Do Linear Programs Dream of Oriented Matroids When They Sleep?

Jesús A. De Loera
Partly based on work with subsets of
R. Hemmecke, J. Lee, S. Kafer, L. Sanità,
C. Vinzant, B. Sturmfels, I. Adler, S. Klee, and Z. Zhang

10th Cargese Conference— September 2019
Dedicate to the memory of Frédéric Maffray

This talk is about

The GEOMETRY of

LINEAR OPTIMIZATION...

Minimize $\mathbf{c}^{T} \mathbf{x}$ subject to $A \mathbf{x}=\mathbf{b}$ and $\mathbf{x} \geq 0 ;$

Oriented Matroids part of the history of LP: Rockafellar, Bland, Fukuda, Terlaky, Todd, etc

Main Message: Given an LP, we can insert it or embedded as part of a larger oriented matroid and win!

MY GOAL: Show you 3 examples giving insight for the simplex method and log-barrier interior point methods.

This talk is about

The GEOMETRY of

LINEAR OPTIMIZATION...

Minimize $\mathbf{c}^{T} \mathbf{x}$ subject to $A \mathbf{x}=\mathbf{b}$ and $\mathbf{x} \geq 0 ;$

Oriented Matroids part of the history of LP: Rockafellar, Bland, Fukuda, Terlaky, Todd, etc

> Main Message: Given an LP, we can insert it or embedded as part of a larger oriented matroid and win!

> MY GOAL: Show you 3 examples giving insight for the simplex method and log-barrier interior point methods.

This talk is about

The GEOMETRY of

LINEAR OPTIMIZATION...

Minimize $\mathbf{c}^{T} \mathbf{x}$ subject to $A \mathbf{x}=\mathbf{b}$ and $\mathbf{x} \geq 0 ;$

Oriented Matroids part of the history of LP: Rockafellar, Bland, Fukuda, Terlaky, Todd, etc

Main Message: Given an LP, we can insert it or embedded as part of a larger oriented matroid and win!

MY GOAL: Show you 3 examples giving insight for the simplex method and log-barrier interior point methods.

Outline

(1) Oriented Matroids and the Simplex-method
(2) Oriented Matroids and Interior-point Methods

Recall the simplex method...

- The simplex method walks along the graph of the polytope, each time moving to a better and better cost vertex!

BIG ISSUE 1:

Is there a polynomial bound of the diameter in terms of the number of facets and dimension?

WARNING. If diameter is exponential, then all simplex algorithms will be exponential in the worst case.
$(\operatorname{facets}(P)-\operatorname{dim}(P))+1 \leq$ Diameter $\leq(\operatorname{facets}(P)-\operatorname{dim}(P))^{\log (\operatorname{dim}(P))}$.

BIG ISSUE 1:

Is there a polynomial bound

 of the diameter in terms of the number of facets and dimension?WARNING. If diameter is exponential, then all simplex algorithms will be exponential in the worst case.
$(\operatorname{facets}(P)-\operatorname{dim}(P))+1 \leq$ Diameter $\leq(\operatorname{facets}(P)-\operatorname{dim}(P))^{\log (\operatorname{dim}(P))}$.

From polytopes to oriented matroids

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- The collection of sign
vectors representing cells are covectors.
- Covectors of maximal
support are called tones of
OM. (polytopal regions!)

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- These sign vectors

- The collection of sign vectors representing cells are covectors.
- We can also call the

1-skeleton the cocircuit
graph.

- Covectors of maximal
sunnort are called tones of
OM. (polytopal regions!)

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- The collection of sign vectors representing cells are covectors.
- These sign vectors constitute an abstraction of hyperplane arrangements, an ORIENTED MATROID!
- We can also call the

1 -skeleton the cocircuit
graph.

- Covectors of maximal
sunnort are called tones of

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- The collection of sign vectors representing cells are covectors.
- These sign vectors constitute an abstraction of hyperplane arrangements, an ORIENTED MATROID!

Covectors of minimal support are called cocircuits of OM (Vertices!)

- We can also call the 1 -skeleton the cocircuit graph.

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- The collection of sign vectors representing cells are covectors.
- These sign vectors constitute an abstraction of hyperplane arrangements, an ORIENTED MATROID!

Covectors of minimal
support are called cocircuits of OM (Vertices!)

- We can also call the 1 -skeleton the cocircuit graph.
- Covectors of maximal support are called topes of OM. (polytopal regions!)

