
The matching polytope has exponential

extension complexity

Thomas Rothvoss

Department of Mathematics, UW Seattle

Extended formulation

Extended formulation

◮ Given polytope P = {x ∈ R
n | Ax ≤ b}

P

Extended formulation

◮ Given polytope P = {x ∈ R
n | Ax ≤ b}

◮ Write P = {x ∈ R
n | ∃y : Bx+ Cy ≤ d}

P

Q

linear
projection

Extended formulation

◮ Given polytope P = {x ∈ R
n | Ax ≤ b}

→ many inequalities
◮ Write P = {x ∈ R

n | ∃y : Bx+ Cy ≤ d}
→ few inequalities

P

Q

linear
projection

Extended formulation

◮ Given polytope P = {x ∈ R
n | Ax ≤ b}

→ many inequalities
◮ Write P = {x ∈ R

n | ∃y : Bx+ Cy ≤ d}
→ few inequalities

P

Q

linear
projection

◮ Extension complexity:

xc(P) := min






#facets of Q |

Q polyhedron
p linear map
p(Q) = P







What’s known?

Compact formulations:

◮ Spanning Tree Polytope [Kipp Martin ’91]

◮ Perfect Matching in planar graphs [Barahona ’93]

◮ Perfect Matching in bounded genus graphs
[Gerards ’91]

◮ O(n logn)-size for Permutahedron [Goemans ’10]
(→ tight)

◮ nO(1/ε)-size ε-apx for Knapsack Polytope [Bienstock ’08]

◮ . . .

What’s known?

Compact formulations:

◮ Spanning Tree Polytope [Kipp Martin ’91]

◮ Perfect Matching in planar graphs [Barahona ’93]

◮ Perfect Matching in bounded genus graphs
[Gerards ’91]

◮ O(n logn)-size for Permutahedron [Goemans ’10]
(→ tight)

◮ nO(1/ε)-size ε-apx for Knapsack Polytope [Bienstock ’08]

◮ . . .

Here: When is the extension complexity super polynomial?

Lower bounds

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

◮ (2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]

Lower bounds

◮ No symmetric compact form. for TSP [Yannakakis ’91]
Compact formulation for logn size matchings, but no
symmetric one [Kaibel, Pashkovich & Theis ’10]

◮ xc(random 0/1 polytope) ≥ 2Ω(n) [R. ’11]

◮ Breakthrough: xc(TSP) ≥ 2Ω(
√
n)

[Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12]

◮ n1/2−ε-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer ’12]
Improved to n1−ε [Braverman, Moitra ’13], [Braun, P. ’13]

◮ (2− ε)-apx LPs for MaxCut have size nΩ(logn/ log logn)

[Chan, Lee, Raghavendra, Steurer ’13]

Only NP-hard polytopes!!

What about poly-time problems?

Perfect matching polytope

Perfect matching polytope G = (V,E)
(complete)

Perfect matching polytope G = (V,E)
(complete)

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

G = (V,E)
(complete)

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Quick facts:

◮ Description by [Edmonds ’65]

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]
◮ Separation problem polytime [Padberg, Rao ’82]

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]
◮ Separation problem polytime [Padberg, Rao ’82]
◮ 2Θ(n) facets

Perfect matching polytope

x(δ(v)) = 1 ∀v ∈ V

x(δ(U)) ≥ 1 ∀U ⊆ V : |U | odd

xe ≥ 0 ∀e ∈ E

U

1
2

1
2

1
2

1
2

1
2

1
2

G = (V,E)
(complete)

Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]
◮ Separation problem polytime [Padberg, Rao ’82]
◮ 2Θ(n) facets

Theorem (R.13)

xc(perfect matching polytope) ≥ 2Ω(n).

◮ Previously known: xc(P) ≥ Ω(n2)

Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

vertices

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b

Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

vertices

facet i

vertex
j

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ R

r×v
≥0 : S = UV }

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P) = rk+(S).

P

Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P) = rk+(S).

Idea: Factor S = UV with

U = (conic comb. to derive constraint i)i

V = (slack vector of (xj , vj))j

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xj
b

(xj , yj)
b

P

Hyperplane separation lower bound [Fiorini]

rk+(S) = min
{

r : S =
r∑

i=1

Ri and Ri ≥ 0 rank-1 matrix
}

S = + . . .+

R1 Rr

1 1 1

1 2 2

1 2 2

3 0 3

0 0 0

3 0 3

Hyperplane separation lower bound [Fiorini]

