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Extended formulations
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Given a polytope P ✓ Rn, what is the best way
of expressing P by means of linear inequalities?
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Given a polytope P ✓ Rn, what is the best way
of expressing P by means of linear inequalities?

We want the study the expressive power
of linear and semidefinite programs.

; alternative measure of complexity independent of P vs. NP.
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Definition (extension)

P, Q polytopes

Q is an extension of P if 9 linear ⇡ with ⇡(Q) = P

P

⇡
Q

Definition (size and extension complexity)

size(Q) := #facets of Q
xc(P ) := min{size(Q) | Q extension of P}
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Why do we care for extended formulations?
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Why do we care for extended formulations?

; Quantifier elimination backwards.
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Compact Extended Formulations.

Example: spanning tree polytope of Kn = (Vn, En)

Formulation 1: Formulation 2:

Vars: xuv (uv 2 En) Vars: xuv (uv 2 En)
y�!uv,w (uv 2 En, w 6= u, v)

P

uv2E[U ] xuv

6 |U |�1 8U 6= ?
x > 0
P

uv2En
x

uv

= n � 1

x > 0
y > 0

x
uv

� y�!
uv,w

� y�!
vu,w

= 0 8u, v, w
x

uv

+
P

w 6=u,v

y�!
uw,v

= 1 8u, v
P

uv2En
x

uv

= n � 1

size ⇡ 2n size ⇡ n3 ! compact

Is there an EF with even fewer inequalities?
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Some Examples.

Some known results (constructions & lower bounds):

• xc(regular n-gon) = ⇥(log n) [Ben-Tal, Nemirovski’01]

• xc(generic n-gon) = ⌦(
p

n) [Fiorini, Rothvoss, Tiwary’11]

• xc(n-permutahedron) = ⇥(n log n) [Goemans’09]

• xc(spanning tree polytope of Kn) = O(n3) [Kipp-Martin’87]

• xc(spanning tree polytope of planar graph G) = ⇥(n)
[Williams’01]

• xc(stable set polytope of perfect graph G) = nO(logn)

[Yannakakis’91]

• . . .
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Analyzing extended formulations...
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Slack Matrices.

Let A 2 Rm⇥d, b 2 Rm, V = {v
1

, . . . , vn} ✓ Rd s.t.

P = {x 2 Rd | Ax 6 b} = conv(V )

A
i

x = b
i

S
ij

v
j

Definition (slack matrix)

Slack matrix S 2 Rm⇥n
+

of P (w.r.t. Ax 6 b and V ):

Sij := bi � Aivj
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Nonnegative Factorizations and Factorization Theorem.

Definition

A rank-r nonnegative factorization of S 2 Rm⇥n is

S = TU where T 2 Rm⇥r
+

and U 2 Rr⇥n
+

Definition (nonnegative rank of S)

rk
+

(S) := min{r | 9 rank-r nonnegative factorization of S}
= min{r | S is the sum of r nonnegative rank-1 matrices}

Theorem (factorization theorem [Yannakakis’91, FKPT’11])

For every slack matrix S of P :

xc(P ) = rk
+

(S)
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Main goal: bound the nonnegative rank!
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A simple lower bound:
(arguably) the mother of all lower bounds)
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S = TU rank-r nonnegative factorization

=

r

X

k=1

T kU
k

sum of r nonnegative rank-1 matrices

=) supp(S) =

r

[

k=1

supp(T kU
k

)

=

r

[

k=1

supp(T k) ⇥ supp(U
k

) union of r rectangles

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 14



S = TU rank-r nonnegative factorization

=

r

X

k=1

T kU
k

sum of r nonnegative rank-1 matrices
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r

[

k=1

supp(T kU
k

)

=

r

[

k=1

supp(T k) ⇥ supp(U
k

) union of r rectangles

Definition (rectangle covering number)

rc(S) := min # rectangles whose union is supp(S)

Observation [Yannakakis’91]

rk
+

(S) > rc(S)
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S = TU rank-r nonnegative factorization

=

r

X

k=1

T kU
k

sum of r nonnegative rank-1 matrices

=) supp(S) =

r

[

k=1

supp(T kU
k

)

=

r
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k

) union of r rectangles
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Definition (Fooling Set)

Let S be a nonnegative matrix. Then a fooling set F is a set of
indices so that

1 M(a, b) > 0 for all (a, b) 2 F .

2 for all (a
1

, b
1

), (a
2

, b
2

) 2 F distinct, either M(a
1

, b
2

) = 0 or
M(a

2

, b
1

) = 0.
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Let S be a nonnegative matrix. Then a fooling set F is a set of
indices so that

1 M(a, b) > 0 for all (a, b) 2 F .

2 for all (a
1

, b
1

), (a
2

, b
2

) 2 F distinct, either M(a
1

, b
2

) = 0 or
M(a

2

, b
1

) = 0.

Lemma

If F is a fooling set for M of size k, then rk
+

(M) � k

Proof sketch.

No two elements of F can be in the same rank-1 matrix. ⇤

E↵ectiveness of Fooling Set method is limited [Fiorini, Kaibel,
Pashkovich, Theis’11]:

|F | = O(rank(M)2)
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Definition (Fooling Set)

Let S be a nonnegative matrix. Then a fooling set F is a set of
indices so that

1 M(a, b) > 0 for all (a, b) 2 F .

2 for all (a
1

, b
1

), (a
2

, b
2

) 2 F distinct, either M(a
1

, b
2

) = 0 or
M(a

2

, b
1

) = 0.

Lemma (Fiorini, Kaibel, Pashkovich, Theis’11)

P := [0, 1]n has a fooling set of size 2n.
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How about approximations?
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Often we are interested in approximate LP formulations.
• P ✓ Q ✓ Rd with P polytope, Q polyhedron
• L ✓ Re polytope

Definition (extension of a pair)

L is an extension of (P, Q) if 9 linear ⇡ with P ✓ ⇡(L) ✓ Q

⇡
L

P

Q

Definition (EF of a pair)

Ex + Fy = g, y > 0 is an extended formulation of (P, Q) if

x 2 P =) 9y : Ex + Fy = g, y > 0 =) x 2 Q
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Factorization Theorem for Pairs.

