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◮ Extension complexity:

xc(P ) := min






#facets of Q |

Q polyhedron
p linear map
p(Q) = P






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Compact formulations:
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Here: When is the extension complexity super polynomial?
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Only NP-hard polytopes!!

What about poly-time problems?
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Quick facts:

◮ Description by [Edmonds ’65]
◮ Can optimize cTx in strongly poly-time [Edmonds ’65]
◮ Separation problem polytime [Padberg, Rao ’82]
◮ 2Θ(n) facets

Theorem (R.13)

xc(perfect matching polytope) ≥ 2Ω(n).

◮ Previously known: xc(P ) ≥ Ω(n2)



Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b



Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

facet i

vertex
j

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij



Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ R
n | Ax ≤ b}

S# facets

# vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

Pb

b b

b

b
Aix = bi

b
xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ R

r×v
≥0 : S = UV }
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Yannakakis’ Theorem

Theorem (Yannakakis ’91)

If S is the slack-matrix for P = {x ∈ R
n | Ax ≤ b}, then

xc(P ) = rk+(S).

Idea: Factor S = UV with

U = (conic comb. to derive constraint i)i

V = (slack vector of (xj , vj))j

Q

Aix+ 0y ≤ bi

b

b b

b

b

b

b

b

b

b

b

b

xj
b

(xj , yj)
b

P



Hyperplane separation lower bound [Fiorini]

rk+(S) = min
{

r : S =
r∑

i=1

Ri and Ri ≥ 0 rank-1 matrix
}

S = + . . .+

R1 Rr

1 1 1

1 2 2

1 2 2

3 0 3

0 0 0

3 0 3



Hyperplane separation lower bound [Fiorini]

rk+(S) = min
{

r : S =

r∑

i=1

λi
︸︷︷︸

≤‖S‖∞

Ri and 0 ≤ Ri ≤ 1 rank-1 matrix
}

S = + . . .+

R1 Rr

1
2

1
2

1
2

1
2 1 1
1
2 1 1

λ1 λr

1 0 1

0 0 0

1 0 1



Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{

‖λ‖1 : S =
r∑

i=1

λiRi and 0 ≤ Ri ≤ 1 rank-1 matrix
}

S = + . . .+

R1 Rr

1
2

1
2

1
2

1
2 1 1
1
2 1 1

λ1 λr

1 0 1

0 0 0

1 0 1



Hyperplane separation lower bound [Fiorini]

rk+(S) & min
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Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{
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Hyperplane separation lower bound [Fiorini]

rk+(S) & min
{ 〈W,S〉

〈W,R〉
: R rectangle

}
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Rectangle covering for matching

Claim: There is a rectangle with 〈W,R〉 = Θ( 1
n4 ).

U M

e1

e2

◮ For e1, e2 ∈ E: take {U | e1, e2 ∈ δ(U)} ×{M | e1, e2 ∈ M}

◮ But µk(R) = Θ( k
2

n4 )
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Imagine the following setting:
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◮ Is it possible that ≥ 1% of elements are in no set at all?
NO! The 0.99n active elements form at most 20.99n sets

◮ Is it possible that ≥ 1% elements are in ≤ 49% of sets?
NO!

Lemma

If S large, for most elements i,

Pr
S⊆[n]

[S ∈ S] ≈ Pr
S⊆[n]

[S ∈ S | i ∈ S]
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Randomly generate (U,M) ∼ Qk:
1. Choose T
2. Choose k edges F ⊆ C ×D
3. Choose M ⊇ F
4. Choose U ⊇ C (not cutting any Ai)

µk(R) = E
T

[

E
|F |=k

[

Pr[M ∈ R | T,H] · Pr[U ∈ R | T,H]
]]
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◮ Suppose for a fixed (T, F ):
µk(R) ≈ Pr[(U,M) ∈ R | T, F ] =: p

◮ Then

µ3(R) ≈ E

H∼(F
3
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︸ ︷︷ ︸

≤O(1/k2)

·Pr[(U,M) ∈ R | T,H]
︸ ︷︷ ︸

≈p

]

◮ GOOD means it doesn’t matter what condition on here

◮ Suffices to show: H,H∗ ⊆ F good ⇒ |H ∩H∗| ≥ 2

◮ Suppose |H ∩H∗| ≤ 1

◮ (T,H) good
⇒ ∃M : {u, v} ∈ M

◮ (T,H∗) good
⇒ ∃U : u, v ∈ U

◮ |δ(U) ∩M | = 1
Contradiction!

B1
. . . BmA1

. . .

Am

H

u

v



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H

H



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A

A

A1

. . .

Am

H



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1.

A B̃1 B̃2
. . . B̃m+1

A1

. . .

Am

H



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.

A B̃1 B̃2
. . . B̃m+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H



Most partitions are good

Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.
◮ Pick randomly i ∈ {1, . . . ,m}

A B̃1 B̃2
. . . B̃m+1

C2

D2

. . .

. . .

Cm+1

Dm+1

A1

. . .

Am

H

i
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Lemma

Pr[(T,H) is M -bad] ≤ ε

◮ Pick H, A, B̃1, . . . , B̃m+1. Split B̃i = Ci∪̇Di.
◮ Pick randomly i ∈ {1, . . . ,m} and let C := Ci, D := Di
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