rk+(S) = min
{

r : S =

r∑

i=1

λi
︸︷︷︸

≤‖S‖∞

Ri and 0 ≤ Ri ≤ 1 rank-1 matrix
}

S = + . . .+

R1 Rr

1
2

1
2

1
2

1
2 1 1
1
2 1 1

λ1 λr

1 0 1

0 0 0

1 0 1

Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{

‖λ‖1 : S =
r∑

i=1

λiRi and 0 ≤ Ri ≤ 1 rank-1 matrix
}

S = + . . .+

R1 Rr

1
2

1
2

1
2

1
2 1 1
1
2 1 1

λ1 λr

1 0 1

0 0 0

1 0 1

Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{

‖λ‖1 : S =
r∑

i=1

λiRi and Ri ∈ {0, 1}f×v rank-1
}

R

0

b

b

b

b

b

rectangles

[0, 1]-rank-1
matrices

S = + . . .+

R1 Rr

0 0 0

0 1 1

0 1 1

λ1 λr

1 0 1

0 0 0

1 0 1

Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{

‖λ‖1 : 〈W,S〉 =
r∑

i=1

λi 〈W,Ri〉 and Ri rect.
}

R

S0

b

b

b

b

b

rectangles

[0, 1]-rank-1
matrices W

〈W,R〉 ≤ α

S = + . . .+

R1 Rr

0 0 0

0 1 1

0 1 1

λ1 λr

1 0 1

0 0 0

1 0 1

Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{ 〈W,S〉

〈W,R〉
: R rectangle

}

R

S0

b

b

b

b

b

rectangles

[0, 1]-rank-1
matrices W

〈W,R〉 ≤ α

S = + . . .+

R1 Rr

0 0 0

0 1 1

0 1 1

λ1 λr

1 0 1

0 0 0

1 0 1

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1

matchings

cu
ts

S

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1

|δ(U) ∩M | − 1

M

U

matchings

cu
ts

S

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1
◮ Abbreviate Qℓ := {(U,M) : |δ(U) ∩M | = ℓ}

◮ Uniform measure: µℓ(R) := |R∩Qℓ|
|Qℓ|

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1
◮ Abbreviate Qℓ := {(U,M) : |δ(U) ∩M | = ℓ}

◮ Uniform measure: µℓ(R) := |R∩Qℓ|
|Qℓ|

◮ Choose

WU,M =






0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1
◮ Abbreviate Qℓ := {(U,M) : |δ(U) ∩M | = ℓ}

◮ Uniform measure: µℓ(R) := |R∩Qℓ|
|Qℓ|

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1

0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

−∞

−∞

−∞

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1
◮ Abbreviate Qℓ := {(U,M) : |δ(U) ∩M | = ℓ}

◮ Uniform measure: µℓ(R) := |R∩Qℓ|
|Qℓ|

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

Applying the Hyperplane bound

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Slack matrix SUM = |δ(U) ∩M | − 1
◮ Abbreviate Qℓ := {(U,M) : |δ(U) ∩M | = ℓ}

◮ Uniform measure: µℓ(R) := |R∩Qℓ|
|Qℓ|

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

R

Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ(1
n4).

Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ(1
n4).

e1

e2

◮ For e1, e2 ∈ E:

Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ(1
n4).

U

e1

e2

◮ For e1, e2 ∈ E: take {U | e1, e2 ∈ δ(U)}

Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ(1
n4).

U

e1

e2
M

◮ For e1, e2 ∈ E: take {U | e1, e2 ∈ δ(U)} ×{M | e1, e2 ∈ M}

Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ(1
n4).

U M

e1

e2

◮ For e1, e2 ∈ E: take {U | e1, e2 ∈ δ(U)} ×{M | e1, e2 ∈ M}

◮ But µk(R) = Θ(k
2

n4)

Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

0 otherwise.

0

0

0

2

2

2

Q1 Q3

Qk k − 1 k − 1

k − 1

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

− 1
k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

0

0

0

2

2

2

Q1 Q3

Qk k − 1 k − 1

k − 1

matchings

cu
ts

S

b

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

− 1

k−1

1

|Qk|
− 1

k−1

1

|Qk|

− 1

k−1

1

|Qk|

Applying the Hyperplane bound (II)

Goal: Find W with 〈W,S〉
〈W,R〉 large for each rectangle.

◮ Choose

WU,M =







−∞ |δ(U) ∩M | = 1
1

|Q3| |δ(U) ∩M | = 3

− 1
k−1 · 1

|Qk| |δ(U) ∩M | = k

0 otherwise.

◮ Then
〈W,S〉 = 0 + 2− 1 = 1

Lemma

For k large, any rectangle R
has 〈W,R〉 ≤ 2−Ω(n).

matchings

cu
ts

W

−∞

−∞

−∞

1
|Q3|

1
|Q3|

1
|Q3|

− 1

k−1

1

|Qk|
− 1

k−1

1

|Qk|

− 1

k−1

1

|Qk|

R

Applying the Hyperplane bound (III)

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

matchings

cu
ts

S

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

R

matchings

cu
ts

S

◮ Technique: Partition scheme [Razborov ’91]

Applying the Hyperplane bound (III)

Main lemma

µ1(R) = 0 =⇒ µ3(R) ≤ O(1
k2
) · µk(R) + 2−Ω(n)

RT

matchings

cu
ts

S

◮ Technique: Partition scheme [Razborov ’91]

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A B

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C B

k

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

k k

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

A1

. . .