Let V = {v1, . . . , vn

} ✓ Rd s.t. P = conv(V )

Let A 2 Rm⇥d, b 2 Rm s.t. Q = {x 2 Rd | Ax 6 b}
Q

P

Definition (Slack matrix of pair)

Slack matrix S = SP,Q 2 Rm⇥n

+ of (P, Q) (w.r.t. Ax 6 b and V ):

SP,Q

ij

:= b
i

� A
i

v
j

Definition (Extension complexity of a pair)

xc(P, Q) = min{size(L) | L is an extension of (P, Q)}

Theorem (Factorization theorem for pairs)

For every slack matrix SP,Q of (P, Q): xc(P, Q) = rk+(SP,Q)
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Linear encoding (L, O) ; pair of nested polyhedra P ✓ Q:

• P := conv({x 2 {0, 1}d | x 2 L})

• Q := {x 2 Rd | 8w 2 O \ Rd : w|x 6 max{w|y | y 2 P}}

Definition (⇢-approximate extended formulation, ⇢ > 1)

Ex + Fy = g, y > 0 is a ⇢-approximate EF w.r.t. (L, O) if

1 8w 2 Rd:

max{w|x | Ex + Fy = g, y > 0} > max{w|x | x 2 P}
2 8w 2 O \ Rd:

max{w|x | Ex + Fy = g, y > 0} 6 ⇢ max{w|x | x 2 P}

Geometrically: P ✓ {x | 9y : Ex + Fy = g, y > 0} ✓ ⇢Q
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Sizes of Approximate Extended Formulations.

• L ; P = conv(V )

• O ; Q = {x 2 Rd | Ax 6 b}

Q

P

Observation:
1 ⇢Q = {x 2 Rd | Ax 6 ⇢b}
2 SP,⇢Q

ij = ⇢bi � Aivj = SP,Q
ij + (⇢ � 1)bi

Corollary

Minimum size of a ⇢-approximate EF = rk
+

(SP,⇢Q)
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A link to communication complexity
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Deterministic Communication Protocols.
A Basic Model in Communication Complexity

f : A ⇥ B ! {0, 1} Boolean function (⌘ binary matrix)

Two players:

• Alice knows a 2 A

• Bob knows b 2 B

want to compute f(a, b) by exchanging bits

Goal: Minimize complexity := #bits exchanged
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Deterministic Communication Protocols.
Example

b
1

b
2

b
3

b
4

a
1

0 0 0 1
a
2

0 0 0 1
a
3

0 0 0 0
a
4

0 1 1 1

Alice

Alice

Bob

Bob

0

1

0

1

0

a 2 {a1, a2} a 2 {a3, a4}

b 2 {b1, b2, b3} b 2 {b4} b 2 {b2, b3, b4} b 2 {b1}

a 2 {a4} a 2 {a3}

Observation

9 complexity c protocol for computing f =) rk
+

(f) 6 2c
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Computation in Expectation.

The main di↵erences:

• Alice and Bob can use (private) random bits to make choices

1 � p
i

(a)p
i

(a)

i

• f : A ⇥ B ! R
+

, Alice and Bob can output any value 2 R
+

Theorem ([Faenza, Fiorini, Grappe, Tiwary’11],[Zhang’12])

If c = c(f) is the minimum complexity of a randomized
communication protocol with nonnegative outputs computing f in
expectation, then

rk
+

(f) = ⇥(2c)
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A threefold characterization.

Three ways to look at EFs:

1 A linear system Ex + Fy = g, y > 0 with y 2 Rr

2 A rank-r nonnegative factorization S = TU of slack matrix S

3 A log r-complexity randomized protocol with nonnegative
outputs computing S in expectation
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In summary: bound the nonnegative rank!
(both for approximate or exact linear EFs)
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Common methods for construction of EFs.

1 Balas’ union (union of polyhedra)

2 Reflection relations

3 Dualization

4 Extended formulations from dynamic programs
(we consider those to be part of 3)
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Balas’ union of polyhedra.

Idea: Express the union of polytopes as a polytopes.
[Balas 1985]

Approximately: xc(conv(
S

i Pi))  P

i xc(Pi).

3 4

/

Used for approximate EF of the knapsack problem. [Bienstock 2008]
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Reflection relations.

Idea: reflect (one side of) a polytope at a hyperplane.

[Kaibel, Pashkovich 2010]

UHJXODU�SRO\JRQ

D[� �E

Construction of regular n-gon with O(log n) many inequalities.
[Ben-Tal, Nemirovski 1999]
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Dualization.

Idea: insert separation LP into the primal via dualization.

[Martin, 1991]

Spanning tree polytope of complete graph Kn with ⇥(n3)
inequalities (example from the beginning).

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 30



How about semidefinite EFs?
Essentially the same theory applies...
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Semidefinite Extended Formulations.

Definition (PSD matrix)

A matrix U 2 Rr⇥r is PSD if U is symmetric and

xTUx � 0 8x 2 Rr.

Let Sr
+

denote the set of r ⇥ r PSD matrices.

Definition (Spectral Decomposition)

U is r ⇥ r PSD i↵ U admits a spectral decomposition

U =

r
X

i=1

�iuiu
T

i ,

�
1

, . . . , �r � 0, u
1

, . . . , ur an orthonormal basis.
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Definition (Operator norm)

For a matrix T 2 Rr⇥r the operator norm of T is

kTk
op

= max
kxk

2

=1

kTxk
2

For a PSD matrix U 2 Rr⇥r

kUk
op

= max
kxk

2

=1

xTUx = largest eigenvalue of U .
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Definition (Trace)

For a matrix T 2 Rr⇥r, we define Tr [T ] =
Pr

i=1

Tii.

