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Extended formulations
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Given a polytope P C R™, what is the best way
of expressing P by means of linear inequalities?
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Given a polytope P C R™, what is the best way
of expressing P by means of linear inequalities?

We want the study the expressive power
of linear and semidefinite programs.
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Given a polytope P C R™, what is the best way
of expressing P by means of linear inequalities?

We want the study the expressive power
of linear and semidefinite programs.

~> alternative measure of complexity independent of P vs. NP.
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Definition (extension)

P, Q polytopes
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Definition (extension)

P, Q polytopes
@ is an extension of P if 3 linear m with 7(Q) = P
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Definition (extension)

P, Q polytopes
@ is an extension of P if 3 linear m with 7(Q) = P

W\'P
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Definition (extension)

P, Q polytopes
@ is an extension of P if 3 linear m with 7(Q) = P

\ Q

™

e
Definition (size and extension complexity)

size(Q) := #facets of Q)
xc(P) := min{size(Q) | @ extension of P}
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Why do we care for extended formulations?
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Why do we care for extended formulations?

~+ Quantifier elimination backwards.
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Compact Extended Formulations.

Example: spanning tree polytope of K,, = (V,,, E,)
Formulation 1: Formulation 2:

Vars: xyy (uv € Ey) Vars: xy, (uwv € Ey)
Yabw (W0 € En, w # u,v)

ZuveE[U] Tyw < |U‘_1 YU 7é %) T = 0
z=20 y>0

ZuUEEn Lyp =N — 1 Tuv = Yub,w — Yot,w = 0 vua v, w
Tyo + Zw;ﬁu,v Yab,w = 1 Vu,v
ZuveEn Ly =T — 1

size ~ 2" size &~ n3 — compact
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Compact Extended Formulations.

Example: spanning tree polytope of K,, = (V,,, E,)
Formulation 1: Formulation 2:

Vars: xyy (uv € Ey) Vars: xy, (uwv € Ey)
Yabw (W0 € En, w # u,v)

ZuveE[U] Tyw < |U‘_1 YU 7é %) T = 0
z=20 y>0

ZuUEE” Lyp =N — 1 Tuv = Yub,w — Yot,w = 0 vua v, w
Tyo + Zw;ﬁu,v Yab,w = 1 Vu,v
Z’zweEn Ly =T — 1

size ~ 2" size &~ n3 — compact

Is there an EF with even fewer inequalities?

Sebastian Pokutta Extended Formulations and Information Theory 09/2014



Some Examples.

Some known results (constructions & lower bounds):

e xc(regular n-gon) = ©(logn) [Ben-Tal, Nemirovski'01]
e xc(generic n-gon) = Q(y/n) [Fiorini, Rothvoss, Tiwary'11]
¢ xc(n-permutahedron) = ©(nlogn) [Goemans’09]
e xc(spanning tree polytope of K,,) = O(n?) [Kipp-Martin'87]

e xc(spanning tree polytope of planar graph G) = ©(n)
[Williams'01]

e xc(stable set polytope of perfect graph G) = n©(logn)

[Yannakakis'91]
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Analyzing extended formulations...
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Slack Matrices.
Let Ac R™4  becR™,  V={vy,...,0,} CR? st.
P = {zeR?| Az < b} = conv(V)
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Slack Matrices.
Let Ac R™4  becR™,  V={vy,...,0,} CR? st.

P = {zeR?| Az < b} = conv(V)

Definition (slack matrix)

Slack matrix S € R"*" of P (w.r.t. Az <band V):

Sij = bl‘ — Aivj
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Nonnegative Factorizations and Factorization Theorem.

A rank-r nonnegative factorization of S € R™*" is
S=TU where TeRP" and UeR"
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Nonnegative Factorizations and Factorization Theorem.

A rank-r nonnegative factorization of S € R™*" is
S=TU where TeRP" and UeR"

Definition (nonnegative rank of \S)

rk; (S) :=min{r | 3 rank-r nonnegative factorization of S}
= min{r | S is the sum of r nonnegative rank-1 matrices}
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Nonnegative Factorizations and Factorization Theorem.

A rank-r nonnegative factorization of S € R™*" is
S=TU where TeRP" and UeR"

Definition (nonnegative rank of \S)

rk; (S) :=min{r | 3 rank-r nonnegative factorization of S}
= min{r | S is the sum of r nonnegative rank-1 matrices}

Theorem (factorization theorem [Yannakakis'91, FKPT'11])

For every slack matrix S of P:
xc(P) =rky(9)

Sebastian Pokutta Extended Formulations and Information Theory 09/2014



Main goal: bound the nonnegative rank!
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A simple lower bound:
(arguably) the mother of all lower bounds)
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- supp

Sebastian Pokutta

S

=TU rank-r nonnegative factorization

:ZT’“Uk sum of 7 nonnegative rank-1 matrices
k=1

U supp(T*U})

U supp(T*) x supp(Uy) union of r
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S

=TU rank-r nonnegative factorization
T
:ZTkUk sum of 7 nonnegative rank-1 matrices
k=1

= supp(S) = U supp(T*U})

Sebastian Pokutta

k=1

,
= U supp(T*) x supp(Uy) union of 7 rectangles
k=1
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S=TU rank-r nonnegative factorization

T
= E U, sum of 7 nonnegative rank-1 matrices
k=1

= supp(S) = U supp(T*U})
k=1

,
= U supp(T*) x supp(Uy) union of 7 rectangles
k=1

Definition (rectangle covering number)

rc(S) := min # rectangles whose union is supp(.S)
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S=TU rank-r nonnegative factorization

T
= E U, sum of 7 nonnegative rank-1 matrices
k=1

= supp(S) = U supp(T*U})
k=1

,
= U supp(T*) x supp(Uy) union of 7 rectangles
k=1

Definition (rectangle covering number)

rc(S) := min # rectangles whose union is supp(.S)

Observation [Yannakakis'91]
rky (S) = re(S)
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S=TU rank-r nonnegative factorization
:ZT"’U;C sum of 7 nonnegative rank-1 matrices

— supp(S) = | supp(T*Uy)
k=1

T
U supp(T*) x supp(Uy) union of r rectangles
k=1

i e o e @)
== O
o= O
_ O R BB =
O M = ==
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S=TU rank-r nonnegative factorization

T
:ZTkUk sum of 7 nonnegative rank-1 matrices
k=1

= supp(9) = U supp(T*Uy)

Sebastian Pokutta

k=1

,
= U supp(T*) x supp(Uy) union of 7 rectangles
k=1
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Definition (Fooling Set)

Let S be a nonnegative matrix. Then a fooling set F' is a set of
indices so that

® M(a,b) >0 for all (a,b) € F.

@ for all (a1,b1), (ag,bs) € F distinct, either M(ay,be) =0 or
M(CLQ, bl) = 0.
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Definition (Fooling Set)

Let S be a nonnegative matrix. Then a fooling set F' is a set of
indices so that

® M(a,b) >0 for all (a,b) € F.
@ for all (a1, b1), (ag,bs) € F distinct, either M(ay,b2) =0 or
M(CLQ, bl) = (0.

Lemma

If F' is a fooling set for M of size k, then vk (M) > k

Proof sketch.

No two elements of F' can be in the same rank-1 matrix. 0

Effectiveness of Fooling Set method is limited [Fiorini, Kaibel,
Pashkovich, Theis'11]:

|F| = O(rank(M)?)
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Definition (Fooling Set)

Let S be a nonnegative matrix. Then a fooling set F' is a set of
indices so that

® M(a,b) >0 for all (a,b) € F.

@ for all (a1,b1), (ag,bs) € F distinct, either M(ay,be) =0 or
M(CLQ, bl) = 0.

Lemma (Fiorini, Kaibel, Pashkovich, Theis'11)

P :=10,1]" has a fooling set of size 2n.
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How about approximations?
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Often we are interested in approximate LP formulations.
e P C Q C R? with P polytope, Q polyhedron
e . C R® polytope

Definition (extension of a pair)
L is an extension of (P, Q) if 3 linear m with P C 7(L) C Q

W\W
<>

Definition (EF of a pair)
Ex + Fy =g, y > 0 is an extended formulation of (P, Q) if

r€EP=Jy:Fx+Fy=9g,y>20=2x€Q
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Factorization Theorem for Pairs.

