Talk 1: my review of nonlinear nonconvex optimization



Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

inputs

pools,
(mixing units)

outputs



. inputs

pools,
(mixing units)

1. We have K commodities ('specs’) present at the inputs in different
amounts.

2. Flows have to be routed to the outputs subject to flow conservation and
capacity constraints.

3. Flows that reach a pool become mixed, and the proportion of each
spec is upper- and lower-bounded.

4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec



Formulation

o J = set of inputs, M = set of pools,

e \;r = fraction of spec k at input < (data)

min E CijYij < y;; = total flow on ¢j
1A
s.t.  flow conservation, capacity constraints on y;;

and for all spec k, pool 7,

_ ZZ’EJ Alkyl] + ZmEM pmkym]
ZieJUM Yij

Djk < pjir = fraction of spec k in pool j

min max

Pir < Dik < Dji



Problem 2: AC-PF and -OPF problems on power grids

generators

\- /demqnds (loads)

e Graph is undirected
e Fach power line has a (complex) admittance

e Send power from generators to loads, subject to laws of physics and equip-
ment constraints



Physics

e Fach bus (node) k has a complex voltage V.
Voltage = potential energy

e Line (directed version of edge) km — complex current Iy,
lim = Ykm (Vi — Vi)
(y = admittance)
e Line (directed version of edge) km — complex power Sk,
Sim = Vidgm, = Y ViV = Vi)
this is the complex power injected into km at k
e Generators produce current at a certain voltage
e Demands (loads) expressed in units of complex power

e This is a time-averaged (steady-state) representation



Formulation

e Must choose voltage Vi at every bus k

e Network constraints: total net power injected by each bus is constrained

S <N i ViV = Vi)t < S
kmed (k)

(two ranged inequalities)

1. At a generator, this says that total generated complex power is upper
and lower bounded

2. At a load, SI"™ = S = — (complex) demand
e Line constraints: e.g. |y, Vi(Vi — V)| < Lim

e Voltage constraints: Ut < |V < Upex



e V.= voltage bus k
e Network constraints: total net power injected by each bus is constrained
St < S = Y yraViVe— Vi)t <SP
kmed(k)
e Line constraints: |y, Vi(Vi — V)" < Lin
e Voltage constraints: U™ < |Vi| < U

1. Feasibility version: PF or power flow problem

2. Optimization version, or OPF:

min Z cq (Re(Sy))

g€§

(G = set of generator nodes)

Fach function ¢4 is convex quadratic. Want to minimize total cost of
generation.



A generalization - network polynomial problems
Both the pooling problem and ACOPEF' are special cases of a general problem
e We are given an undirected graph §G

e For each node u € G there is an associated set of variables, X,,. Assume
pairwise-disjoint.

e [ikewise each constraint is associated with some node. A constraint as-
sociated with u takes the form:

where each Py, 1s a polynomial function.

V)
K}polynomiql depends on
Xy and X,
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How to solve QCQPs?

— IPOPT? (Wichter, Biegler, Laird)

min  f(x)
st. g(x) =0
x>0
— min f(z) = p log() (4a)
st. gl@) = 0 (4D)

Here p > 0 is the barrier parameter, and we want p — 0.

Algorithm

1. For given p approximately solve problem (4a), (4b).

2. Effectively, attempt to find a solution to the first-order optimality condi-
tions for (4a), (4b): (damped) Newton method

3. Then decrease p and go to 1.

4. But a lot of cleverness employed in Step 3 (filter method).
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How to solve QCQPs?

— IPOPT? (Wichter, Biegler, Laird)

sequence
produced by
algorithm

Claim: IPOPT globally solves all ACOPF' instances

What does this mean?



Three basic techniques

1. McCormick relaxation

2. Spatial branch-and-bound

3. RLT" lifting to higher-dimensional representation



McCormick relaxation: a very widely used technique

McCormick (1976), Al-Khayal and Falk (1983)
given:
e[, ye ], ==y

The convex hull of (&, y, z) in this set is given by

max{ v’z + u'y — uu®, x + 0y — 00}

>
< min{ vz + 0y — w0, Vr +u'y — ut )

e Can be used directly to reformulate any polynomial optimization problem
e But some codes avoid this so as to not introduce the variables w
e And the quality of the relaxation is in general poor

e Unless the bounds €%, u” or £Y, uY are tight



Spatial Branch-and-Bound: a very widely used technique
Tuy, 1998

e Used in many codes, e.g. BARON

e Directly applicable to McCormick relaxations

Example: approximate sin(z) for 0 < x < /2
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RLT: another very widely used technique
Sherali and Adams (1992)