Remark (Trace Inner Product)

For A, B 2 Rr⇥r symmetric, Tr [AB] =
P

i,j2[r] AijBij .

Fact

For PSD matrices U, V 2 Sr
+

,

Tr [UV ] =
X

i,j2[r]

�i�j hui, vji2 � 0 ,

where U =
Pr

i=1

�iuiu
T

i and V =
Pr

j=1

�jvjv
T

j are the respective
spectral decompositions.
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Definition (SDP Extension)

P = {x 2 Rn : Ax  b} polytope with m facets. Then

Q = {(z, Y ) : Ciz + Tr [DiY ] = di, 8 i 2 [l], Y 2 Sr
+

, z 2 Rl},

is an SDP extension of P of size r if 9 ⇡ : Rl ⇥ Sr
+

! Rn such that

P = ⇡(Q).

Definition (SDP Extension Complexity)

xc
sdp

(P ) := minimum size of any SDP extension of P .
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PSD Factorizations and SDP Extensions.

Definition (PSD factorization)

A rank-r PSD factorization of S 2 Rm⇥N
+

is given by Ui, Vj 2 Sr
+

if for all i 2 [m], j 2 [N ] we have

Sij = Tr [UiVj ] .

Proposition (Extensions from Factorizations)

Let P be polytope and let S be slack matrix of P . Then

Q = {(x, Y ) : Aix + Tr [UiY ] = bi, 8i 2 [m], Y 2 Sr
+

}

is a SDP extension of P of size r.
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PSD Factorizations and Extensions.

Definition (PSD Rank)

rk
psd

(S) := min{r | 9 rank-r PSD factorization of S}

[Gouveia, Thomas, Parillo ’11]

Theorem (Factorization Theorem)

For every slack matrix S of P :

xc
sdp

(P ) = rk
psd

(S)

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 37



Information Theory: the basics
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Why Information Theory—more than a party trick?

1 Great whenever we want to model that something is ’learned’
Prime examples: Minimax Theory in Statistics, Machine
Learning, etc.

2 Heavily used in theoretical computer science
Prime examples: Multiplicative Weight Updates,
Communication Complexity, Data Structures, etc.

3 Measure information as a resource rather than computation

Upcoming survey: The Information-theoretic Method in Optimization
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The paradigm of information.

1 Computational unboundedness:
We care for flow of information

2 Key is the reconstruction principle:
A encodes B ) A contains all information about B

3 Very intuitive theory:
Common sense reasoning can go a long way

4 In information space most operations are very natural and
easy to perform
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The paradigm of information.

For bigger picture some non-EF examples:

1 Blackbox optimization.
Question: current point x
Answer: rf(x) and f(x)

2 Separation oracle.
Question: current point x
Answer: separating hyperplane

3 Compressed sensing.
Question: measurement vector x
Answer: outcome of measurement Ax
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Notation and Notions.

Notation:

1 Random variables: A

2 Events: E

3 Conditionals (combination of RVs and Events): C

4 We write a 2 A for a 2 Range(A)

Notions:

1 Often we identify an RV ⇧ with its distribution
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Entropy (of a random variable).

A discrete RV with |Range (A)| < 1. Then the entropy of A:

H [A] := �
X

a2Range(A)

P [A = a] log P [A = a] .
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Entropy (of a random variable).

A discrete RV with |Range (A)| < 1. Then the entropy of A:

H [A] := �
X

a2Range(A)

P [A = a] log P [A = a]
| {z }

encoding length

.
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Entropy (of a random variable).

A discrete RV with |Range (A)| < 1. Then the entropy of A:

H [A] := �
X

a2Range(A)

P [A = a] log P [A = a]
| {z }

encoding length

.

Interpretation:

1 Meta interpretation: ‘information/randomness’ in A

2 Expected encoding length

3 Expected number of bits in optimal coding:

H [A]  L(C,A)  H [A] + 1

4 Extraction of random bits: use biased coin with entropy h to
generate h unbiased bits per flip
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Entropy (of a random variable).

A discrete RV with |Range (A)| < 1. Then the entropy of A:

H [A] := �
X

a2Range(A)

P [A = a] log P [A = a]
| {z }

encoding length

.

Rules:

1 Conditional entropy: H [A |B] = Eb⇠B [H [A |B = b]].

2 Bounds: 0  H [A]  log |Range(A)| ( = i↵ uniform)

3 Monotonicity: H [A] � H [A |B].

4 Independence: A ? B if and only if H [A] = H [A |B]

5 Chain rule: H [A,B] = H [A] + H [B |A].

6 Subadditivity: H [(A
1

, . . . ,An)]  P

i2[n] H [Ai]
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Mutual information (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
mutual information of A and B:

I [A;B] := H [A] � H [A |B] .
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Mutual information (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
mutual information of A and B:

I [A;B] := H [A]
| {z }

initial uncertainty

� H [A |B]
| {z }

residual uncertainty

.
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Mutual information (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
mutual information of A and B:

I [A;B] := H [A]
| {z }

initial uncertainty

� H [A |B]
| {z }

residual uncertainty

.

Interpretation:

1 Meta interpretation: The amount of information leaked about
A by observing B.

2 From single RV (as in entropy) to interaction of RVs.

3 Models information gained from observation.
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Mutual information (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
mutual information of A and B:

I [A;B] := H [A]
| {z }

initial uncertainty

� H [A |B]
| {z }

residual uncertainty

.

Rules:
1 Conditional mutual information (C conditional):

I [A;B | C] := H [A | C] � H [A | C,B]
2 Bounds: 0  I [A;B]  H [A].
3 Symmetry: I [A;B | C] = I [B;A | C].
4 Chain rule: I [A

1

,A
2

;B] = I [A
1

;B] + I [A
2

;B |A
1

].
5 Direct sum: If A

1

, . . . ,An are independent. Then

I [A
1

, . . . ,An;B] �
X

i2[n]

I [Ai;B] .
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A first example: sorting by comparison.