From arrangements to Oriented Matroids

Consider a hyperplane arrangement of n hyperplanes in \mathbb{R}^{r}, intersect it with sphere S^{r-1}.

- The collection of sign vectors representing cells are covectors.
- These sign vectors constitute an abstraction of hyperplane arrangements, an ORIENTED MATROID!

Covectors of minimal
support are called cocircuits of OM (Vertices!)

- We can also call the 1 -skeleton the cocircuit graph.
- Covectors of maximal support are called topes of OM. (polytopal regions!)

Diameter of Oriented Matroids

- Want to bound the distance
 between any two cocircuits in the graph of an oriented matroid.
$(-0++;$ The diameter of an Oriented Matroid is the diameter of the cocircuit graph.
- Denote by $\Delta(n, r)$ the
largest diameter on Oriented Matroids with cardinality n

[^0]
Diameter of Oriented Matroids

- Want to bound the distance
 between any two cocircuits in the graph of an oriented matroid.
$(-0++$; The diameter of an Oriented Matroid is the diameter of the cocircuit graph.
- Denote by $\Delta(n, r)$ the largest diameter on Oriented Matroids with cardinality n and rank r.

[^1]
Diameter of Oriented Matroids

- Want to bound the distance
 between any two cocircuits in the graph of an oriented matroid.
$(-0++$; The diameter of an Oriented Matroid is the diameter of the cocircuit graph.
- Denote by $\Delta(n, r)$ the largest diameter on Oriented Matroids with cardinality n and rank r.

KEY QUESTION

How do we bound $\Delta(n, r)$?

This is of course related to the Hirsch conjecture for polytopes!!

Conjectures

CONJECTURE 1

For all n and r,

$$
\Delta(n, r)=n-r+2
$$

Given a sign vector X, the antipodal $-X$ has all signs reversed (that is, for all $\left.e \in E,(-X)_{e}=-X_{e}\right)$.

LEMMA

Antipodals are at distance at least $n-r+2$. Thus diameter is at least $n-r+2$.

Conjectures

CONJECTURE 1

For all n and r,

$$
\Delta(n, r)=n-r+2
$$

Given a sign vector X, the antipodal $-X$ has all signs reversed (that is, for all $\left.e \in E,(-X)_{e}=-X_{e}\right)$.

LEMMA Antipodals are at distance at least $n-r+2$. Thus diameter is at least $n-r+2$.

Conjectures

CONJECTURE 1

For all n and r,

$$
\Delta(n, r)=n-r+2
$$

Given a sign vector X, the antipodal $-X$ has all signs reversed (that is, for all $\left.e \in E,(-X)_{e}=-X_{e}\right)$.

LEMMA

Antipodals are at distance at least $n-r+2$. Thus diameter is at least $n-r+2$.

Conjectures

CONJECTURE 1

For all n and r,

$$
\Delta(n, r)=n-r+2
$$

Given a sign vector X, the antipodal $-X$ has all signs reversed (that is, for all $\left.e \in E,(-X)_{e}=-X_{e}\right)$.

LEMMA

Antipodals are at distance at least $n-r+2$. Thus diameter is at least $n-r+2$.

Simplification Lemmas

Definition: A rank r oriented matroid is uniform, when every cocircuit X is defined by $r-1$.

LEMMA (ADLER-JDL-KLEE-ZHANG)
For all $n, r, \Delta(n, r)$ is achieved by some uniform oriented matroid of cardinality n and rank r.

CONJECTURE 2
Only the distance of antipodals can achieve the diameter length. That is, for $X, Y \in \mathcal{C}^{*}, X \neq-Y, d(X, Y) \leq n-r+1$

Simplification Lemmas

Definition: A rank r oriented matroid is uniform, when every cocircuit X is defined by $r-1$.

LEMMA (ADLER-JDL-KLEE-ZHANG)

For all $n, r, \Delta(n, r)$ is achieved by some uniform oriented matroid of cardinality n and rank r.

CONJECTURE 2
Only the distance of antipodals can achieve the diameter length. That is, for $X, Y \in \mathcal{C}^{*}, X \neq-Y, d(X, Y) \leq n-r+1$.

Simplification Lemmas

Definition: A rank r oriented matroid is uniform, when every cocircuit X is defined by $r-1$.

LEMMA (ADLER-JDL-KLEE-ZHANG)

For all $n, r, \Delta(n, r)$ is achieved by some uniform oriented matroid of cardinality n and rank r.