Example:
Suppose 5:13% + 2x5 — 4 > 0and 0 < x3 < 10 are valid inequalities

Then:
(5x? 4 2x2 — 4)x3 > 0and (5x7 + 2x5 — 4)(10 — x3) > 0 also valid

e Any nonlinear terms, e.g. xfxs are linearized via McCormick

e [t may be the case that the nonlinear terms are already found elsewhere
e General idea: multiplication of valid inequalities
e Which inequalities: using all is too expensive

e (Misener): scan possible products, keep if estimate of relaxation improves

Back to McCormick:
€[ u], yelu], = =ay

e.g. cando (x —£€%)(u¥ —y) > 0or uVx + £y — £5uY > xy



Hierarchies

(QCQP): min 2'Qz + 2"«

st. alAgx + 200z +1r; >0 r=1,....,m

x € R".

— form the semidefinite relaxation

(SR): min (S g).x

—
s.t. (T’ bl).X >0 i=1,...

b Al
X =0, Xgp=1.

Here, for symmetric matrices M, IN,

MeN = Z W
h.k

So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution. Why?

e — Lavaei and Low (2010): on ACOPF, the semidefinite relaxation is often strong

e And it may even have a rank-1 solution.

e There remains the issue of solving the d***n SDP



Moment relaxations and polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) Qin @™
e Each = is a tuple 7y, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.

ie. fy = inf { ZWES(O) QoY : Yisa K—moment}

Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple =
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Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) Qin @™
e Each = is a tuple 7y, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.
ie. fy = inf { ZWES(O) QoY : Yisa K—moment}
Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple =

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?



Polynomial optimization
fi = min{fol@) : filx) 20, 1<i<m, ek},
where fi(xz) = Zﬂ'GS(i) Qi 7,

Thus f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1< m}.
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Polynomial optimization

fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(z) = > cg() Qi T"
So fy = infy ) _aoYx, over all K-moment vectors y;
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the zeroth row and column of M both equal y. (redundant)



Polynomial optimization

fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(z) = > cg() Qi T"
So fy = infy ) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple )
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An infinite-dimensional semidefinite program!!
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where fi(x) = > cgs() Qi T"

fy > min)_ ao-ys
™

s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

Example: d = 8. So we will consider the monomial w% :13‘2l x3 because 24+4+1 < 8.

But we will not consider 33313g$8, because 1 4+7+1 > 8.
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fo = min{ fo(x) : fi(x) >0, 1<i1<m, x&R"}
where fi(x) = > cgs() Qi T"

fo > min) agrys
™
s.t. Yo = 1,
M = 0,

Mz = Yrsp:
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min)  aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

e Can be strengthened to account for the constraints f;(z) > 0. How? e.g. use RLT
e This is the level- d Lasserre relaxation (abridged).



Solving SDP relaxations of QCQPs

(QCQP):
s.t.

(SR):

S.t.

min 27 Qz + 2cx
A + 20T + 1 >0 i=1,.
xr € R".

) 0
min (c Q>.X

- T
(ZZ izli>.X >0 i=1,....,m

X =0, Xgp=1.

So,m



Solving SDP relaxations of QCQPs

(QCQP):
s.t.

(SR):

S.t.

Matrix completion theorem.

min 27 Qz + 2cx
a:TAix—l—QbiTx—l—mZO 1=1,....m
xr € R"

) 0
min (c Q>.X

T
(gf %).X >0 i=1,....,m

X =0, Xgp=1.

e Form a graph, G with vertex set 0,1,...,n

e Include an edge {1, 7} if the (2,7) entry of some constraint (9) (or objective) is nonzero

e Suppose there is a chordal supergraph J of G such that:

JH is the union of k maximal cliques Qq,. .., Qk

e Then X > 0 is equivalent to:

X|g, = 0,...,X]|g, =0

( X|g,: submatrix of X indexed by vertices of Q).

e — If the submatrices are small this approach can be effective

e Current SDP-based methods for ACOPF rely on this paradigm



Can we do anything else involving SDP?

Chen, Atamtiirk and Oren (2016):

For n > 1 a nonzero n x n Hermitian psd matrix has rank one iff all of its
2 X 2 principal minors are zero.

— use this criterion to drive branching:
e Minimum eigenvalue of any 2 X 2 principal submatrix should be zero
e Choose submatrix with largest deviation from this constraint

e Can then (spatially) branch on any of the three values



Can we do anything else involving SDP?