Let V ={v1,...,v,} CR%s.t. P =conv(V) 1 Ld
Let Ac R™*4 beR™st. Q= {r €R?| Ax < b} ° °

Definition (Slack matrix of pair)
Slack matrix § = S7@ € RT*" of (P,Q) (w.rt. Az <band V):

SP’Q =

% i — A,
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Factorization Theorem for Pairs.

Let V ={v1,...,v,} CR%s.t. P =conv(V) 1 Ld
Let Ac R™*4 beR™st. Q= {r €R?| Ax < b} ° °

Definition (Slack matrix of pair)
Slack matrix § = S7@ € RT*" of (P,Q) (w.rt. Az <band V):

SP’Q =

% i — A,

Definition (Extension complexity of a pair)
xc(P, Q) = min{size(L) | L is an extension of (P,Q)}
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Factorization Theorem for Pairs.

Let V ={v1,...,v,} CR%s.t. P =conv(V) 1 Ld
Let Ac R™*4 beR™st. Q= {r €R?| Ax < b} ° °

Definition (Slack matrix of pair)
Slack matrix § = S7@ € RT*" of (P,Q) (w.rt. Az <band V):

SP’Q =

% i — A,

Definition (Extension complexity of a pair)
xc(P, Q) = min{size(L) | L is an extension of (P,Q)}

Theorem (Factorization theorem for pairs)

For every slack matrix STQ of (P,Q): xc(P,Q) = rk (S79)
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Linear encoding (£, Q) ~ pair of nested polyhedra P C Q:
e P:=conv({x €{0,1}¢ |z € L})
e Q:={zcR?|Vwec ONR?: wTz < max{wTy |y € P}}
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Linear encoding (£, Q) ~ pair of nested polyhedra P C Q:
e P:=conv({x €{0,1}¢ |z € L})
e Q:={zcR?|Vwec ONR?: wTz < max{wTy |y € P}}

Definition (p-approximate extended formulation, p > 1)

Ex+ Fy =g, y > 0is a p-approximate EF w.r.t. (£,0) if
@ Vw c R%:
max{wTz | Ex + Fy =g, y > 0} > max{wTx | x € P}
@ Yw e ONRY:
max{wTz | Ex + Fy =g, y > 0} < pmax{wTz | x € P}
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Linear encoding (£, Q) ~ pair of nested polyhedra P C Q:
e P:=conv({x €{0,1}¢ |z € L})
e Q:={zcR?|Vwec ONR?: wTz < max{wTy |y € P}}

Definition (p-approximate extended formulation, p > 1)

Ex+ Fy =g, y > 0is a p-approximate EF w.r.t. (£,0) if
@ Vw c R%:
max{wTz | Ex + Fy =g, y > 0} > max{wTx | x € P}
@ Yw e ONRY:
max{wTz | Ex + Fy =g, y > 0} < pmax{wTz | x € P}

Geometrically: P C{z|Jdy:Ex+Fy=g, y=>0}C pQ
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Sizes of Approximate Extended Formulations.

o L~ P =conv(V)
e O~ Q= {recR?| Az < b}

Observation:
® pQ = {z eR*| Az < pb}
(2] Sg’pQ = pb; — Ajv; = Sg’Q + (p—1)b;

Corollary

Minimum size of a p-approximate EF = rk (S7?)
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A link to communication complexity
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Deterministic Communication Protocols.

A Basic Model in Communication Complexity

f:Ax B — {0,1} Boolean function (= binary matrix)
Two players:

° knows a € A
e Bob knows b € B

want to compute f(a,b) by exchanging bits

Goal: Minimize complexity := #bits exchanged

Sebastian Pokutta Extended Formulations and Information Theory 09/2014
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Deterministic Communication Protocols.

Example

by by b3 by
O 0 0 1
O 0 0 1
0O 0 0 O
0 1 1 1

Sebastian Pokutta

Alice
a€{a,a}
b€ {biba, b} be (b} be {ba.bs. by
a Alice
a € {a} @ € {as}
1 0
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Deterministic Communication Protocols.

Example

o oo ol &

oo O

—lolo ol

= Ol = =

Sebastian Pokutta

Alice
a€{a,a}
b€ {biba, b} be (b} be {ba.bs. by
a Alice
a € {a} @ € {as}
1 0
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Deterministic Communication Protocols.

Example

o oo o

=IO o O

—lolo ol

=IOl =

Alice

a € {a,ar}

be (bbb} be by be nbs b
a Alice @

uema}

1 0

3 complexity ¢ protocol for computing f — rk(f) < 2°¢

Sebastian Pokutta
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Computation in Expectation.

The main differences:

o and Bob can use (private) random bits to make choices
]
pi(a) 1 —pi(a)
o f:AXx B — Ry, and Bob can output any value € R
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Computation in Expectation.

The main differences:

o and Bob can use (private) random bits to make choices
]
pi(a) 1 —pi(a)
o f:AXx B — Ry, and Bob can output any value € R

Theorem ([Faenza, Fiorini, Grappe, Tiwary'11],[Zhang'12])

If c = ¢(f) is the minimum complexity of a randomized
communication protocol with nonnegative outputs computing f in
expectation, then

rki (f) = ©(2°)
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A threefold characterization.

Three ways to look at EFs:

@ A linear system Fx + Fy =g, y > 0 with y € R"
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A threefold characterization.

Three ways to look at EFs:

@ A linear system Fx + Fy =g, y > 0 with y € R"

@ A rank-r nonnegative factorization S = T'U of slack matrix .S
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A threefold characterization.

Three ways to look at EFs:

@ A linear system Fx + Fy =g, y > 0 with y € R"
@ A rank-r nonnegative factorization S = T'U of slack matrix .S

© A logr-complexity randomized protocol with nonnegative
outputs computing S in expectation
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In summary: bound the nonnegative rank!
(both for approximate or exact linear EFs)
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Common methods for construction of EFs.

@ Balas' union (union of polyhedra)
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Common methods for construction of EFs.

@ Balas' union (union of polyhedra)

@ Reflection relations

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 27



Common methods for construction of EFs.

@ Balas' union (union of polyhedra)
@ Reflection relations

© Dualization
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Common methods for construction of EFs.

@ Balas' union (union of polyhedra)
@ Reflection relations
© Dualization

@ Extended formulations from dynamic programs
(we consider those to be part of 3)
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Balas' union of polyhedra.

Idea: Express the union of polytopes as a polytopes.
[Balas 1985]

Approximately: xc(conv(|J; P;)) < >, xc(F).

Used for approximate EF of the knapsack problem. [Bienstock 2008]
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Reflection relations.

Idea: reflect (one side of) a polytope at a hyperplane.

[Kaibel, Pashkovich 2010]

regular polygon

Construction of regular n-gon with O(logn) many inequalities.
[Ben-Tal, Nemirovski 1999]
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Dualization.

Idea: insert separation LP into the primal via dualization.

[Martin, 1991]

Spanning tree polytope of complete graph K,, with ©(n?)
inequalities (example from the beginning).
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How about semidefinite EFs?
Essentially the same theory applies...
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Semidefinite Extended Formulations.

Definition (PSD matrix)
A matrix U € R"™*" is PSD if U is symmetric and

2 Ux >0 VxzeR".

Let S', denote the set of r x r PSD matrices.
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Semidefinite Extended Formulations.

Definition (PSD matrix)
A matrix U € R"™*" is PSD if U is symmetric and

2 Ux >0 VxzeR".

Let S', denote the set of r x r PSD matrices.

Definition (Spectral Decomposition)

U is r x r PSD iff U admits a spectral decomposition

T
i=1

Aly--y Ap >0, uq,...,u, an orthonormal basis.
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Definition (Operator norm)

For a matrix T € R"*" the operator norm of T is

[Tllop = max T[]
lzll2=1

For a PSD matrix U € R"*"

1l = ”nﬁax 2"Uz = largest eigenvalue of U.
x|l2=1

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

&e



Definition (Trace)
For a matrix T' € R™*", we define Tr [T'] = >\, Tj;.