Let F be a permutation of 1, . . . , n chosen uniformly random.

Task: Sort F using only comparisons of the form fi < fj?

Then: H [F] = log n! = ⇥(n log n).

Let ⇧ = (⇧
1

, . . . ,⇧`) 2 {0, 1}` transcript of answers
(query independent of instance conditioned on what learned so far)

Reconstruction principle (conservation of information):

⇥(n log n) = H [F] = I [F;⇧]  H [⇧] 
X

i`

H [⇧i]
| {z }

1

 `.

(the algorithm’s queries are an encoding for the instances)
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Task: Sort F using only comparisons of the form fi < fj?

Then: H [F] = log n! = ⇥(n log n).

Let ⇧ = (⇧
1
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) ` = ⌦(n log n) required comparisons.
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Relative Entropy (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
relative entropy of A and B:

D (A kB) :=
X

a2A
P [A = a] log

P [A = a]

P [B = a]
| {z }

divergence in bits

.
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Relative Entropy (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
relative entropy of A and B:

D (A kB) :=
X

a2A
P [A = a] log

P [A = a]

P [B = a]
| {z }

divergence in bits

.

Interpretation:

1 Meta interpretation: How many bits do we pay extra for
encoding with A with a code for B.

2 While not as nice as entropy and mutual information, it is the
Ur-quantity

3 Models distance of distribution (non-symmetric).
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Relative Entropy (of two random variables).

A,B discrete RVs with |Range (A)| , |Range (B)| < 1. Then the
relative entropy of A and B:

D (A kB) :=
X

a2A
P [A = a] log

P [A = a]

P [B = a]
| {z }

divergence in bits

.

Rules:
1 Nonnegativity: 0  D (A kB).
2 Entropy: H [A] = log |Range(A)| � D (A kU) .
3 Unique minimizer: D (A kB) = 0 if and only if A = B.
4 Chain rule:

D (A
1

,A
2

kB
1

,B
2

) = D (A
1

kB
1

) + D (A
2

| A
1

kB
2

| B
1

).
5 Direct sum: Let (A

1

,B
1

), . . . (An,Bn) be mutually
independent. Then

D (A
1

, . . . ,An kB
1

, . . . ,Bn) =
X

i2[n]

D (Ai kBi) .
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The reconstruction principle on steroids: Fano’s inequality.

The reconstruction principle is a special case of Fano’s inequality:

Consider Markov chain X
|{z}

hidden RV

! Y
|{z}

observation

! X̂
|{z}

guess of X

.

Now, let E indicate whether X̂ = X.
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The reconstruction principle on steroids: Fano’s inequality.

The reconstruction principle is a special case of Fano’s inequality:

Consider Markov chain X
|{z}

hidden RV

! Y
|{z}

observation

! X̂
|{z}

guess of X

.

Now, let E indicate whether X̂ = X.

H
h

X
�

�

�

X̂
i

| {z }

remaining uncertainty

 H
h

X,E
�

�

�

X̂
i

 H
h

X
�

�

�

X̂,E
i

+ H [E]

 P [E = 0] H [X] + H [E]

We obtain:
H[X | ˆX]�H[E]

H[X]

 P [E = 0]
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The reconstruction principle on steroids: Fano’s inequality.

The reconstruction principle is a special case of Fano’s inequality:

Consider Markov chain X
|{z}

hidden RV

! Y
|{z}

observation

! X̂
|{z}

guess of X

.

Now, let E indicate whether X̂ = X.

In more convenient form:

P [E = 1] 
I
h

X; X̂
i

+ H [E]

H [X]
.
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One more involved example: detecting a biased coin.

Suppose we have coin C, which can be fair or biased +", �" (each
equally likely).

Task: Flip the coin to figure out whether it is biased (i.e., learn the
distribution its i.i.d. flips come from).

Question: How many coin flips ⇧i do we need with any estimation
method to be correct with P [E = 1] � 2

3

?

From Taylor expansion: I [X;⇧i]  O("2).

With this we obtain, using Fano’s inequality:

2

3

 I [X;⇧] + H [E]

log 3

 nI [X;⇧
1

] + H [E]

log 3

⇡ n/"2 + 0.91

1.58
, n = ⌦(1/"2).
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Information Theory + Extended Formulations

— Part 2 —

Sebastian Pokutta
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Extended formulations - quick recap.

Definition (extension)

P, Q polytopes. Q is an extension of P
if 9 linear ⇡ with ⇡(Q) = P

P

⇡
Q

Definition (size and extension complexity)

size(Q) := #facets of Q
xc(P ) := min{size(Q) | Q extension of P}

A
i

x = b
i

S
ij

v
j

Theorem (factorization thm [Yan.’91])

For every slack matrix S of P :

xc(P ) = rk
+

(S)

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 50



Extended formulations - quick recap.

Definition (extension)

P, Q polytopes. Q is an extension of P
if 9 linear ⇡ with ⇡(Q) = P

P

⇡
Q

Definition (size and extension complexity)

size(Q) := #facets of Q
xc(P ) := min{size(Q) | Q extension of P}

A
i

x = b
i

S
ij

v
j

Theorem (factorization thm [Yan.’91])

For every slack matrix S of P :

xc(P ) = rk
+

(S)

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 50



Extended formulations - quick recap.

Definition (extension)

P, Q polytopes. Q is an extension of P
if 9 linear ⇡ with ⇡(Q) = P

P

⇡
Q

Definition (size and extension complexity)

size(Q) := #facets of Q
xc(P ) := min{size(Q) | Q extension of P}

A
i

x = b
i

S
ij

v
j

Theorem (factorization thm [Yan.’91])

For every slack matrix S of P :

xc(P ) = rk
+

(S)

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 50



Extended formulations - Sums of rank-1 matrices revisited.