Chen, Atamtiirk and Oren (2016):
For n > 1 a nonzero n x n Hermitian psd matrix has rank one iff all of its
2 X 2 principal minors are zero.

— use this criterion to drive branching:
e Minimum eigenvalue of any 2 X 2 principal submatrix should be zero
e Choose submatrix with largest deviation from this constraint

e Can then (spatially) branch on any of the three values

Kocuk, Dey, Sun (2017):
For n > 1 a nonzero n X n Hermitian matrix is psd of rank one iff its diagonal
is nonnegative and all the 2 X 2 minors are zero.

e Also, any k X k principal submatrix should be psd (k > 2)

e Use k =3 or k=4 and cycles

e Use SDP duality (whiteboard) to generate cuts

e Let’s think about it. Why cycles? — use chordal extensions



Digitization and Discretization

Glover, (1975)

Given an integer variable 0 < x < u (integral), we can reformulate

k
r = Z 2'y;,  where each y; is binary, and k = log, u, or
i=1
u
r = Z 2;,  where each z; is binary, or

1=1
u

r = Z 1 W, Z w; < 1, where each w; is binary

1=1 7



Digitization and Discretization

Glover, (1975)

Given an integer variable 0 < x < u (integral), we can reformulate

k
r = Z 2'y;,  where each y; is binary, and k = log, u, or
i=1
u
r = Z 2;,  where each z; is binary, or

1=1
u

r = g 1 W, E w; < 1, where each w; is binary
i=1 i

And if we have a bilinear expression «f (0 < f > F') then we get an exact
linear representation for e.g. each w;f through RLT
0< P < Fuw;
f—F(l—w) < P <f



Digitization and Discretization

B., (2006), Dash, Giinlik, Lodi (2007):
Discretization to approximate a bilinear form on continuous variables:

Consider a bilinear expression xy where 0 < x < u®, 0 < y < uY.
Then we write:
L
T = u' 22_3zj+ o],
j=1

each z; binary, 0< 6 < oL

And so we can represent
L
xy = u” ZQ_J’UJJ- +
j=1

0< ~v<min{2ty, éu’} (RLT)
each wj;: RLT of z;y

— A valid relaxation. We will come back to this later.



Back to the pooling problem

We are given a directed, acyclic graph with three classes of vertices

inputs

pools,
(mixing units)

outputs



. inputs

pools,
(mixing units)

1. We have K commodities ('specs’) present at the inputs in different
amounts.

2. Flows have to be routed to the outputs subject to flow conservation and
capacity constraints.

3. Flows that reach a pool become mixed, and the proportion of each
spec is upper- and lower-bounded.

4. Optimize a linear function of the flows.

Usual version: capacity constraints and costs are on total flows, not per-spec



Formulation

o J = set of inputs, M = set of pools,

e \;r = fraction of spec k at input < (data)

min E Cij Yij < Yy;; = total flow on 7j
1jeA
s.t.  flow conservation, capacity constraints on y;;

and for all spec k, pool 7,

_ Zieﬂ Aik Yij + ZmEM PmkYmj
ZZEJUM Yij

Pjk <— pjr = Iraction of spec k in pool j

min max

Pir S DPik S D



Digitization and Discretization in the Pooling Problem

Ahmed, Dey, Gupte, Jeon (2015, 2017)
Consider a bilinear expression @y where 0 < x < u*, 0 < y < uY.

Then we approximate

L
T = uxZQ_j Zj,
j=1
each zj binary, 0< 6 < oL

And so one can approximate

L
Ty = uxZZ_j w;
j=1
cach w;: RLT of z;y

e An approximation, not a relaxation

e [n some cases, the best upper bounds for larger pooling problems are
obtained this way



“Take-away” and next talk

e We want strong relaxations, but the relaxations can be hard to solve

e A challenge: come up with strong branching, cutting and reformulation
mechanisms that are robust across problem classes

e And how about accuracy and numerical stability?

e Local search for nonconvex nonlinear optimization?



Crimes against computers

max oy — 2055 — 2086 + 257 + 57
s.t. (1 — 1)* + a5

(21 + 1)2 + CIZ%

1

106 + 10 ¢*
—10a+ 6 + 10 ¢*
—10b + a + 10 ¢*
—10c+b+10¢?
—10d + ¢ + 10 ¢*
—10e+d+10¢* + 10 53
—10f +e+10¢* + 105
—10g+ f+10¢* + 10 53

~10¢ + g + 10 ¢°

AVARRAY,

IA

VANRVANRVANRVANNAYS

IA

O O O O O OO, N oW W

_|_
Sle



What’s going on?

max Io
st. (w1 — 1) + 25 > 3
(zy +1)* + 25 > 3

1 2
E"‘xz S 2



What’s going on?

max o
st. (x1—1)% + 25 >3+ ¢ (¢ >0)
(21 +1)% + 25 > 3
ZCQ
Tyai<2

10




S-free Sets for Polynomial Optimization and Oracle-Based
Cuts

B., Chen Chen and Gonzalo Munoz, 2017

Consider:

min L

st. ze€eSNP.