CONJECTURE 2

Only the distance of antipodals can achieve the diameter length. That is, for $X, Y \in \mathcal{C}^{*}, X \neq-Y, d(X, Y) \leq n-r+1$.

LOW RANK OR CORANK AND SMALL n, r

THEOREM (ADLER-JDL-KLEE-ZHANG.)

$\Delta_{r}(n, r)=n-r+2$ When

- For $r \leq 3$ and for $n-r \leq 3$.
- A counterexample needs to have at least 10 elements!
(Classification of small oriented matroids)

	$n=4$	$n=5$	$n=6$	$n=7$	$n=8$	$n=9$	$n=10$
$r=3$	1	1	4	11	135	4382	312356
$r=4$		1	1	11	2628	9276595	unknown
$r=5$							
$r=6$		1	1	135	9276595	unknown	
$r=7$	1						1
4382	unknown						
$r=8$	1						1
$r=9$	12356						

PRoof idea For Rank 3

$$
\ell\left(P_{W}\right)+\ell\left(P_{Z}\right) \leq 4+2(n-4)=2 n-4 . \text { So } d_{M}(X, Y) \leq n-2 .
$$

An Quadratic Diameter Upper Bound

THEOREM (ADLER-JDL-KLEE-ZHANG.)

The diameter of all rank r oriented matroids with n elements satisfies

$$
\Delta(n, r) \leq \max \left\{\left\lceil\frac{\min (r-1, n-r+1)}{2}\right\rceil(n-r+1), n-r+2\right\}
$$

Which means the diameter is quadratic!!
This is an improvement on a result of Fukuda and Terlaky.

An Quadratic Diameter Upper Bound

THEOREM (ADLER-JDL-KLEE-ZHANG.)

The diameter of all rank r oriented matroids with n elements satisfies

$$
\Delta(n, r) \leq \max \left\{\left\lceil\frac{\min (r-1, n-r+1)}{2}\right\rceil(n-r+1), n-r+2\right\}
$$

Which means the diameter is quadratic!!
This is an improvement on a result of Fukuda and Terlaky.

PROOF $\Delta(n, r) \leq(r-1)(n-r+2)$

- The proof is by induction on the rank r of the oriented matroid.
- For $r=2$. A rank two oriented matroid is a circle divided by $2 n$ points (these are $n 0$-spheres).

- The graph is a $2 n$-gon, diameter equals $1 \cdot n=(r-1)(n-r+2)$.
- Now assume the theorem is true for rank $r-1$.

PROOF $\Delta(n, r) \leq(r-1)(n-r+2)$

- The proof is by induction on the rank r of the oriented matroid.
- For $r=2$. A rank two oriented matroid is a circle divided by $2 n$ points (these are $n 0$-spheres).

- The graph is a $2 n$-gon, diameter equals $1 \cdot n=(r-1)(n-r+2)$.
- Now assume the theorem is true for rank $r-1$.

PROOF $\Delta(n, r) \leq(r-1)(n-r+2)$

- The proof is by induction on the rank r of the oriented matroid.
- For $r=2$. A rank two oriented matroid is a circle divided by $2 n$ points (these are $n 0$-spheres).

- The graph is a $2 n$-gon, diameter equals $1 \cdot n=(r-1)(n-r+2)$.
- Now assume the theorem is true for rank $r-1$.
- Take X, Y are two cocircuits. Two cases to bound $d(X, Y)$.
- CASE 1: If X, Y are both contain in the same pseudo-sphere S_{i},

- S_{i} is an oriented matroid with $n-1$ spheres and rank $r-1$. Thus the distance from X, Y is, by induction, less than
- Take X, Y are two cocircuits. Two cases to bound $d(X, Y)$.
- CASE 1: If X, Y are both contain in the same pseudo-sphere S_{i},

- S_{i} is an oriented matroid with $n-1$ spheres and rank $r-1$. Thus the distance from X, Y is, by induction, less than
- Take X, Y are two cocircuits. Two cases to bound $d(X, Y)$.
- CASE 1: If X, Y are both contain in the same pseudo-sphere S_{i},

- S_{i} is an oriented matroid with $n-1$ spheres and rank $r-1$. Thus the distance from X, Y is, by induction, less than

$$
(r-2)(n-r+1) \text { which is less than }(r-1)(n-r+2)
$$

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2, an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X Call that cocircuit W.

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2, an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X. Call that cocircuit W.

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2 , an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X. Call that cocircuit W.