Let M be a nonnegative matrix and consider a factorization

M =
X

⇡2[r]

M⇡

with M⇡ nonnegative rank-1 matrices.

Suppose that M is normalized so that
P

a,b Ma,b = 1.
) M is highly complicated probability distribution of (a, b)-pairs.
As distribution: (A,B) ⇠ M/ kMk

1

.

We want to sample from M via a set of product distributions.
) Information has to go into the distribution of ⇡.
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Lemma (Matrices to distributions)

Let M be nonnegative and (A,B) be a random (row,col) of M ,
with

P [A = a,B = b] =
M(a, b)

P

x,y M(x, y)

Then 9 discrete random variable ⇧ with

1 A and B are conditionally independent given ⇧,

2 ⇧ takes rk
+

(M) distinct values.

In particular, rk
+

(M) � 2H[⇧].

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 52



Lemma (Matrices to distributions)

Let M be nonnegative and (A,B) be a random (row,col) of M ,
with

P [A = a,B = b] =
M(a, b)

P

x,y M(x, y)

Then 9 discrete random variable ⇧ with

1 A and B are conditionally independent given ⇧,

2 ⇧ takes rk
+

(M) distinct values.

In particular, rk
+

(M) � 2H[⇧].

Sebastian Pokutta Extended Formulations and Information Theory 09/2014 52



Proof sketch.
Let a minimal factorization of M be given by

M(a, b) =
X

⇡

↵
⇡

(a)�
⇡

(b).

(1) Let ⇧ be a RV running through ⇡ ) rk+(M) values.

(2) Define a new distribution of A,B,⇧ via

P [A = a,B = b,⇧ = ⇡] =
↵

⇡

(a)�
⇡

(b)
P

x,y

M(x, y)
.

Sum over ⇡ to verify that the distributions coincide for (A,B). Note
that the product in the numerator ensures independence of A ? B | ⇧.⇤
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Lemma (Cut-and-paste property for NMF)

Let M be nonnegative and (A,B) ⇠ M with A ? B | ⇧. Then
with ⇧a,b := ⇧|A = a,B = b we have:

p

M(a
1

, b
1

)M(a
2

, b
2

)
�

1 � h2(⇧a
1

,b
1

;⇧a
2

,b
2

)
�

=
p

M(a
1

, b
2

)M(a
2

, b
1

)
�

1 � h2(⇧a
1

,b
2

;⇧a
2

,b
1

)
�

.

In particular,

h2(⇧a
1

,b
1

;⇧a
2

,b
2

) � 1 �
s

M(a
1

, b
2

)M(a
2

, b
1

)

M(a
1

, b
1

)M(a
2

, b
2

)
.

Note: We care for distribution of ⇧ conditioned on A = a,B = b
(and not vice versa). Allows us to beat traditional cut-and-paste.
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(and not vice versa). Allows us to beat traditional cut-and-paste.
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Proof sketch (cut-and-paste property).
We have the distributions ⇧

a,b

via:

⇧
a,b

(⇡) =

(

↵⇡(a)�⇡(b)
M(a,b) , ⇡ 2 ⇧ for M(a, b) 6= 0,

0 otherwise.

Clearly, for all rows a1, a2 and columns b1, b2:

M(a1, b1)⇧a1,b1(⇡) · M(a2, b2)⇧a2,b2(⇡)

= M(a1, b2)⇧a1,b2(⇡) · M(a2, b1)⇧a2,b1(⇡), ⇡ 2 ⇧.

Taking square root and summing up
p

M(a1, b1)M(a2, b2)
�

1 � h2(⇧
a1,b1 ;⇧a2,b2)

�

=
p

M(a1, b2)M(a2, b1)
�

1 � h2(⇧
a1,b2 ;⇧a2,b1)

� 
p

M(a1, b2)M(a2, b1).

It also follows (assuming M(a1, b1), M(a2, b2) > 0)

h2(⇧
a1,b1 ;⇧a2,b2) � 1 �

s

M(a1, b2)M(a2, b1)

M(a1, b1)M(a2, b2)
.

⇤
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Extended formulations - Common information and NMF.

Common information [Wyner, 75]

C[M ] := min
⇧:A?B|⇧

I [A,B;⇧] ,

where (A,B) ⇠ M/ kMk
1

.

Common information captures the information about the
correlation: once provided as seed, the sampling is independent.

Clearly,
C[M ]  min

⇧:A?B|⇧
H [⇧]  log rk

+

M

Note: While useful, needs some adjustments for partial matrices
and C[.] is not necessarily monotone under conditioning.
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Extended formulations - Conditioned Common information.

Conditioned Common information

C[M | Z] := min
⇧:A?B|⇧
⇧?Z|(A,B)

I [A,B;⇧ | Z] ,

where Z is a conditional.

Independence so that ⇧ does not learn from conditional Z: a real
factorization would not either.

Still
C[M | Z]  min

⇧:A?B|⇧
⇧?Z|(A,B)

H [⇧ | Z]  log rk
+

M

Why? Allows us to fine-tune the distribution and deal with partial
matrices.
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Extended formulations - Analysis of Common Information.

Lower bounds are now obtained via analyzing I [A,B;⇧].

General strategy:

1 Identify conditional Z, so that I [A,B;⇧] can be decomposed:

I [A,B;⇧ | Z] �
X

i2[`]

I [Ai,Bi;⇧ | Z] � ` min
i

I [Ai,Bi;⇧ | Z] .