P := {x € R*"|Ax < b} is a polyhedral set, and S C R™ is a closed set.

Can we strengthen the description of P with cuts?



S-free Sets for Polynomial Optimization and Oracle-Based
Cuts

B., Chen Chen and Gonzalo Munoz, 2017

Consider:

min L

st. ze€eSNP.

P := {x € R*"|Ax < b} is a polyhedral set, and S C R™ is a closed set.
Can we strengthen the description of P with cuts?
We will focus on the geometric approach: cuts via S-free sets.

(Many other ways to generate cuts, e.g. disjunctions, algebraic arguments,
combinatorics, convex cuts, etc.)

(McCormick, RLT)



Tightening P with an S-free set C

C = closed convex, CN X =0




Tightening P with an S-free set C

C = closed convex, CN X =0

N

N




Tightening P with an S-free set C

C = closed convex, CN X = 0. conv(P\ C) :

;\ >
A
C\
RN
P




Could be more complex:

e Might need an infinite number of cuts to get conv(P N .S).

e The problem: given a polytope P and aball B,is P C B?7 is strongly
NP-complete (Freund and Orlin, 1985).

e Given a polyhedral cone € and a ball B it is strongly NP-hard to
minimize a convex quadratic over C' N B (B. 2010)



Recent work on the geometry of convex quadratics in the
complement of a convex quadratic region

e B. 2010, B and Michalka (2014)
e Belotti, Goez, Pdlik, Ralphs, Terlaki (2013)
e Modaresi, M. Kilinc, Vilema (2015)

e ['. Kilinc (2015)



From a polyhedral perspective

e Balas (1971), Tuy (1964): if @ is a simplicial cone then the intersec-
tion cut guarantees separation over conwv(Q \ int(C)).

e (Simplicial cone: m linearly independent linear inequalities)

e Simplicial conic relaxation P’ DO P is easily obtained from a basic solu-
tion of P

e And so we could attempt to get conv(P’\ int C.

e [ntersection cut (w.r.t. P’)is described in closed form — fast separation
of extreme points of P using P’



Larger C', — deeper cut

(& (@&

Def: S-free maximal set.



(Some) additional literature

e Maximal S-free sets and minimal valid inequalities: |Basu et al. 2010],
[Conforti et al. 2014], [Cornuejols, Wolsey, Yildiz, 2015|, [Kilinc-Karzan
2015]

e Intersection cuts and for mixed-integer conic programs programming:
[Atamturk and Narayanan 2010], [Belotti et al., 2013], [Andersen and
Jensen, 2013], [Dadush, Dey, Vielma 2011], [Modaresi, Kilinc, Vielma
2015/2016]

e Intersection cuts for bilevel optimization: [Fischetti, Monaci, Sinnl, 2016].

e Generalized intersection cut procedures: [Balas and Margot, 2013], [Balas,
Kazachkov, Margot 2016].

e Huge literature on split cuts.



This talk

1. A simple, generic way to generate S-free sets that ensures separation.
Also, a corresponding cutting plane method for arbitrary closed sets, guar-
anteed to converge on bounded problems.

2. A study of maximal S-free sets for polynomial optimization
3. Experiments with a resulting cutting-plane procedure that solves LPs

only.

4. Joint work with a couple of characters in the audience.



Distance Oracle

We assume we have an oracle for a closed set S that gives us the distance
d(x, S) from any point & € R™ to the nearest point in S.

Examples:

e Integer programming: if S is the integer lattice, then one can round.

e Cardinality constraint nearest vector of cardinality < k can be ob-
tained by rounding.

e Semidefinite cone: we will see this later

Observation. The ball centered around x with radius d(z, S) is S-free.

Call it B(x,d(x,.S)).

We will call the corresponding intersection cut an oracle ball cut.




Convergence

e Start with polytope Py = P.

o let Py = MNvev, COHV(Pk: \ int(B(v, d(v, S))))

Vi = set of extreme points of Pj.

o P. = rank Kk closure of P.