=
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Definition (Trace)
For a matrix T' € R™*", we define Tr [T'] = >\, Tj;.

Remark (Trace Inner Product)
For A, B € R™" symmetric, Tr [AB] =)

i jer] Aii Bij-
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Definition (Trace)
For a matrix T' € R™*", we define Tr [T'] = >\, Tj;.

Remark (Trace Inner Product)
For A, B € R™" symmetric, Tr [AB] = )

AijBij-

i,j€[r]

Fact
For PSD matrices U,V € S",,

TI"[UV] = Z )\mj (ui,vj>2 Z 0 o

i,5€[r]

_ N\ T _ N7 T :
whereU =)/, )wuzuZ and V. = ijl Yjvjv; are the respective
spectral decompositions.
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Definition (SDP Extension)
P ={x € R": Az < b} polytope with m facets. Then

Q={(2Y):Ciz+Tr[D;Y] =d;,Vi€[l],)Y €S,,2cRY,
is an SDP extension of P of size 7 if 3 7 : R x S — R™ such that

P=n(Q).
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Definition (SDP Extension)
P ={x € R": Az < b} polytope with m facets. Then

Q={(2Y):Ciz+Tr[D;Y] =d;,Vi€[l],)Y €S,,2cRY,
is an SDP extension of P of size 7 if 3 7 : R x S — R™ such that

P=n(Q).

Definition (SDP Extension Complexity)

XCsdp(P) := minimum size of any SDP extension of P.
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PSD Factorizations and SDP Extensions.

Definition (PSD factorization)

A rank-r PSD factorization of S € RTXN is given by U;, V; € ST,
if for all ¢ € [m],j € [N] we have

Sij = Tr[UiVj].
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PSD Factorizations and SDP Extensions.

Definition (PSD factorization)

A rank-r PSD factorization of S € RTXN is given by U;, V; € ST,
if for all ¢ € [m],j € [N] we have

Sij = Tr[UiVj].

Proposition (Extensions from Factorizations)
Let P be polytope and let S be slack matrix of P. Then

Q={(a,Y): A+ Tx[U;Y] = b;,Vi € [m],Y € S}

is a SDP extension of P of size r.
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PSD Factorizations and Extensions.

Definition (PSD Rank)
1kpsd (S) := min{r | 3 rank-r PSD factorization of S}

[Gouveia, Thomas, Parillo '11]

Theorem (Factorization Theorem)

For every slack matrix S of P:

XCsdp(P) = rkpsa(S)
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Information Theory: the basics
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Why Information Theory—more than a party trick?

@ Great whenever we want to model that something is 'learned’
Prime examples: Minimax Theory in Statistics, Machine
Learning, etc.
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Why Information Theory—more than a party trick?

@ Great whenever we want to model that something is 'learned’
Prime examples: Minimax Theory in Statistics, Machine
Learning, etc.

@ Heavily used in theoretical computer science
Prime examples: Multiplicative Weight Updates,
Communication Complexity, Data Structures, etc.
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Why Information Theory—more than a party trick?

@ Great whenever we want to model that something is 'learned’
Prime examples: Minimax Theory in Statistics, Machine
Learning, etc.

@ Heavily used in theoretical computer science
Prime examples: Multiplicative Weight Updates,
Communication Complexity, Data Structures, etc.

© Measure information as a resource rather than computation
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Why Information Theory—more than a party trick?

@ Great whenever we want to model that something is 'learned’
Prime examples: Minimax Theory in Statistics, Machine
Learning, etc.

@ Heavily used in theoretical computer science
Prime examples: Multiplicative Weight Updates,
Communication Complexity, Data Structures, etc.

© Measure information as a resource rather than computation

Upcoming survey: The Information-theoretic Method in Optimization
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The paradigm of information.

@ Computational unboundedness:
We care for flow of information
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The paradigm of information.

@ Computational unboundedness:
We care for flow of information

@ Key is the reconstruction principle:
A encodes B = A contains all information about B
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The paradigm of information.

@ Computational unboundedness:
We care for flow of information

@ Key is the reconstruction principle:
A encodes B = A contains all information about B

© Very intuitive theory:
Common sense reasoning can go a long way
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The paradigm of information.

@ Computational unboundedness:
We care for flow of information

@ Key is the reconstruction principle:
A encodes B = A contains all information about B

© Very intuitive theory:
Common sense reasoning can go a long way

@ In information space most operations are very natural and
easy to perform
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The paradigm of information.

Question to oracle

Answer from oracle
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The paradigm of information.

Question to oracle

Answer from oracle

For bigger picture some non-EF examples:

@ Blackbox optimization.
Question: current point x
Answer: V f(z) and f(x)
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The paradigm of information.

Question to oracle

Answer from oracle

For bigger picture some non-EF examples:

@ Blackbox optimization.
Question: current point x

Answer: V f(z) and f(x)

@ Separation oracle.
Question: current point x
Answer: separating hyperplane
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The paradigm of information.

Question to oracle

BUT B08- IN A
QUANTUH WORLD

Answer from oracle

For bigger picture some non-EF examples:

@ Blackbox optimization.
Question: current point x
Answer: V f(z) and f(x)

@ Separation oracle.
Question: current point x
Answer: separating hyperplane

© Compressed sensing.
Question: measurement vector ©
Answer: outcome of measurement Ax

Sebastian Pokutta Extended Formulations and Information Theory 09/2014
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Notation and Notions.

Notation:
@ Random variables: A
@ Events: &

© Conditionals (combination of RVs and Events): €
@ We write a € A for a € Range(A)

Notions:
@ Often we identify an RV IT with its distribution
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=ad]logP[A=ad].
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

43



Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Interpretation:
@ Meta interpretation: ‘information/randomness’ in A
@ Expected encoding length
© Expected number of bits in optimal coding:

H[A] < L(C,A) < H[A] + 1

@ Extraction of random bits: use biased coin with entropy h to
generate h unbiased bits per flip
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
@ Bounds: 0 < HJ[A] < log |Range(A)| ( = iff uniform)
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
@ Bounds: 0 < HJ[A] < log |Range(A)| ( = iff uniform)
© Monotonicity: H[A] > H[A |B|.
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
@ Bounds: 0 < HJ[A] < log |Range(A)| ( = iff uniform)
© Monotonicity: H[A] > H[A |B|.
@ Independence: A | B if and only if H[A] = H[A | B]
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[A]:==- Y P[A=a]logP[A=ad.
acRange(A)

encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
@ Bounds: 0 < HJ[A] < log |Range(A)| ( = iff uniform)
© Monotonicity: H[A] > H[A |B|.
@ Independence: A | B if and only if H[A] = H[A | B]
@ Chain rule: H[A,B]|=H[A]+H[B|A].
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Entropy (of a random variable).

A discrete RV with |[Range (A)| < oo. Then the entropy of A:

H[Al=— > PlA=dlogP[A—d.
a€Range(A) encoding length

Rules:
@ Conditional entropy: H[A |B] = E,p [H[A |B = 0]].
@ Bounds: 0 < HJ[A] < log |Range(A)| ( = iff uniform)
© Monotonicity: H[A] > H[A |B|.
@ Independence: A | B if and only if H[A] = H[A | B]
@ Chain rule: H[A,B]|=H[A]+H[B|A].
O Subadditivity: H[(A1,..., Ap)] < >7cp, H[A]
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Mutual information (of two random variables).

A, B discrete RVs with |[Range (A)|, |Range (B)| < co. Then the
mutual information of A and B:

I[A;B] = H[A] —H[A|B].
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Mutual information (of two random variables).

A, B discrete RVs with |[Range (A)|, |Range (B)| < co. Then the
mutual information of A and B:

I[A;B]:= H[A] - HIA|B]
——

initial uncertainty  residual uncertainty
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:

I[A;B]:= H[A] - HIA|B]
——

initial uncertainty  residual uncertainty

Interpretation:

@ Meta interpretation: The amount of information leaked about
A by observing B.