2 For subproblem, use polyhedral combinatorics to bound:

I [Ai,Bi;⇧ | Z] � "

Nice side e↵ects: we automatically also get polyhedral
inapproximability results.
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The Correlation Polytope
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Correlation polytope: COR(n) := conv{bbT 2 Rn⇥n | b 2 {0, 1}n}
Observation. For a, b 2 {0, 1}n:
1 � h2diag(a) � aaT , bbT i = 1 � 2hdiag(a), bbT i + haaT , bbT i

= 1 � 2hdiag(a), diag(b)i + haaT , bbT i
= 1 � 2 aT b + (aT b)2 = (1 � aT b)2 =: M

ab

Lemma (Key Lemma)

For every a 2 {0, 1}n, the inequality

(?) h2diag(a) � aaT , xi 6 1

is valid for COR(n). The slack of vertex bbT w.r.t. (?) is Mab.

Note: (A variant of) the clique problem reduces to COR(n).
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The slack matrix of the correlation polytope contains the so called
UDISJ (partial) matrix M 2 R2

n

+

⇥ R2

n

+

M(a, b) =

(

1 if |a \ b| = 0

0 if |a \ b| = 1.

Slack matrices of approximations of the correlation polytope
contain its shift M⇢ 2 R2

n

+

⇥ R2

n

+

M⇢(a, b) =

(

⇢ if |a \ b| = 0

⇢ � 1 if |a \ b| = 1.
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[de Wolf, 01] via [Razborov, 92]: rk
+

M � 2⌦(n)

) COR(n) cannot be captured by poly size LP.

[Braun, Fiorini, P., Steurer, 12]: rk
+

Mn� � 2⌦(n1�2�
)

) COR(n) cannot be approximated by poly size LP within a
factor of n1/2�" (similarly, PSD cone cannot be approximated).

[Braverman, Moitra, 13]: rk
+

Mn� � 2⌦(n1��
)

) COR(n) cannot be approximated by poly size LP within a
factor of n1�" matching Håstad’s bound for CLIQUE(n).

[Braun, P., 13]: rk
+

M̃(n�) � 2⌦(n1��
)�o(1)

) COR(n) cannot be approximated by poly size LP within a
factor of n1�" in an average case sense.
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Crossing over into numbers—our key estimations.

Pinsker’s inequality: Let A,B be discrete RVs with identical
range. Then

D (A kB) � log e

2
kpA � pBk2

1

= 2(log e)

✓

max
E : event

|pA(E) � pB(E)|
◆

2

Hellinger Distance: Let A,B be discrete RVs with identical
range. Then

h2(A;B) := 1 �
X

a2RangeA

p

pA(a)pB(a)

=
1

2
kp

pA � p
pBk2

2

� 0.
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Information-theoretic setup.

Note: Overall strategy similar to Bar-Yossef et al.

• Let A, B be random subsets of [n] conditionally independent given
⇧ with A

i

and B
i

indicating i 2 A, i 2 B.

• Write the UDISJ distribution as

P [A = a,B = b] =

(

c if a \ b = ;
c(1 � ") if | a \ b | = 1

• Take n fair coins C1, . . . ,Cn

independent of A,B, ⇧.

• New RVs D1, . . . ,Dn

with D
i

= A
i

if C
i

= 0 and D
i

= B
i

otherwise. Short: D := (D1,D2, . . . ,Dn

)

• We will prove for any ⇧ such that A ? B | ⇧

H [⇧] � I [A,B;⇧ |D = 0,C] � "n

8
.
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Reduction to case n = 1.

Note that the pairs {(A
j

,B
j

) : j 2 [n]} are independent given D = 0,C,
and hence

I [A,B;⇧ |D = 0,C] �
X

j2[n]

I [A
j

,B
j

;⇧ |D = 0,C]

Observe that the distribution of A
j

,B
j

,⇧,D
j

,C
j

given
D

i

= 0,C
i

: i 6= j satisfies the assumptions for the case n = 1 (possibly
with a modified c). Thus

I [A
j

,B
j

;⇧ |D = 0,C] � "

8
,

so that
X

j2[n]

I [A
j

,B
j

;⇧ |D = 0,C] � "n

8

It remains to prove the case n = 1.
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The case n = 1.

I [A,B;⇧ |D = 0,C] =
I [A1,B1;⇧ |A1 = 0] + I [A1,B1;⇧ |B1 = 0]

2

Let ⇧
ab

denote the distribution of ⇧ given A1 = a and B1 = b. As
A1,B1 is a uniform binary variable given either A1 = 0 or B1 = 0 via
Bar-Yossef et al. lemma:

I [A1,B1;⇧ |A1 = 0] � h2(⇧00;⇧01),

I [A1,B1;⇧ |B1 = 0] � h2(⇧00;⇧10).

Not a good idea: separate estimation. h2(⇧00;⇧01) = 0 possible as
00, 01 can be in the same rank-1 factor. Similar for h2(⇧00;⇧10).
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Simultaneous estimation via Cauchy-Schwarz and �-inequality.

I [A1,B1;⇧ |A1 = 0] + I [A1,B1;⇧ |B1 = 0]

2

� h2(⇧00;⇧01) + h2(⇧00;⇧10)

2
� (h(⇧00;⇧01) + h(⇧00;⇧10))

2

4

� h2(⇧01;⇧10)

4
,

we simply apply cut-and-paste:
p

M(a1, b1)M(a2, b2) �
p

M(a1, b1)M(a2, b2)
�

1 � h2(⇧
a1,b1 ;⇧a2,b2)

�

=
p

M(a1, b2)M(a2, b1)
�

1 � h2(⇧
a1,b2 ;⇧a2,b1)

�

and hence

h2(⇧01;⇧10) � 1 �
s

M(0, 0)M(1, 1)

M(0, 1)M(1, 0)
� 1 � p

1 � " � "/2.

⇤
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Theorem

Let A, B be random subsets of [n], conditionally independent
given ⇧. Assume that

P [A = a,B = b] =

(

⇢ if a \ b = ;,

⇢ � 1 if | a \ b | = 1
(1)

for all a, b ✓ [n] for some ⇢ � 1. Then H [⇧] � n
8⇢ .
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Approach is extremely robust w.r.t. changes in matrix.