Convergence

e Start with polytope Py, = P.

o let Ppiq = MNvev, COHV(Pk: \ int(B('U ’ d(va S))))

Vi = set of extreme points of Pj.
e P, = rank k closure of F.

Theorem: limy .., P, = conv(S N P).
Corollary: iven an inexact but arbitrarily accurate distance oracle, we
can obtain arbitrarily close (in terms of Hausdorff distance) polyhedral ap-

proximation to conv(S N P) in finite time.

Borrows from proof technique used in [Averkov 2011].



Application: Polynomial Optimization

*

2z* = inf py(x)
st. xe€ 8§ ={reR"p(x)>0,.. pux) >0}
e Saxena, Bonami, Lee 2010-2011: Disjunctive cuts from MILP inner-

approximation + convex cuts. Applies to bounded polynomial optimiza-
tion.

e Ghaddar, Vera, Anjos 2011: Projections of moment relaxations. General-
izes Balas, Ceria, Cornuejols lifting. Separation not guaranteed in general.

e Other literature on convex envelopes of functions, e.g. multilinear. Mc-
Cormick, spatial branching, RLT.

e Our intersection cuts guarantee polynomial-time separation without bound-
edness assumptions.



How, 1: lifted polynomial representation

— this takes us to the moment relaxation we saw before.

[Shor 1987], [Lovasz and Schrijver 1991]

k

e Define a vector of monomials, M = [1, 1, ..., Tpny T1T2, T1T3y +eey T, |.

et X = mm7T.

e Polynomial optimization can be formulated as
min Fy e X
st. Pe X <b,i=1,..m.
( P; appropriately defined from the coefficients of p;)

e This is a linear programming relaxation with variables X.
P; e X = > p;;m;; is the inner product.

e Fquivalency when X > 0andrank(X) = 1 and consistency constraints
(among entries of X'). Dropping the rank constraint gives the moment
relaxation |Lasserre, 2001].



How, 2: S-free sets for Polynomial Optimization

— this takes us to the moment relaxation we saw before.

[Shor 1987], [Lovasz and Schrijver 1991]

k

e Define a vector of monomials, M = [1, 1, ..., Tpny T1T2, T1T3y «eey T, |.

et X = mm7T.

e Polynomial optimization can be formulated as
min Fy e X
st. Pe X <b,i=1,..m.
( P; appropriately defined from the coefficients of p;)

e This is a linear programming relaxation with variables X.
P; e X = > p;;m;; is the inner product.

e Fquivalency when X > 0andrank(X) = 1 and consistency constraints
(among entries of X'). Dropping the rank constraint gives the moment
relaxation |Lasserre, 2001].



Three types of S-free condtions or cuts

Notation: always over vectorized matrices, e.g.
M € S2x2 — {M117 M127 Mzz} & R3

S§2%2 = 2 x 2 symmetric matrices

e 2 X 2 minors. Theorem (Chen et al 2016):
A psd matrix M is of rank one iff every principal 2 X 2 minor is zero.

So, given X if )_(z-,j > 0 for some 2, 3 we have a violation.
S-free set:  M; ; = 0, which is mazimal S-free.

e Positive-semidefiniteness: of X is not psd, i.e. ¢f Xe < 0 for some ¢,
then get cut ¢’ Xe > 0 (also defines a maximal set, but we have a cut
anyway)

e Oracle (rank-1) ball, and shifted oracle ball. ~ EY M theorem gives
distance from a psd matrix to the nearest rank one matrix (Modification
by Dax for non-psd case).



Numerical Experiments

e Python
e All the cuts mentioned above
e Gurobi 7.0.1 to solve LPs

e 20-core server, but only Gurobi uses more than one

e 26 QCQP problems from GLOBALLib (6-63 variables)

e BoxQP instances (21-126 variables)



Results

Cut Family Initial Gap End Gap Closed Gap # Cuts Iters Time (s) LPTime (%)
OB 1387.92%  1387.85% 1.00% 16.48 17.20 2.59 2.06%
SO 1387.83% 8.77% 18.56 19.52 4.14 2.29%
OA 1001.81% 8.61%  353.40 83.76 33.25 7.51%
2x2 + OA 1003.33% 32.61% 284.98 118.08 30.40 15.03%
SO+2x2+0A 1069.59% 31.91%  174.79 107.16 29.55 12.56%

Table 1: Averages for GLOBALLib instances



Comparison with V2: BoxQP

V 2: second-order conic outer-approximation of PSD constraint;
MIP to derive disjunctive cuts (Saxena, Bonami, Lee)

Gap Closed in BoxQP instances
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