@ From single RV (as in entropy) to interaction of RVs.

© Models information gained from observation.
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:

I[A;B]:= H[A] - H[A|B]
——

initial uncertainty  residual uncertainty

Rules:

@ Conditional mutual information (€ conditional):
I[A;B|C:=H[A|C —H[A|C,B]
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:
I[A;B]:= H[A] — HJ[A|B]
——

initial uncertainty  residual uncertainty

Rules:

@ Conditional mutual information (€ conditional):
I[A;B|C:=H[A|C —H[A|C,B]
@ Bounds: 0 <I[A;B] <HIA].
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:
I[A;B]:= H[A] — HJ[A|B]
——

initial uncertainty  residual uncertainty

Rules:
@ Conditional mutual information (€ conditional):
I[A;B|C:=H[A|C]-H[A|C,B]
@ Bounds: 0 <I[A;B] <HIA].
© Symmetry: I[A;B|C]=1[B;A|C].
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:

I[A;B]:= H[A] - H[A|B]
——

initial uncertainty  residual uncertainty

Rules:
@ Conditional mutual information (€ conditional):
I[A;B|C:=H[A|C]-H[A|C,B]
@ Bounds: 0 <I[A;B] <HIA].
© Symmetry: I[A;B|C]=1[B;A|C].
@ Chain rule: T [Al, Ao; B] =1 [Al; B] +1 [Ag; B | Al}
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Mutual information (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
mutual information of A and B:

I[A;B]:= H[A] - H[A|B]
——

initial uncertainty  residual uncertainty

Rules:
@ Conditional mutual information (€ conditional):
I[A;B|C:=H[A|C]-H[A|C,B]
@ Bounds: 0 <I[A;B] <HIA].
© Symmetry: I[A;B|C]=1[B;A|C].
@ Chain rule: T [Al, Ao; B] =1 [Al; B] +1 [Ag; B | Al}
© Direct sum: If Ay,..., A, are independent. Then

T[Ay,...,A,;B] > ) T[A;B].
i€[n]

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

44



A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.

Task: Sort F using only comparisons of the form f; < f;?
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A first example: sorting by comparison.
Let F be a permutation of 1,...,n chosen uniformly random.

Task: Sort F using only comparisons of the form f; < f;?

Then: H[F] = logn! = O(nlogn).
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A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.
Task: Sort F using only comparisons of the form f; < f;?
Then: H[F] = logn! = O(nlogn).

Let TT = (TIy,...,II;) € {0,1}* transcript of answers
(query independent of instance conditioned on what learned so far)
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A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.
Task: Sort F using only comparisons of the form f; < f;?
Then: H[F] = logn! = O(nlogn).

Let TT = (TIy,...,II;) € {0,1}* transcript of answers
(query independent of instance conditioned on what learned so far)

Reconstruction principle (conservation of information):

H[F] = I [F;T1) < H[II

(the algorithm's queries are an encoding for the instances)
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A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.
Task: Sort F using only comparisons of the form f; < f;?
Then: H[F] = logn! = O(nlogn).

Let TT = (TIy,...,II;) € {0,1}* transcript of answers
(query independent of instance conditioned on what learned so far)

Reconstruction principle (conservation of information):

O(nlogn) = H[F] =1[F;II] < H [II]

(the algorithm's queries are an encoding for the instances)
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A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.
Task: Sort F using only comparisons of the form f; < f;?
Then: H[F] = logn! = O(nlogn).

Let TT = (TIy,...,II;) € {0,1}* transcript of answers
(query independent of instance conditioned on what learned so far)

Reconstruction principle (conservation of information):

O(nlogn) =H[F]| =1[F;II] < H[II <ZH

7,<Z <1

(the algorithm's queries are an encoding for the instances)
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A first example: sorting by comparison.

Let F be a permutation of 1,...,n chosen uniformly random.
Task: Sort F using only comparisons of the form f; < f;?
Then: H[F] = logn! = O(nlogn).

Let TT = (IIy,...,TI;) € {0, 1} transcript of answers
(query independent of instance conditioned on what learned so far)

Reconstruction principle (conservation of information):

O(nlogn) =H[F] =I[F;II] < H[II <ZH
2<£ <1

(the algorithm'’s queries are an encoding for the instances)

= { = Q(nlogn) required comparisons.
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Relative Entropy (of two random variables).

A, B discrete RVs with |[Range (A)|, |Range (B)| < co. Then the
relative entropy of A and B:

P[A = a]

D(A P[A =a]log ——— .
IB) => P allog 55—
acA \ ,

divergence in bits
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Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = a]

D(A P[A =a]log ——— .
IB) => P allog 5
acA \ ,

divergence in bits

Interpretation:

@ Meta interpretation: How many bits do we pay extra for
encoding with A with a code for B.

@ While not as nice as entropy and mutual information, it is the
Ur-quantity
© Models distance of distribution (non-symmetric).

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

46



Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = q]

D(A P[A =a]log ———— .
IB)=>" allog g —
acA N .

Rules:
@ Nonnegativity: 0 <D (A || B).

divergence in bits
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Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = q]
D (A P[A =a]log ——— .

1)~ > P iAo 5=

Rules: e —_—

divergence in bits

@ Nonnegativity: 0 <D (A || B).
@ Entropy: H[A] = log |[Range(A)| —D (A ||U).
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Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = q]
D (A P[A =a]log ——— .

1)~ > P iAo 5=

Rules: e —_—

divergence in bits

@ Nonnegativity: 0 <D (A || B).
@ Entropy: H[A] = log |[Range(A)| —D (A ||U).
© Unique minimizer: D (A || B) =0 if and only if A = B.
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Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = q]
D (A P[A =a]log ——— .

1)~ > P iAo 5=

Rules: e —_—

divergence in bits

@ Nonnegativity: 0 <D (A || B).
@ Entropy: H[A] = log |[Range(A)| —D (A ||U).
© Unique minimizer: D (A || B) =0 if and only if A = B.
@ Chain rule:
D(A1,A2|B1,B2) =D(A1||B1)+D(A2| A1 || B2 | By).
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Relative Entropy (of two random variables).

A, B discrete RVs with [Range (A)|, |Range (B)| < oco. Then the
relative entropy of A and B:

P[A = q]
D (A P[A =a]log ——— .

1)~ > P iAo 5=

Rules: e —_—

divergence in bits

Nonnegativity: 0 < D (A || B).

Entropy: H[A] = log|Range(A)| —D (A | U).

Unique minimizer: D (A || B) =0 if and only if A = B.
Chain rule:

D (A1, Az By,B2) =D (A1 [|B1) + D (A2 | A [| B2 | By).
Direct sum: Let (A1,B1),...(A,,B,) be mutually
independent. Then

D(A1,...,An||By,...,By) = > D(A;[|By)
i€[n]

© ©e00C
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X

Now, let E indicate whether X = X.

M gH[X,E‘X}

remaining uncertainty
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X

Now, let E indicate whether X = X.

H[X)X} gH[X,E‘X} gH[X‘X,E]—HHI[E]

remaining uncertainty
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X

Now, let E indicate whether X = X.

H[X)X} gH[X,E‘X} gH[X‘X,E]—HHI[E]

remaining uncertainty

<P[E=0]H[X]+ H[E]
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X

Now, let E indicate whether X = X.

H[X)X} gH[X,E‘X} gH[X‘X,E]—HHI[E]

remaining uncertainty
. H[X(|X
We obtain:
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The reconstruction principle on steroids: Fano's inequality.

The reconstruction principle is a special case of Fano's inequality:

Consider Markov chain X — Y — X
~— ~ ~—
hidden RV observation guess of X

Now, let E indicate whether X = X.

In more convenient form:
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One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +¢, —¢ (each
equally likely).
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One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +¢, —¢ (each
equally likely).

Task: Flip the coin to figure out whether it is biased (i.e., learn the
distribution its i.i.d. flips come from).

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

48



One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +¢, —¢ (each
equally likely).

Task: Flip the coin to figure out whether it is biased (i.e., learn the
distribution its i.i.d. flips come from).

Question: How many coin flips II; do we need with any estimation
method to be correct with P [E = 1] > 27
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One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +¢, —¢ (each
equally likely).