Perturbation log rk

+

� Remarks

(0) UDISJ 6�3 log 3

4

n Optimal estimation
(1) Shifts of UDISJ 1

8⇢n (⇢� 1)-shift

(2) Sets of fixed size n
4

+O(n1�"
)

n
8⇢ �O(n1�"

)

Removing a fraction of rows and columns (remaining dimension indicated)

(3) Random (

1

8⇢ � ↵� �)n in expectation

2

(1�↵)n ⇥ 2

(1��)n

(4) Adversarial (

1

8⇢ � ↵� �)n� log 3 removal of

(1� ↵)2n ⇥ (1� �)2n fractions per size

Flipping of a fraction ⌧ of DISJ entries and NDISJ entries of (1)

(5) Random 1�2⌧
8(⇢�⌧)n�O(1) with high probability

(6) Adversarial ⇢(1�10⌧)
8(⇢�⌧)2

n�O(1) with mild restrictions
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The Matching Polytope
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The matching problem.

We consider the matching polytope

P
PM

(n) := conv(
n

�
M

2 R(n2)
�

�

�

M is a perfect matching in K
n

o

).

Inequalities of interest for the (perfect) matching polytope:

Q(n) :=

⇢

x 2 R(n2)
�

�

�

�

x(E[U ])  |U | � 1

2
8U ✓ V : |U | odd

�

.
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Folklore: PSRS for the matching problem.

For ⇢ > 1 consider the polytope

K
n

=

⇢

x

�

�

�

�

x(�(v))  1 8v, x(E[U ])  ⇢
|U | � 1

2
8U : odd, x � 0

�

✓ ⇢P
M

(n).

We have P
PM

(n) ✓ K
n

✓ ⇢Q(n): For U ✓ [n] with odd |U | > ⇢

⇢�1 :

⇢
|U | � 1

2
=

|U | + |U | (⇢ � 1) � ⇢

2
� |U |

2
.

Thus x(E[U ])  ⇢ |U |�1
2 is dominated by x(E[U ])  |U |

2 which arises
from positive combinations of x(�(v))  1 for v 2 U .

) K
n

is defined by roughly O(n⇢/(⇢�1)) inequalities
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FPSRS for the matching polytope.

Note that n⇢/(⇢�1) is polynomial for any fixed ⇢.

However, for ⇢ = 1 + 1/n we have nn·(1+ 1
n ) = nn+1 = !(poly(n).

Thus:

Matching Polytope : exponential xc (Rothvoss 2013)
⇢-approx Matching Polytope (⇢ fixed) : polynomial xc

Does the matching polytope admit an FPSRS, i.e., (a family of)
approximate linear programming formulations of size poly(n, 1

"

)?
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Ruling out FPSRS for matching—setup.

Slack matrix of interest (U odd set, M matching):

S+"

M,U

:= |�(U) \ M | � 1 + ".

Suppose NMF S+" =
P

i2[r] ai

b|
i

inducing (K normalization constant)

P [M = m,U = u,⇧ = i] = K · a
i

(m)b
i

(u).

Marginal distribution of M,U independent of factorization:

P [M = m,U = u] = K · S+"

m,u
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Ruling out FPSRS for matching—setup.

We construct a conditional Z to make the problem decompose:

1 Choose H 3-matching between disjoint subsets CH and DH.
Goal of Z: only pairs (M,U) with �(U) \ M = H with CH ✓ U
and U \ DH = ;.

2 Partition the remaining vertices not covered by H into chunks
T1, . . . ,Tm of size 2(k � 3) (put residual into L).

3 Split Ti into disjoint sets Ci and Di of size k � 3.

4 T collection of C1,D1, . . . ,Cm,Dm,CH,DH,L.

5 T and H be jointly uniformly distributed independent of M and U.
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Ruling out FPSRS for matching—setup.

C1

D1

T1

C2

D2

T2

CH

DH

H

Cm

Dm

Tm
L

...U

Figure 1: The condition E together with a partition of Kn to reduce extension complexity to fixed-
size small chunks.

U \ DH = �. We partition the vertices not covered by H into equal-sized chunks T1, . . . , Tm of even
size 2(k � 3), where k � 7 is a fixed integer. This might not be possible, and some vertices might be
left out, therefore we add a remainder chunk L (which might be empty) of size l < 2(k � 3). In par-
ticular, n � 3 = 2(k � 3)m + l. We partition every Ti into a pair of (k � 3)-element sets Ci, Di. We
will denote by T the collection of C1, D1, . . . , Cm, Dm, CH, DH, L. Let T and H be jointly uniformly
distributed independently of M, U.

Second, we need a collection N of m mutually independent random fair coins N1, . . . , Nm,
which are also independent of the random variables introduced before. Finally, we introduce the
events E0 and E:

E0 :=

8

>

>

>

<

>

>

>

:

U \ Ti 2 {�, Ci}, CH ✓ U ✓ CH [ [

i2[m]

Ci

H ✓ M, M ✓ H [ E[L] [ [

i2[m]

E[Ti]

E := E0 ^
(

U \ Ti = �, if Ni = 0,
�(Ci) \ M = �, if Ni = 1.

In particular, given E0 we have L \ U = �. Actually, the sole role of L is to collect the vertices not
fitting into the scheme. The event E ensures �(U) \ M = H.

Now we are in the position to define Z as T, H, N, E, and hence to formulate the exact lower
bound on common information:

Proposition 3.2. Let k � 7 be a fixed odd number, 0  � < 1 � 4/k, and n = 2(k � 3)m + l + 3 for some
l < k. Consider the complete graph Kn on n vertices. Then there exists a constant ck,� > 0 depending only
on k and �, so that with the notations from above

I [M, U; � | T, N, H, E] � ck,�m.

We will now provide the proof of Proposition 3.2. We first reduce the general case to the case
m = 1 and l = 0 via a direct sum argument based on the partitions from above. We then analyze

5
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Ruling out FPSRS for matching—setup.