Am
k − 3
nodes

k k

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T)

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T)

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes

Partitions

RT

matchings

cu
ts

S

◮ Partition T = (A,C,D,B)

◮ Edges E(T)

A C D B

B1
. . . BmA1

. . .

Am
k − 3
nodes

k k 2(k − 3)
nodes

U

Pseudo-random behaviour of large set systems

Imagine the following setting:

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

b

b

b

b

b

b

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)
subadd
≤

n∑

i=1

H(xi)

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Proof:

◮ Take a random set from S

◮ Denote char. vector as x ∈ {0, 1}n

log |S| = H(x)
subadd
≤

n∑

i=1

H(xi) ≤ n− Ω(n)
0

1

0 0.5 1.0

entropy

p

Pseudo-random behaviour of large set systems

Imagine the following setting:

◮ n elements

◮ set system S with 2(1−o(1))n sets b

b

b

b

b

b

Questions:

◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Lemma

If S large, for most elements i,

Pr
S⊆[n]

[S ∈ S] ≈ Pr
S⊆[n]

[S ∈ S | i ∈ S]

Rewriting µk(R)

RRT

matchings

cu
ts

S

Randomly generate (U,M) ∼ Qk:

µk(R) =

Rewriting µk(R)

RRT

matchings

cu
ts

S

A C D B

B1
. . . BmA1

. . .

Am

Randomly generate (U,M) ∼ Qk:
1. Choose T

µk(R) = E
T

[]

Rewriting µk(R)

RRT

matchings

cu
ts

S

A C D B

B1
. . . BmA1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:
1. Choose T
2. Choose k edges F ⊆ C ×D

µk(R) = E
T

[

E
|F |=k

[]]

Rewriting µk(R)

RRT

matchings

cu
ts

S

A C D B

B1
. . . BmA1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:
1. Choose T
2. Choose k edges F ⊆ C ×D
3. Choose M ⊇ F

µk(R) = E
T

[

E
|F |=k

[

Pr[M ∈ R | T,H]
]]

Rewriting µk(R)

RRT

matchings

cu
ts

S

A C D B

B1
. . . Bm

U

A1

. . .

Am

F

Randomly generate (U,M) ∼ Qk:
1. Choose T
2. Choose k edges F ⊆ C ×D
3. Choose M ⊇ F
4. Choose U ⊇ C (not cutting any Ai)

µk(R) = E
T

[

E
|F |=k

[

Pr[M ∈ R | T,H] · Pr[U ∈ R | T,H]
]]

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

B1
. . . BmA1

. . .

Am
F

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

B1
. . . BmA1

. . .

Am
F

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

B1
. . . BmA1

. . .

Am
F

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[

︸ ︷︷ ︸

≤O(1/k2)

Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

B1
. . . BmA1

. . .

Am
F

H

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1
B1

. . . BmA1

. . .

Am

H

H∗

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1

◮ (T,H) good
⇒ ∃M : {u, v} ∈ M

B1
. . . BmA1

. . .

Am

H

H∗
u

v

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1

◮ (T,H) good
⇒ ∃M : {u, v} ∈ M

◮ (T,H∗) good
⇒ ∃U : u, v ∈ U

B1
. . . BmA1

. . .

Am

H

H∗
u

v

How does an average partition look like

◮ Suppose for a fixed (T, F):
µk(R) ≈ Pr[(U,M) ∈ R | T, F] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
)
[GOOD(T,H)

︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1

◮ (T,H) good
⇒ ∃M : {u, v} ∈ M

◮ (T,H∗) good
⇒ ∃U : u, v ∈ U

◮ |δ(U) ∩M | = 1
Contradiction!

B1
. . . BmA1

. . .

Am

H

u

v

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H

H

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A

A

A1

. . .

Am

H

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1.

A B̃1 B̃2
. . . B̃m+1

A1

. . .

Am

H

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.

A B̃1 B̃2
. . . B̃m+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.
◮ Pick randomly i ∈ {1, . . . ,m}

A B̃1 B̃2
. . . B̃m+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H

i

Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.
◮ Pick randomly i ∈ {1, . . . ,m} and let C := Ci, D := Di

A C D B1
. . . Bm

A1

. . .

Am

H

Open problems

Open problem

Show that there is no small SDP representing the
Correlation/TSP/matching polytope!

Open problems

Open problem

Show that there is no small SDP representing the
Correlation/TSP/matching polytope!

Thanks for your attention