Task: Flip the coin to figure out whether it is biased (i.e., learn the
distribution its i.i.d. flips come from).

Question: How many coin flips II; do we need with any estimation
method to be correct with P [E = 1] > 27

From Taylor expansion: 1[X;IIL;] < O(?).
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One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +¢, —¢ (each
equally likely).

Task: Flip the coin to figure out whether it is biased (i.e., learn the
distribution its i.i.d. flips come from).

Question: How many coin flips II; do we need with any estimation
method to be correct with P [E = 1] > 27

From Taylor expansion: 1[X;IL;] < O(g?).
With this we obtain, using Fano's inequality:

2 I M)+ H[E] _ nl[X L] + HE] n/e® +0.91
3= log 3 = log 3 T 158

an=0(1/).
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Information Theory + Extended Formulations

— Part 2 —

Sebastian Pokutta
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Extended formulations - quick recap.

Definition (extension)

P, @ polytopes. @ is an extension of P
if 3 linear 7 with 7(Q) = P
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Extended formulations - quick recap.

Definition (extension)

P, @ polytopes. @ is an extension of P 0
if 3 linear 7 with 7(Q) = P T\

Definition (size and extension complexity)

size(Q) := #facets of Q)
xc(P) := min{size(Q) | @ extension of P}

Sebastian Pokutta Extended Formulations and Information Theory 09/2014



Extended formulations - quick recap.

Definition (extension)

P, @ polytopes. @ is an extension of P
if 3 linear m with 7(Q) = P T\

Q
>
Definition (size and extension complexity)

size(Q) := #facets of Q)
xc(P) := min{size(Q) | @ extension of P}

Theorem (factorization thm [Yan.'91])

For every slack matrix S of P:

Sij
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Extended formulations - Sums of rank-1 matrices revisited.

Let M be a nonnegative matrix and consider a factorization

M:ZM,T

we(r]

with M, nonnegative rank-1 matrices.
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Extended formulations - Sums of rank-1 matrices revisited.

Let M be a nonnegative matrix and consider a factorization
M= M,
we(r]
with M, nonnegative rank-1 matrices.
Suppose that M is normalized so that Z%b My = 1.

= M is highly complicated probability distribution of (a, b)-pairs.
As distribution: (A,B) ~ M/ || M||;.
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Extended formulations - Sums of rank-1 matrices revisited.

Let M be a nonnegative matrix and consider a factorization

M:ZM,T

we(r]

with M, nonnegative rank-1 matrices.

Suppose that M is normalized so that Z%b My = 1.

= M is highly complicated probability distribution of (a, b)-pairs.
As distribution: (A,B) ~ M/ || M||;.

We want to sample from M via a set of product distributions.
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Extended formulations - Sums of rank-1 matrices revisited.

Let M be a nonnegative matrix and consider a factorization

M:ZM,T

we(r]

with M, nonnegative rank-1 matrices.

Suppose that M is normalized so that Z%b My = 1.

= M is highly complicated probability distribution of (a, b)-pairs.
As distribution: (A,B) ~ M/ || M||;.

We want to sample from M via a set of product distributions.
= Information has to go into the distribution of 7.
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Lemma (Matrices to distributions)
Let M be nonnegative and (A, B) be a random (row,col) of M,
with

P[A—a,B—b]—z%
z,y )

Then 3 discrete random variable I1 with

@ A and B are conditionally independent given 11,

In particular, vk (M) > 2H[I],
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Lemma (Matrices to distributions)
Let M be nonnegative and (A, B) be a random (row,col) of M,
with

P[A—a,B—b]—z%
z,y )

Then 3 discrete random variable I1 with
@ A and B are conditionally independent given 11,
@ II takes rk (M) distinct values.

In particular, vk (M) > 2H[I],
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Proof sketch.
Let a minimal factorization of M be given by

M(a,b) = Z ax(a)Bx(b).

(1) Let IT be a RV running through m = rk (M) values.
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Proof sketch.
Let a minimal factorization of M be given by

M(a,b) = Z ax(a)Bx(b).

(1) Let IT be a RV running through m = rk (M) values.
(2) Define a new distribution of A, B, II via

P[Aa,Bb,Hw]%.

Sum over 7 to verify that the distributions coincide for (A, B). Note
that the product in the numerator ensures independence of A | B | II.g
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Lemma (Cut-and-paste property for NMF)

Let M be nonnegative and (A, B) ~ M with A L B |II. Then
with I1,; ;= II|A = a,B = b we have:

VM (ay,by)M(as,by) (1 = h2(Ha1,b1; Haz,bQ))
=v/M(a1,b2) M (as,b1) (1 — h*(Ty pyi Tap ) -

In particular,

M(al,bz)M(GZabl)
h2 Ha . Ha >1-— ’
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Lemma (Cut-and-paste property for NMF)

Let M be nonnegative and (A, B) ~ M with A L B |II. Then
with I1,; ;= II|A = a,B = b we have:

VM (ay,by)M(as,by) (1 = h2(Ha1,b1; Haz,bQ))
=v/M(a1,b2) M (as,b1) (1 — h*(Ty pyi Tap ) -

In particular,

M(al,bz)M(GZabl)
h2 Ha . Ha >1-— ’

Note: We care for distribution of IT conditioned on A =a,B =10
(and not vice versa). Allows us to beat traditional cut-and-paste.
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Proof sketch (cut-and-paste property).
We have the distributions II, ; via:

{W’ eIl for M(a,b) #0,

Ha,b(ﬂ') = .
0 otherwise.
Clearly, for all rows a1, as and columns by, bs:

M(ala bl)Ha1,b1 (ﬂ') : M(G’Q? bQ)HaLbz (ﬂ-)
= M(ay,b2)ILy, p, (1) - M(ag,b1)ILy, 4, (1), m € IL

Taking square root and summing up
\/M(ah bl)M(a27 b2) (1 - h2(]'_‘[a1;b1 ) Haz,b2))
= /M(a1,b2)M(az,by) (1 — h*(Ma, 4, Mayp,)) < v/ M(ar,ba)M(az,by).

It also follows (assuming M (aq,b1), M (az,bs) > 0)

M (ay,by)M (az,by)
h2 Ha1 1;Ha2 2 > 1= .
( b ,b ) \/M(ahbl)M(aQ’bQ)

O
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Extended formulations - Common information and NMF.

Common information [Wyner, 75]

CM]:= min I[A,B;II],
LA LB|II

where (A, B) ~ M/ || M]|,.

Common information captures the information about the
correlation: once provided as seed, the sampling is independent.
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Extended formulations - Common information and NMF.

Common information [Wyner, 75]

CM]:= min I[A,B;II],
LA LB|II

where (A, B) ~ M/ || M]|,.

Common information captures the information about the
correlation: once provided as seed, the sampling is independent.

Clearly,

CIM| < i H T1I] < 1 k. M
(M) < [ min BT < logrky

Note: While useful, needs some adjustments for partial matrices
and C[.] is not necessarily monotone under conditioning.
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Extended formulations - Conditioned Common information.

Conditioned Common information

C[M | Z] := HEEIEL&\H I[A,B;II|Z],
I11%|(A,B)

where Z is a conditional.

Independence so that IT does not learn from conditional Z: a real
factorization would not either.
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Extended formulations - Conditioned Common information.

Conditioned Common information

CM | Z]:= HEEIEL&\H I[A,B;II|Z],
I11%|(A,B)

where Z is a conditional.

Independence so that IT does not learn from conditional Z: a real
factorization would not either.

Still
CIM|Z]< min HI[I|%Z] <logrk; M

T ILALB|IO
I1%|(A,B)

Why? Allows us to fine-tune the distribution and deal with partial
matrices.
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Extended formulations - Analysis of Common Information.

Lower bounds are now obtained via analyzing I[A, B;II].
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Extended formulations - Analysis of Common Information.

Lower bounds are now obtained via analyzing I[A, B;II].

General strategy:
@ Identify conditional %, so that I[A, B;II] can be decomposed:

T[A,B;TI| %] > Y T[A;,B;TT| %] > (minT[A;, B;; TT| ).
ielf] ‘
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Extended formulations - Analysis of Common Information.