Baseline event E0 (keep the setup clean):

E0 :=

8

>

>

>

<

>

>

>

:

U \ Ti 2 {;,Ci}, CH ✓ U ✓ CH [
[

i2[m]

Ci

H ✓ M, M ✓ H [ E[L] [
[

i2[m]

E[Ti]

In particular, given E0 we have L\U = ;. (Actually, the sole role of L is
to collect the vertices not fitting into the scheme.)

Mutually independent random fair coins N = N1, . . . ,Nm, which are
also independent of the random variables introduced before.

E to switch cases via coins (recall UDISJ):

E := E0 ^
(

U \ Ti = ;, if Ni = 0,

�(Ci) \ M = ;, if Ni = 1

The event E ensures �(U) \ M = H.
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Ruling out FPSRS for matching—reduction to m = 1 and L = ;.
We will show

log rk+ S+" � C[S+"] � min
⇧: seed

I [M,U;⇧ |T,N,H, E] � c
k,"

m = ⇥(n).

Reduction to m = 1 and L = 0:

1 Recall E ensures �(U) \ M = H.

2 Thus, as the probability of a pair (M,U) depends only on the
number of crossing edges, (M,U) is uniformly distributed given E.

3 The matching M decomposes into Mi := M \ E[Ti] for i 2 [m],
together with ML := M \ E[L] and H. Similarly, the set U
decomposes as U = CH [ S

i2[m] Ui with Ui := U \ Ti.

The pairs (Mi,Ui) together with (ML, ;) are mutually independent,
therefore by the direct sum property

I [M,U;⇧ |T,N,H, E] �
X

i2[m]

I [Mi,Ui;⇧ |T,N,H, E] � c
k,"

m,

where the last inequality is concluded from the local case.
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Ruling out FPSRS for matching—the local case.

Cleaning up the setup:

1 C := C1 [ CH and D := D1 [ DH

2 C,D and H are uniformly distributed (independently of
M,U,⇧,N), and together determine the C1,D1,CH,DH.

3 Introduce F as a uniformly random extension of H into a full
matching between C and D, depending only on C, D and H.

This independence ensures that adding it as condition to the mutual
information has no e↵ect:

I [M,U;⇧ |T,H,N, E] = I [M,U;⇧ |T,H,F,N, E]

= I [M,U;⇧ |C,D,F,H,N, E]

= E
C⇠C,D⇠D,F⇠F|E [I [M,U;⇧ |C = C,D = D,F = F,H,N, E]]
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Ruling out FPSRS for matching—the local case.

From now on fix C, D, F and drop from conditional (we average over all
specific choices).

Cleaning up the setup (now the events):

E0 := {U 2 {C, C(H)},H ✓ M} E :=

(

U = C(H), if N = 0

�(C) \ M = H, if N = 1.

Here and below for a 3-matching h ✓ F , let C(h) denote the endpoints
of the edges of h lying in C. With this:

I [M,U;⇧ |H,N,E] = E⇧,H,N|E [D (M,U | ⇧,H,N,E kM,U | H,N,E)]

=

X

i2{0,1}

P [N = i |E] · E⇧,H|N=i,E [D (M,U | ⇧,H,N = i,E kM,U | H,N = i,E)] .
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Ruling out FPSRS for matching—the local case.

We analyze the relative entropy term

I := D (M,U | ⇧,H,N = i, E kM,U | H,N = i, E) .

When is I ⇡ 0?

Whenever the distribution of matchings and odd sets on the whole slack
matrix is close the one of the rank-1 factor under consideration.

These factors do not contribute to the lower bound and we care for those
where the distribution is markedly di↵erent.

A pair (⇡, h) is M-good if for all matchings m ◆ h

1 � �  P [M = m |⇧ = ⇡,H = h,N = 0, E]

P [M = m |H = h,N = 0, E]
 1 + �.

A pair (⇡, h) is U-good if for u = C(h) and u = C

1 � �  P [U = u |⇧ = ⇡,H = h,N = 1, E]

P [U = u |H = h,N = 1, E]
 1 + �.
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matrix is close the one of the rank-1 factor under consideration.

These factors do not contribute to the lower bound and we care for those
where the distribution is markedly di↵erent.

A pair (⇡, h) is M-good if for all matchings m ◆ h

1 � �  P [M = m |⇧ = ⇡,H = h,N = 0, E]

P [M = m |H = h,N = 0, E]
 1 + �.

A pair (⇡, h) is U-good if for u = C(h) and u = C

1 � �  P [U = u |⇧ = ⇡,H = h,N = 1, E]

P [U = u |H = h,N = 1, E]
 1 + �.
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Ruling out FPSRS for matching—the local case.

Via Pinsker’s inequality:

E⇧,H|N=0,E [D (M,U | ⇧,H,N = 0, E kM,U | H,N = 0, E)]

� P [M-BAD(⇧,H) |N = 0, E] 2(log e)(�↵)2

as given ⇧, the variables N and U are independent of M. Similarly,

E⇧,H|N=1,E [D (M,U | ⇧,H,N = 1, E kM,U | H,N = 1, E)]

� P [U-BAD(⇧,H) |N = 1, E] 2(log e)

✓

�

2

◆2

. . . some technical computations . . .

min {P [M-BAD(⇧,H) |N = 0, E] , P [U-BAD(⇧,H) |N = 1, E]} � B
k,"

> 0.
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Ruling out FPSRS for matching.

Theorem

Let 0 < " < 1 be fixed and n even. Then xc(P
PM

(n), Q+"(n)) = 2⇥(n).
In particular, the extension complexity of the ⇢-approximation of the
perfect matching polytope is xc(P

PM

(n), ⇢Q) = 2⇥(n) for ⇢  1 + "/n,
and xc(P

PM

(n)) = 2⇥(n). Thus, the perfect matching polytope does not
admit an FPSRS.
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Thank you!
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