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2 , an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X. Call that cocircuit W.

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2 , an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X. Call that cocircuit W.

- CASE 2: X, Y are not contained in the same sphere.
- The cocircuit Y is the intersection of $r-1$ spheres. Take $r-2$ of those, consider the restriction. What is it?
- It is an oriented matroid of rank 2 , an arrangement of $n-r-2$ many 0 -spheres (points) along a circle γ.
- The circle γ intersects all other spheres, at least one contains X. Call that cocircuit W.

- The distance $d(X, Y)$ is no more than $d(Y, W)$ plus $d(W, X)$.
- We apply induction twice:

$$
d(Y, W) \leq 1 \cdot(n-r-2) \leq n-r+2
$$

$d(W, X) \leq(r-2)((n-1)-(r-1)+2)=(r-2)(n-r+2)$

The sum yields the desired induction statement for rank r, namely

$$
(r-1)(n-r+2) .
$$

- The distance $d(X, Y)$ is no more than $d(Y, W)$ plus $d(W, X)$.
- We apply induction twice:

$$
d(Y, W) \leq 1 \cdot(n-r-2) \leq n-r+2
$$

The sum yields the desired induction statement for rank r, namely

$$
(r-1)(n-r+2)
$$

- The distance $d(X, Y)$ is no more than $d(Y, W)$ plus $d(W, X)$.
- We apply induction twice:

$$
d(Y, W) \leq 1 \cdot(n-r-2) \leq n-r+2
$$

$$
d(W, X) \leq(r-2)((n-1)-(r-1)+2)=(r-2)(n-r+2)
$$

The sum yields the desired induction statement for rank r, namely

- The distance $d(X, Y)$ is no more than $d(Y, W)$ plus $d(W, X)$.
- We apply induction twice:

$$
d(Y, W) \leq 1 \cdot(n-r-2) \leq n-r+2
$$

$$
d(W, X) \leq(r-2)((n-1)-(r-1)+2)=(r-2)(n-r+2)
$$

The sum yields the desired induction statement for rank r, namely

$$
(r-1)(n-r+2)
$$

Hirsch Conjecture and Oriented Matroids

F. Santos constructed a 20-polytope with 40 facets, with diameter 21. It violates (polytope) Hirsch conjecture! We can construct an Oriented Matroid containing Santos's counterexample as a tope.
\square
LEMMA
There exists an Oriented Matroid with cardinality 40 and rank 21 that
violates Conjecture 2.

CONJECTURE
For all cocircuits $X, Y \in \mathcal{C}^{*}(\mathcal{M})$ in the same tope T, there exists a path P such that

$$
d(X, Y)=\ell(P) .
$$

And P is inside the tope T shortest among all paths from X to Y.

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

Hirsch Conjecture and Oriented Matroids

F. Santos constructed a 20-polytope with 40 facets, with diameter 21. It violates (polytope) Hirsch conjecture! We can construct an Oriented Matroid containing Santos's counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that violates Conjecture 2.

Hirsch Conjecture and Oriented Matroids

F. Santos constructed a 20-polytope with 40 facets, with diameter 21. It violates (polytope) Hirsch conjecture! We can construct an Oriented Matroid containing Santos's counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that violates Conjecture 2.

CONJECTURE

For all cocircuits $X, Y \in \mathcal{C}^{*}(\mathcal{M})$ in the same tope T, there exists a path P such that

$$
d(X, Y)=\ell(P)
$$

And P is inside the tope T shortest among all paths from X to Y.

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

Hirsch Conjecture and Oriented Matroids

F. Santos constructed a 20-polytope with 40 facets, with diameter 21. It violates (polytope) Hirsch conjecture! We can construct an Oriented Matroid containing Santos's counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that violates Conjecture 2.

CONJECTURE

For all cocircuits $X, Y \in \mathcal{C}^{*}(\mathcal{M})$ in the same tope T, there exists a path P such that

$$
d(X, Y)=\ell(P)
$$

And P is inside the tope T shortest among all paths from X to Y.

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

BIG ISSUE 2: Fast pivot rules??

Is there a pivoting rule that
turns the simplex algorithm
into a polynomial time
algorithm for solving linear programming problems?

Pivot Rules Behave Badly!!

First bad example Klee-Minty cubes 1972

TODAY 2019: For most pivot rules we have exponential examples!!

Pivot Rules Behave Badly!!

