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» Given polytope P = {x € R" | Az < b}
— many inequalities
» Write P={z € R" | Jy: Bx + Cy < d}

— few inequalities

linear
projection

» Extension complexity:
Q@ polyhedron
xc(P) := min { #facets of Q| p linear map
p(@) =P



What’s known?

Compact formulations:
» SPANNING TREE POLYTOPE [Kipp Martin '91]
» PERFECT MATCHING in planar graphs [Barahona ’93]

» PERFECT MATCHING in bounded genus graphs
[Gerards "91]
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Here: When is the extension complexity super polynomial?
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(2 — ¢)-apx LPs for MaxCut have size n
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Only NP-hard polytopes!!
What about poly-time problems?
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(complete)
z(0(v)) = 1 YveV : 3
z(0(U)) > 1 YU CV:|U|odd 1
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Quick facts: U
» Description by [Edmonds 65
» Can optimize ¢’z in strongly poly-time [Edmonds ’65]
» Separation problem polytime [Padberg, Rao ’82]
» 2907 facets

Theorem (R.13)
xc(perfect matching polytope) > 2%(n),

» Previously known: xc(P) > Q(n?)
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Slack-matrix
Write: P = conv({z1,...,2,}) = {z € R" | Az < b}

# vertices

>0

# facets S;; = b; — Aiij

=] AVASS |\

slack-matrix

Non-negative rank:

rki(S) = min{r | U e RIS, V e R : S = UV}
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Yannakakis’ Theorem

Theorem (Yannakakis '91)

If S is the slack-matrix for P = {z € R" | Az < b}, then
xc(P) = rk4(9).

Idea: Factor S = UV with

U = (conic comb. to derive constraint );

V= (slack vector of (z;,v;));
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Applying the Hyperplane bound

Goal: Find W with évml;% large for each rectangle.

Slack matrix Syy = [6(U) N M| -1

v

» Abbreviate Q := {(U, M) : [0(U) N M| = ¢}
» Uniform measure: py(R) := %
» Choose
—o0 |8(U)NM|=1
Wun = @ s(U)YNM| =3
0 otherwise.
oF Q3
S 7 L
()
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Rectangle covering for matching
Claim: There is a rectangle with (W, R) = ©(-;).
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—
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» For e1,ex € E: take {U | e1,e2 € 6(U)} x{M | e1,ea € M}

> But ux(R) = O(

k‘2
n4
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Applying the Hyperplane bound (II)

Goal: Find W with évml;% large for each rectangle.

)

» Choose
— 0 0(U)NM|=1
1 _
Weas — ml 1 o(U)NM|=3
0 otherwise.
» Then

(W,8)=0+2—-1=1

cuts
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» Partition T'= (A,C, D, B)

A C
°
o o
Al L
°o o
°
o o
55 o Y
o o
)
k-3 o °
nodes{ .Am. *

~<d[ e

D
°

N
N\

L

=

~<d[ @

natchings

cuts



Partitions
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Partitions

> Partition T = (4, C, D, B)
» Edges E(T)

A C D
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NO!
Proof:
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Pseudo-random behaviour of large set systems

Imagine the following setting: ’
V&

» n elements

» set system S with 200727 getg @

Questions:

» Is it possible that > 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 2099 sets

» Is it possible that > 1% elements are in < 49% of sets?
NO!

Lemma
If S large, for most elements ¢,

Pr[SeS]~ Pr[SeS|iel]
SC[n] SCln]
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Rewriting s (R) S

A C D
o)

matchings

Randomly generate (U, M) ~ Qy:
1. Choose T’

2. Choose k edges FC C x D
3. Choose M D F
4. Choose U O C' (not cutting any A;)

E [Pr[MeR|T,H] -Pr[U€R|T,H]H

pe(R) = E [
T L=k
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How does an average partition look like

» Suppose for a fixed (T, F):
ur(R) =~ Pr[(UM)e R|T,F] =:p
» Then
us(R)~ E [GOOD(T,H) -Pr[(U,M) e R|T,H]]
H~(3) e
<O(1/k2)
» GOOD means it doesn’t matter what condition on here
» Suffices to show: H, H* C F good = |[HNH*| > 2

~p

» Suppose |[HNH*| <1
» (T, H) good
= IM : {u,v} e M
» (T, H*) good
=3V :u,velU
» [J(U)NM|=1
Contradiction!

!
I
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Most partitions are good

Lemma
Pr[(T,H) is M-bad] < ¢

» Pick H, A, B1,...,Bm+1.

B B
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Most partitions are good

Lemma
Pr[(T,H) is M-bad] < e

» Pick H, A, Bl, .. 7Bm+1- Split Bl = C;UD;.

. i
]
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Most partitions are good

Lemma
Pr[(T,H) is M-bad] < e

» Pick H, A, Bl, .. 7Bm+1- Split Bl = C;UD;.
» Pick randomly 7 € {1,...,m}

I
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Most partitions are good

Lemma
Pr[(T,H) is M-bad] < e

» Pick H, A, Bl, .. 7Bm+1- Split Bl = CZUl)Z
» Pick randomly i € {1,...,m} and let C :=C;, D := D,

x|
9

{

Y
\

v
25

=

X
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Open problem

Show that there is no small SDP representing the
Correlation/ TSP /matching polytope!

Thanks for your attention