Lower bounds are now obtained via analyzing I[A, B;II].

General strategy:
@ Identify conditional %, so that I[A, B;II] can be decomposed:

T[A,B;TI| %] > Y T[A;,B;TT| %] > (minT[A;, B;; TT| ).
ielf] ‘

@® For subproblem, use polyhedral combinatorics to bound:

I[A;,Bi;IT|Z) > ¢
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Extended formulations - Analysis of Common Information.

Lower bounds are now obtained via analyzing I[A, B;II].

General strategy:
@ Identify conditional %, so that I[A, B;II] can be decomposed:

T[A,B;TI| %] > Y T[A;,B;TT| %] > (minT[A;, B;; TT| ).
ielf] ‘

@® For subproblem, use polyhedral combinatorics to bound:
[TA;,B;IT|Z] > ¢

Nice side effects: we automatically also get polyhedral
inapproximability results.
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The Correlation Polytope
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Correlation polytope: COR(n) := conv{bb? € R™ " | b € {0,1}"}
Observation. For a,b € {0,1}™

1 — (2diag(a) — aa®,bbT) = 1 —2(diag(a),bb?) + (aa®, bbT)
1 — 2(diag(a), diag(b)) + (aa®, bbT)
1—2a"b+ (aTb)? = (1 —a’h)? = My,
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Correlation polytope: COR(n) := conv{bb? € R™ " | b € {0,1}"}
Observation. For a,b € {0,1}™

1 — (2diag(a) — aa®,bbT) = 1 —2(diag(a),bb?) + (aa®, bbT)
1 — 2(diag(a), diag(b)) + (aa®, bbT)
1—2a"b+ (aTb)? = (1 —a’h)? = My,

Lemma (Key Lemma)

For every a € {0,1}", the inequality
() (2diag(a) — aa”,z) < 1
is valid for COR(n). The slack of vertex bbT w.r.t. (x) is M.
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Correlation polytope: COR(n) := conv{bb? € R™ " | b € {0,1}"}
Observation. For a,b € {0,1}™

1 — (2diag(a) — aa®,bbT) = 1 —2(diag(a),bb?) + (aa®, bbT)
1 — 2(diag(a), diag(b)) + (aa®, bbT)
1—2a"b+ (aTb)? = (1 —a’h)? = My,

Lemma (Key Lemma)

For every a € {0,1}", the inequality
() (2diag(a) — aa”,z) < 1
is valid for COR(n). The slack of vertex bbT w.r.t. (x) is M.

Note: (A variant of) the clique problem reduces to COR(n).
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The slack matrix of the correlation polytope contains the so called
UDISJ (partial) matrix M € R%" x R?"

1 if Jand =0

M(a,b) =
(a,0) {0 it Janb=1.
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The slack matrix of the correlation polytope contains the so called
UDISJ (partial) matrix M € R%" x R?"

1 if Jand =0

M(a,b) =
(a,0) {0 it Janb=1.

Slack matrices of approximations of the correlation polytope
contain its shift M, € R x R%"

p if Janbd =0
p—1 if Janb =1

Mp(a’ b) - {
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[de Wolf, 01] via [Razborov, 92]: vk M > 29
= COR(n) cannot be captured by poly size LP.
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[de Wolf, 01] via [Razborov, 92]: vk M > 29
= COR(n) cannot be captured by poly size LP.

[Braun, Fiorini, P., Steurer, 12]: rky M, > 292(n'™*)

= COR(n) cannot be approximated by poly size LP within a
factor of n'/2—¢ (similarly, PSD cone cannot be approximated).
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[de Wolf, 01] via [Razborov, 92]: vk M > 29
= COR(n) cannot be captured by poly size LP.

[Braun, Fiorini, P., Steurer, 12]: rky M, > 292(n'™*)

= COR(n) cannot be approximated by poly size LP within a
factor of n'/2—¢ (similarly, PSD cone cannot be approximated).

[Braverman, Moitra, 13]: rky M5 > oQ(n'—F)

= COR(n) cannot be approximated by poly size LP within a
factor of n'~¢ matching Hastad's bound for CLIQUE(n).
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[de Wolf, 01] via [Razborov, 92]: vk M > 29
= COR(n) cannot be captured by poly size LP.

[Braun, Fiorini, P., Steurer, 12]: rky M, > 292(n'™*)

= COR(n) cannot be approximated by poly size LP within a
factor of n'/2—¢ (similarly, PSD cone cannot be approximated).

[Braverman, Moitra, 13]: rky M5 > oQ(n'—F)

= COR(n) cannot be approximated by poly size LP within a
factor of n'~¢ matching Hastad's bound for CLIQUE(n).

[Braun, P., 13]: rk, M(n?) > 9Q(n'~F)—o(1)

= COR(n) cannot be approximated by poly size LP within a
factor of n'~¢ in an average case sense.
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Crossing over into numbers—our key estimations.
Pinsker’s inequality: Let A, B be discrete RVs with identical
range. Then

loge
2

2
D (A1IB) > 5% s — pul} = 210ge) (max a(€) - pu(©)])

Hellinger Distance: Let A, B be discrete RVs with identical
range. Then

h*(A;B) =1 — Z vV pa(a)ps(a)

acRange A

1 2
- 5 ||\/pA - \/pBHQ > 0.
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.

e Let A, B be random subsets of [n] conditionally independent given
IT with A; and B; indicating i € A, i € B.
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.
e Let A, B be random subsets of [n] conditionally independent given
IT with A; and B; indicating i € A, i € B.
e Write the UDISJ distribution as

c ifanb=10

P[A_G’B_b]_{cu—g) if lanb| =1
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.

e Let A, B be random subsets of [n] conditionally independent given
IT with A; and B; indicating i € A, i € B.

e Write the UDISJ distribution as

c ifanb=10
c(l—e) iflanb|=1

e Take n fair coins Cy,...,C,, independent of A, B,II.
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.

e Let A, B be random subsets of [n] conditionally independent given
IT with A; and B; indicating i € A, i € B.

e Write the UDISJ distribution as

c ifanb=10
c(l—e) iflanb|=1

e Take n fair coins Cy,...,C,, independent of A, B,II.

e New RVs Dl,...,Dn with Dl = Az if Cl =0 and Dz = Bl
otherwise. Short: D := (Dy,Do,...,D,,)
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.

e Let A, B be random subsets of [n] conditionally independent given
IT with A; and B; indicating i € A, i € B.

e Write the UDISJ distribution as

c ifanb=10

P[A_G’B_b]_{cu—g) if lanb| =1

e Take n fair coins Cy,...,C,, independent of A, B,II.

e New RVs Dl,...,Dn with Dl = Az if Cl =0 and Dz = Bl
otherwise. Short: D := (Dy,Do,...,D,,)

e We will prove for any IT such that A | B | II

en

HN) > T[A,BiTI|D =0,C] > =
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Reduction to case n = 1.

Note that the pairs {(A;,B;) : j € [n]} are independent given D =0, C,
and hence

I[A,B;II|D =0,C] > Y 1[A;B;II|D =0,C]
JEIn]
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Reduction to case n = 1.

Note that the pairs {(A;,B;) : j € [n]} are independent given D =0, C,
and hence

I[A,B;II|D =0,C] > Y 1[A;B;II|D =0,C]
J€[n]

Observe that the distribution of A;, B;,II,D;, C; given
D, =0,C,; : i # j satisfies the assumptions for the case n = 1 (possibly
with a modified ¢).
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Reduction to case n = 1.

Note that the pairs {(A;,B;) : j € [n]} are independent given D =0, C,
and hence

I[A,B;II|D =0,C] > Y 1[A;B;II|D =0,C]
J€[n]

Observe that the distribution of A;, B;,II,D;, C; given
D, =0,C,; : i # j satisfies the assumptions for the case n = 1 (possibly

with a modified ¢). Thus

I[A;,B;;TI|D =0,C] >

| ™

so that o
> I[A;,B;;II|D=0,C] > =
Jj€ln]

It remains to prove the case n = 1.
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The case n = 1.

