i \leftarrow$ uniformly choose in random an element from M_i . $S_i \leftarrow S_{i-1} \cup u_i$.
- **3** Return S_k .

Randomized Greedy Algorithm

- $\textbf{ for } i=1 \textbf{ to } k \textbf{ do} : \\ u_i \leftarrow \text{ uniformly choose in random an element from } M_i. \\ S_i \leftarrow S_{i-1} \cup u_i.$
- **3** Return S_k .

How is M_i defined?

$$M_i \subseteq \mathcal{N} \setminus S_{i-1}$$
:

$$\max \sum_{u \in M_i} f_{S_{i-1}}(u) \text{ s.t. } |M_i| = k.$$

Assumptions: (w.l.o.g. by adding dummy elements)

- $|\mathcal{N} \setminus S_{i-1}| \geqslant k$
- $\forall u \in \mathcal{N} \setminus S_{i-1}, f_{S_{i-1}}(u) \geqslant 0$

comment: "empty" iteration if a dummy element is chosen.

Performance of Randomized Greedy

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For monotone submodular f,

$$\mathbb{E}[f(S_k)] \geqslant \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot f(OPT) \geqslant \left(1 - \frac{1}{e}\right) \cdot f(OPT)$$

Performance of Randomized Greedy

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For monotone submodular f,

$$\mathbb{E}[f(S_k)] \geqslant \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot f(OPT) \geqslant \left(1 - \frac{1}{e}\right) \cdot f(OPT)$$

Theorem [Buchbinder-Feldman-N-Schwartz-14]

For non-monotone submodular f,

$$\mathbb{E}[f(S_k)] \geqslant \left(1 - \frac{1}{k}\right)^k \cdot f(OPT) \geqslant \left(\frac{1}{e}\right) \cdot f(OPT)$$

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k} \geqslant \frac{f(OPT) - f(S_{i-1})}{k}$$

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k} \geqslant \frac{f(OPT) - f(S_{i-1})}{k}$$

taking expectations over all outcomes:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] \geqslant \frac{f(OPT) - \mathbb{E}[f(S_{i-1})]}{k}$$

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k} \geqslant \frac{f(OPT) - f(S_{i-1})}{k}$$

taking expectations over all outcomes:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] \geq \frac{f(OPT) - \mathbb{E}[f(S_{i-1})]}{k}$$

rearranging:
$$(\mathbb{E}[f(S_i)] = \mathbb{E}[f(S_{i-1})] + \mathbb{E}[f_{S_{i-1}}(u_i)]$$
)

$$f(OPT) - \mathbb{E}[f(S_i)] \leqslant \left(1 - \frac{1}{k}\right) \cdot [f(OPT) - \mathbb{E}[f(S_{i-1})]]$$

implying:

$$f(OPT) - \mathbb{E}[f(S_i)] \le \left(1 - \frac{1}{k}\right)^i \cdot [f(OPT) - \mathbb{E}[f(S_0)]]$$
$$\le \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

implying:

$$f(OPT) - \mathbb{E}[f(S_i)] \le \left(1 - \frac{1}{k}\right)^i \cdot [f(OPT) - \mathbb{E}[f(S_0)]]$$
$$\le \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

thus:

$$\mathbb{E}[f(S_k)] \geqslant \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot f(OPT) \geqslant \left(1 - \frac{1}{e}\right) \cdot f(OPT)$$

completing the proof.

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}$$

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}$$

but what is $f(OPT \cup S_{i-1})$ for non-monotone f?

condition on first i-1 steps:

expected gain at ith step:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] = \frac{1}{k} \cdot \sum_{u \in M_i} f_{S_{i-1}}(u) \geqslant \frac{1}{k} \cdot \sum_{u \in OPT \setminus S_{i-1}} f_{S_{i-1}}(u)$$

$$\geqslant \frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}$$

but what is $f(OPT \cup S_{i-1})$ for non-monotone f?

Lemma

For all $0 \leqslant i \leqslant k$,

$$\mathbb{E}[f(OPT \cup S_i)] \geqslant \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

proof deferred for now ...

taking expectations over all outcomes:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] \geqslant \mathbb{E}\left[\frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}\right]$$
$$\geqslant \frac{\left(1 - \frac{1}{k}\right)^{i-1} \cdot f(OPT) - \mathbb{E}[f(S_{i-1})]}{k}$$

taking expectations over all outcomes:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] \geqslant \mathbb{E}\left[\frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}\right]$$
$$\geqslant \frac{\left(1 - \frac{1}{k}\right)^{i-1} \cdot f(OPT) - \mathbb{E}[f(S_{i-1})]}{k}$$

it can be proved by induction that:

$$\mathbb{E}[f(S_i)] \geqslant \frac{i}{k} \cdot \left(1 - \frac{1}{k}\right)^{i-1} \cdot f(OPT)$$

taking expectations over all outcomes:

$$\mathbb{E}[f_{S_{i-1}}(u_i)] \geqslant \mathbb{E}\left[\frac{f(OPT \cup S_{i-1}) - f(S_{i-1})}{k}\right]$$
$$\geqslant \frac{\left(1 - \frac{1}{k}\right)^{i-1} \cdot f(OPT) - \mathbb{E}[f(S_{i-1})]}{k}$$

it can be proved by induction that:

$$\mathbb{E}[f(S_i)] \geqslant \frac{i}{k} \cdot \left(1 - \frac{1}{k}\right)^{i-1} \cdot f(OPT)$$

setting i = k:

$$\mathbb{E}[f(S_k)] \geqslant \frac{k}{k} \cdot \left(1 - \frac{1}{k}\right)^{k-1} \cdot f(OPT) \geqslant \frac{1}{e} \cdot f(OPT)$$

completing the proof

we first prove:

Lemma [closely related to Feige-Mirrokni-Vondrak-11]

Let $\mathcal{N}(p)$ be a random subset where each element is chosen with probability at most p (not necessarily independently). Then,

$$\mathbb{E}[f(\mathcal{N}(p))] \geqslant (1-p)f(\varnothing)$$

we first prove:

Lemma [closely related to Feige-Mirrokni-Vondrak-11]

Let $\mathcal{N}(p)$ be a random subset where each element is chosen with probability at most p (not necessarily independently). Then,

$$\mathbb{E}[f(\mathcal{N}(p))] \geqslant (1-p)f(\varnothing)$$

Proof:

 \mathcal{N} is sorted with respect to probability of inclusion in $\mathcal{N}(p)$:

$$\forall i \leq j$$
: $\Pr[u_i \in \mathcal{N}(p)] \geqslant \Pr[u_j \in \mathcal{N}(p)]$

Terminology:

- $\mathcal{N}_i = \{u_1, ..., u_i\}$
- p_i probability that u_i is chosen
- X_i indicator for the event that u_i is chosen

Thus:

$$\begin{split} \mathbb{E}[f(\mathcal{N}(p))] = & \mathbb{E}\left[f(\varnothing) + \sum_{i=1}^{n} X_{i} \cdot f_{\mathcal{N}_{i-1} \cap \mathcal{N}(p)}(u_{i})\right] \\ \geqslant & \mathbb{E}\left[f(\varnothing) + \sum_{i=1}^{n} X_{i} \cdot f_{\mathcal{N}_{i-1}}(u_{i})\right] \quad (\mathbf{submodularity}) \\ = & f(\varnothing) + \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \cdot f_{\mathcal{N}_{i-1}}(u_{i}) \\ = & f(\varnothing) + \sum_{i=1}^{n} p_{i} \cdot f_{\mathcal{N}_{i-1}}(u_{i}) \\ = & (1 - p_{1}) \cdot f(\varnothing) + \left[\sum_{i=1}^{n-1} (p_{i-1} - p_{i}) \cdot f(\mathcal{N}_{i})\right] + p_{n} \cdot f(\mathcal{N}_{n}) \\ \geqslant & (1 - p) \cdot f(\varnothing) \quad (\mathbf{since} \ p \geqslant p_{1} \geqslant p_{2} \geqslant \ldots \geqslant p_{n}) \quad \Box \end{split}$$

Lemma

For all $0 \leqslant i \leqslant k$,

$$\mathbb{E}[f(OPT \cup S_i)] \geqslant \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

observations:

- $g(S) = f(S \cup OPT)$ is a submodular function
- in iteration i, each element of $\mathcal{N} \setminus S_{i-1}$ is **not** chosen to S_i with probability at least 1 1/k
- an element belongs to S_i with probability at most $1 (1 1/k)^i$
- reminder: $\mathbb{E}[g(\mathcal{N}(p))] \geqslant (1-p)g(\varnothing)$

Lemma

For all $0 \le i \le k$,

$$\mathbb{E}[f(OPT \cup S_i)] \geqslant \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

observations:

- $g(S) = f(S \cup OPT)$ is a submodular function
- in iteration i, each element of $\mathcal{N} \setminus S_{i-1}$ is **not** chosen to S_i with probability at least 1 1/k
- an element belongs to S_i with probability at most $1 (1 1/k)^i$
- reminder: $\mathbb{E}[g(\mathcal{N}(p))] \geqslant (1-p)g(\varnothing)$

completing the proof:

$$\mathbb{E}[f(OPT \cup S_i)] = \mathbb{E}[g(S_i \setminus OPT)] \geqslant \left(1 - \frac{1}{k}\right)^i \cdot g(\varnothing) = \left(1 - \frac{1}{k}\right)^i \cdot f(OPT)$$

Non-Monotone Functions: Beyond 1/e

Main Ideas

Random greedy: $|M_i|$ has variable size

- If the marginal values of the additional elements is significant, then the performance improves.
- Otherwise, OPT is "mostly" contained in M_i and then a continuous version of the double greedy algorithm can be used, since $|M_i|$ is O(k).

Non-Monotone Functions: Beyond 1/e

Main Ideas

Random greedy: $|M_i|$ has variable size

- If the marginal values of the additional elements is significant, then the performance improves.
- Otherwise, OPT is "mostly" contained in M_i and then a continuous version of the double greedy algorithm can be used, since $|M_i|$ is O(k).

Theorem [Buchbinder-Feldman-N-Schwartz-14]

There is an efficient algorithm that achieves an approximation factor of $\frac{1}{e}+0.004$ for non-monotone submodular function maximization over a uniform matroid.