]I[Al,Bl,H|A1 :O}+H[A1,B1,H|B1 :O]
2

I[A,B;II|D =0,C] =
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The case n = 1.

]I[Al,Bl,H|A1 :O}+H[A1,B1,H|B1 :O]

I[A,B;II|D =0,C] = 5

Let IT,; denote the distribution of IT given A; = a and By = b. As
A1, B; is a uniform binary variable given either A1 =0 or By =0 via
Bar-Yossef et al. lemma:

I[A;,By;II| Ay = 0] > h*(IIgo; 1),
I[A1,By;II| By = 0] > h?(Igo; Iyo).
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The case n = 1.

]I[Al,Bl,H|A1 :O}+H[A1,B1,H|B1 :O]

I[A,B;II|D =0,C] = 5

Let IT,; denote the distribution of IT given A; = a and By = b. As
A1, B; is a uniform binary variable given either A1 =0 or By =0 via
Bar-Yossef et al. lemma:

I[A;,By;II| Ay = 0] > h*(IIgo; 1),
I[A1,By;II| By = 0] > h?(Igo; Iyo).

Not a good idea: separate estimation. h?(IIy;IIy;) = 0 possible as
00,01 can be in the same rank-1 factor. Similar for h?(TIg; I110).

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

66



Simultaneous estimation via Cauchy-Schwarz and A-inequality.

H[Al,Bl,H‘Al :O]+H[A1,B1,H|B1 :O]
2
- h?(TLoo; To1) 4 A% (TLgo; Myo) - (h(IXgo; o1 ) 4+ h(IIgp; 1_110))2
- 2 - 4
2 .
> h (1_[01171_[10)7

we simply apply cut-and-paste:
VM (ay,b1)M (ag,bs) >+/M (a1, b1) M (az,bs) (1= n*(My, 5y My ,))
:\/M(ah bQ)M(G‘?v bl) (1 - h2(Ha17b2; Ha2,b1))

and hence

&

MO,0MQA, L) ) A /2.

2(MMop;Mhyo) > 1 — 4| e
Mo o) = 17 0, 1r1,0)

O
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Theorem

Let A, B be random subsets of [n|, conditionally independent
given I1. Assume that

P[A:a,B:b]:{p Fanb =4, (1)

p—1 iflandb|=1

for all a,b C [n] for some p > 1. Then H [II] > 35-
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Approach is extremely robust w.r.t. changes in matrix.

Perturbation logrk4 > Remarks

(0) UDISJ 8-3lg3p Optimal estimation
(1) Shifts of UDISJ on (p — 1)-shift

(2) Sets of fixed size 2 + O(n'™°) 8~ o(n'~®)

Removing a fraction of rows and columns (remaining dimension indicated)
(3) Random (£ —a—PB)n in expectation
g(l—ajn o o(1=pF)n

(4) Adversarial (5, —@—B)n—log3 removal of
(1—-a)2"x(1-p3)2" fractions per size

Flipping of a fraction T of DISJ entries and NDISJ entries of (1)

(5) Random 8%;_2:)71 - 0(1) with high probability

(6) Adversarial %n —0(1) with mild restrictions
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The Matching Polytope
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The matching problem.

We consider the matching polytope

Pppr(n) = conv({XM e R(®) ’M is a perfect matching in Kn})

Inequalities of interest for the (perfect) matching polytope:

Ul -1

S(EU) <

Qn) = {z eRG)

YU CV:|U| odd}.
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Folklore: PSRS for the matching problem.

For p > 1 consider the polytope

K, = {a:

We have Ppy(n) € Ky C pQ(n): For U C [n] with odd |U| > S5

2(6(v)) < 1 Vo, 2(E[U]) < pMT‘l WU - odd, z > o} C pPui(n).

LU=t _U+Ulle=D=p U
2 2 2
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Folklore: PSRS for the matching problem.

For p > 1 consider the polytope

K, = {a:

We have Ppy(n) € Ky € pQ(n): For U C [n] with odd |U| > ~£5

#(5(v)) < 10, 2(EV]) < p!Z.

Ul-1_[U+Ul(p=1) =p _ |U]
p = > .
2 2 2

which arises

Thus z(E[U]) < plYI= is dominated by «(E[U])

U]
< Ul
>3

from positive combinations of z(§(v)) < 1 for v € U.
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Folklore: PSRS for the matching problem.

For p > 1 consider the polytope

K, = {a:

We have Ppy(n) € Ky C pQ(n): For U C [n] with odd |U| > S5

Ul -1

Ul-1_[U+Ul(p=1) =p _ |U]
p = > .
2 2 2

Thus z(E[U]) < p‘U‘;l is dominated by z(E[U]) < |7U‘ which arises

from positive combinations of z(§(v)) < 1 for v € U.

= K, is defined by roughly O(n#/(P=1)) inequalities

Sebastian Pokutta Extended Formulations and Information Theory 09/2014
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FPSRS for the matching polytope.

Note that n#/(°=1) is polynomial for any fixed p.
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FPSRS for the matching polytope.

Note that n#/(°=1) is polynomial for any fixed p.

However, for p = 1+ 1/n we have n™(1+%) = pm+1 = 4(poly(n).

Thus:

Matching Polytope . exponential xc (Rothvoss 2013)
p-approx Matching Polytope (p fixed) : polynomial xc
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FPSRS for the matching polytope.

Note that n#/(°=1) is polynomial for any fixed p.

However, for p = 1+ 1/n we have n™(1+%) = pm+1 = 4(poly(n).

Thus:

Matching Polytope . exponential xc (Rothvoss 2013)
p-approx Matching Polytope (p fixed) : polynomial xc

Does the matching polytope admit an FPSRS, i.e., (a family of)
approximate linear programming formulations of size poly(n, %) ?
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Ruling out FPSRS for matching—setup.

Slack matrix of interest (U odd set, M matching):

Syt =10(U)N M| —1+e.

Suppose NMF St = > ier) @ib] inducing (K normalization constant)

PM=m,U=uIIl =14 =K -a;(m)b;(u).
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Ruling out FPSRS for matching—setup.

Slack matrix of interest (U odd set, M matching):

Syt =10(U)N M| —1+e.

Suppose NMF St = > ier) @ib] inducing (K normalization constant)

PM=m,U=uIIl =14 =K -a;(m)b;(u).

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

74



Ruling out FPSRS for matching—setup.

Slack matrix of interest (U odd set, M matching):

Syt =10(U)N M| —1+e.

Suppose NMF St = > ier) @ib] inducing (K normalization constant)

PM=m,U=uIIl =14 =K -a;(m)b;(u).

Marginal distribution of M, U independent of factorization:

PM=m,U=u]=K-S/c

m,u
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

@ Choose H 3-matching between disjoint subsets Cy and Dyg.
Goal of Z: only pairs (M, U) with 6(U)NM = H with Ciy C U
and UNDg = 0.
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

@ Choose H 3-matching between disjoint subsets Cy and Dyg.
Goal of Z: only pairs (M, U) with 6(U)NM = H with Ciy C U
and UNDg = 0.

@ Partition the remaining vertices not covered by H into chunks
T4,..., T of size 2(k — 3) (put residual into L).
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

@ Choose H 3-matching between disjoint subsets Cy and Dyg.
Goal of Z: only pairs (M, U) with 6(U)NM = H with Ciy C U
and UNDg = 0.

@ Partition the remaining vertices not covered by H into chunks
T4,..., T of size 2(k — 3) (put residual into L).

© Split T; into disjoint sets C; and Dj of size k — 3.
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

@ Choose H 3-matching between disjoint subsets Cy and Dyg.
Goal of Z: only pairs (M, U) with 6(U)NM = H with Ciy C U
and UNDg = 0.

@ Partition the remaining vertices not covered by H into chunks
T4,..., T of size 2(k — 3) (put residual into L).

© Split T; into disjoint sets C; and Dj of size k — 3.
@ T collection of C1,Dq,...,Cy,Dm, Cx, Dy, L.
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

@ Choose H 3-matching between disjoint subsets Cy and Dyg.
Goal of Z: only pairs (M, U) with 6(U)NM = H with Ciy C U
and UNDg = 0.

@ Partition the remaining vertices not covered by H into chunks
T4,..., T of size 2(k — 3) (put residual into L).

© Split T; into disjoint sets C; and Dj of size k — 3.
@ T collection of C1,Dq,...,Cy,Dm, Cx, Dy, L.
© T and H be jointly uniformly distributed independent of M and U.

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

75



Ruling out FPSRS for matching—setup.
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Ruling out FPSRS for matching—setup.
Baseline event & (keep the setup clean):
UNT;€{),Ci}, CacUCCnuU |J G

i€[m]

&o = c M, M C HU E[L]U U E[Tj]

HCM
i1€[m]

In particular, given &y we have LNU = (). (Actually, the sole role of L is
to collect the vertices not fitting into the scheme.)
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Ruling out FPSRS for matching—setup.
Baseline event & (keep the setup clean):
UNT;€{),Ci}, CacUCCnuU |J G

i€[m]

8() =
HC M, MCHUE[L|U | E[Ty]

i1€[m]

In particular, given &y we have LNU = (). (Actually, the sole role of L is
to collect the vertices not fitting into the scheme.)

Mutually independent random fair coins N = Ny, ..., Ny,, which are
also independent of the random variables introduced before.

Sebastian Pokutta Extended Formulations and Information Theory 09/2014

7



Ruling out FPSRS for matching—setup.
Baseline event & (keep the setup clean):

UNT;€{),Ci}, CacUCCnuU |J G
i€[m]
MCHUE[L|U | E[Ty]

i1€[m]

&o =
HCM

e )

In particular, given &y we have LNU = (). (Actually, the sole role of L is
to collect the vertices not fitting into the scheme.)

Mutually independent random fair coins N = Ny, ..., Ny,, which are
also independent of the random variables introduced before.

& to switch cases via coins (recall UDISJ):

UNnT; =0, if N; =0,
8’28() .
S(CHNM =0, ifN;=1

The event € ensures 6(U)NM = H.
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Ruling out FPSRS for matching—reduction to m = 1 and L = 0.

We will show

logrk, St > C[ST¢] > mindH [M,U;II| T,N,H, €] > ¢ .m = O(n).

1 see

Reduction to m =1 and L = 0:
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Ruling out FPSRS for matching—reduction to m = 1 and L = 0.

We will show

logrk, S™¢ > C[S™¢] > min H[M U II| T,N,H, €] > ¢x.m = O(n).

: seed

Reduction to m =1 and L = 0:

@ Recall € ensures §(U) N M = H.

@ Thus, as the probability of a pair (M, U) depends only on the
number of crossing edges, (M, U) is uniformly distributed given &.

© The matching M decomposes into M; := M N E[T;] for i € [m],
together with My, := M N E[L] and H. Similarly, the set U
decomposes as U = Cy U U U with U; :=UNT;.

The pairs (M;, U;) together with (ML,(Z)) are mutually independent,
therefore by the direct sum property

I[M,U;II | T,N,H, €] > > I[M;, U IT|T,N, H, €] > ¢, .m,
where the last inequality is concluded from the local case.
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Ruling out FPSRS for matching—the local case.

Cleaning up the setup:

O C=C,UCygand D:=D;UDyg

@ C,D and H are uniformly distributed (independently of
M, U,II,N), and together determine the Cy, D1, Cg, Dy1.

© Introduce F as a uniformly random extension of H into a full
matching between C and D, depending only on C, D and H.

This independence ensures that adding it as condition to the mutual
information has no effect:

I[M,U;II|T,H,N,€ =M, U;II|T,H,F,N, €]

— I|M,U;II|C,D,F,H,N,¢]
Ec~c,pop,porie [IM, U;IT|C = C,D = D,F = F,H,N, £J]
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Ruling out FPSRS for matching—the local case.

From now on fix C, D, F' and drop from conditional (we average over all
specific choices).

Cleaning up the setup (now the events):

U =C(H), if N =0

€o:={Uc{C,CH)},HC M} &:= {5(c)mM:H, if N =1,

Here and below for a 3-matching h C F, let C'(h) denote the endpoints
of the edges of h lying in C'. With this:
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Ruling out FPSRS for matching—the local case.

From now on fix C, D, F' and drop from conditional (we average over all
specific choices).

Cleaning up the setup (now the events):

U =C(H), if N =0

€o:={Uc{C,CH)},HC M} &:= {5(c)mM:H, if N =1,

Here and below for a 3-matching h C F, let C'(h) denote the endpoints
of the edges of h lying in C'. With this:

I[M,U;T|H,N, & = Egnne [D(M,U|ILHN, | M, U |H,N,¢)|

= > P[N=i[€ Emmn=ie[DMU|[ILHN=i,|MU|HN=i¢).
i€{0,1}
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Ruling out FPSRS for matching—the local case.

We analyze the relative entropy term
I=DM,U|IILH N=¢&|M,U|HN=¢¢).
When is I =07
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Ruling out FPSRS for matching—the local case.

We analyze the relative entropy term
I=DM,U|IILH N=¢&|M,U|HN=¢¢).
When is I =07

Whenever the distribution of matchings and odd sets on the whole slack
matrix is close the one of the rank-1 factor under consideration.
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Ruling out FPSRS for matching—the local case.

We analyze the relative entropy term
I=DM,U|IILH N=¢&|M,U|HN=¢¢).

When is I ~ 07

Whenever the distribution of matchings and odd sets on the whole slack
matrix is close the one of the rank-1 factor under consideration.

These factors do not contribute to the lower bound and we care for those
where the distribution is markedly different.
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Ruling out FPSRS for matching—the local case.

We analyze the relative entropy term
I=DM,U|IILH N=¢&|M,U|HN=¢¢).

When is I ~ 07

Whenever the distribution of matchings and odd sets on the whole slack
matrix is close the one of the rank-1 factor under consideration.

These factors do not contribute to the lower bound and we care for those
where the distribution is markedly different.

A pair (7, h) is M-good if for all matchings m 2 h
PM=m|Il=nr,H=hN=0,¢]

1-6< <1+49.
ST PM-=-mH=-WLN=0¢
A pair (m, h) is U-good if for u = C(h) and u = C
1_5§P[UZU|H:W,H:h,N:1,8] <14

PU=u|H=hN=1,¢|
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Ruling out FPSRS for matching—the local case.

Via Pinsker's inequality:

IE’I'I,H|N:O,€ [D (M7 U | Ha H7N - 07 & H Ma U ‘ HaN - 0; 8)]
> P[M-BAD(IT, H) | N = 0, €] 2(log e) (6cx)

as given II, the variables N and U are independent of M. Similarly,
IEI‘I,H|N:1,€ [D (Mv U | Hv HvN =1, & H Ma U ‘ H»N =1, 8)]

> P[U-BAD(IT, H) |N = 1, €] 2(log €) (g>2
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Ruling out FPSRS for matching—the local case.

Via Pinsker's inequality:

IE’I'I,H|N:O,€ [D (M7 U | Ha H7N - 07 & H Ma U ‘ HaN - 0; 8)]
> P[M-BAD(IT, H) | N = 0, €] 2(log e) (6cx)

as given II, the variables N and U are independent of M. Similarly,
IEI‘I,H|N:1,€ [D (Mv U | Hv HvN =1, & H Ma U ‘ H»N =1, 8)]
5\ 2
> P[U-BAD(IL,H) [N = 1, &] 2(log e) (2>

...some technical computations ...

min {P [M-BAD(IT, H) | N = 0, €] ,P[U-BAD(IL, H) | N = 1, €]} > By > 0.
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Ruling out FPSRS for matching.

Theorem

Let 0 < e < 1 be fixed and n even. Then xc(Ppys(n), QT¢(n)) =20,
In particular, the extension complexity of the p-approximation of the
perfect matching polytope is xc(Ppyr(n), pQ) = 29 for p < 1 +¢/n,
and xc(Ppyr(n)) = 29 Thus, the perfect matching polytope does not
admit an FPSRS.
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Thank you!
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