First bad example Klee-Minty cubes 1972

Zadeh (1973): Network simplex algorithm, with Dantzig's rule, exponential even on min-cost flow nroblems

TODAY 2019: For most pivot rules we have exponential examples!!

Pivot Rules Behave Badly!!

First bad example Klee-Minty cubes 1972

Zadeh (1973): Network simplex algorithm, with Dantzig's rule, exponential even on min-cost flow problems.

TODAY 2019: For most pivot rules we have exponential examples!!

Possible edges are Minimal Linear Dependences!

- Let A be matrix that defines our LP $\min \{c x: A x=b, 0 \leq x \leq u\}$

$$
A=\left[x^{1}\left|x^{2}\right| \cdots \mid x^{n}\right]
$$

Consider the finite sets of all minimal linear dependent subsets of columns
$\mathcal{C}(A):=\left\{A_{S}: A_{S}\right.$ has linearly dependent columns; A_{S-e} has linearly independent columns $\}$.

- These are the CIRCUITS of the matrix A, denoted $\mathcal{C}(A)$.
- $E=\{1,2,3,4,5,6\}$.

$$
A=\left[\begin{array}{l|l|l|r|r|r}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

- Example: Is $\{2,3,4,6\} \in \mathcal{C}(A)$?
- A1: Yes. $A_{2}+A_{3}+A_{4}-A_{6}=0$, yet

$$
\begin{aligned}
& \operatorname{det}\left[A_{2}\left|A_{3}\right| A_{4}\right]=1, \operatorname{det}\left[A_{2}\left|A_{3}\right| A_{6}\right]=1, \\
& \operatorname{det}\left[A_{2}\left|A_{4}\right| A_{6}\right]=-1, \operatorname{det}\left[A_{3}\left|A_{4}\right| A_{6}\right]=1 .
\end{aligned}
$$

All Circuits are the new legal moves!

$$
A=\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{c}=(1,1,-1,0,0,0) .
$$

What are the circuits of the LP?

- Circuits satisfy the axioms of a MATROID!
(C2) $X, Y \in \mathcal{C}, X \subset Y \Rightarrow X=Y$.

All Circuits are the new legal moves!

$$
A=\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{c}=(1,1,-1,0,0,0)
$$

What are the circuits of the LP?

$$
\begin{aligned}
& a_{1}=(1,0,0,-2,-1,0), a_{2}=(0,1,0,-1,-2,0), a_{3}= \\
& (0,0,1,0,0,-1), a_{4}=(1,-2,0,0,3,0), a_{5}= \\
& (2,-1,0,-3,0,0) \text {. and their negatives! }
\end{aligned}
$$

All Circuits are the new legal moves!

$$
A=\left[\begin{array}{llllll}
2 & 1 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right] \quad \mathbf{c}=(1,1,-1,0,0,0)
$$

What are the circuits of the LP?

$$
\begin{aligned}
& a_{1}=(1,0,0,-2,-1,0), a_{2}=(0,1,0,-1,-2,0), a_{3}= \\
& (0,0,1,0,0,-1), a_{4}=(1,-2,0,0,3,0), a_{5}= \\
& (2,-1,0,-3,0,0) \text {. and their negatives! }
\end{aligned}
$$

- Circuits satisfy the axioms of a MATROID!
(C1) $\emptyset \notin \mathcal{C}$.
(C2) $X, Y \in \mathcal{C}, X \subset Y \Rightarrow X=Y$.
(C3) $X, Y \in \mathcal{C}, X \neq Y, e \in X \cap Y \Rightarrow$

$$
\exists Z \in \mathcal{C} \text { with } Z \subset(X \cup Y)-e .
$$

Ending The "EDGES ONLY" PIVOTING POLICY:

We wish to solve

$$
\min \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{0} \leq \mathbf{x} \leq u, \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

But one can also go through the interior too!!

IDEA: USE all circuits OF THE MATRIX A TO IMPROVE

circuits $=$ support minimal elements of $\operatorname{ker}(A)$. We may walk through the interior of the polyhedron!

LEMMA:

Circuits $\mathcal{C}(A)$ contain all possible edge directions of ALL polytopes in the family $\{\mathbf{z}: A \mathbf{z}=\mathbf{b}, \mathbf{z} \geq \mathbf{0}\}$

Edmonds-Karp Max-Flow Algorithm (1972)

A maximum flow algorithm in a network: The number of augmentations in networks with $|E|$ edges and $|V|$ vertices is only $|E| \cdot|V|$ when augmentation directions are always chosen to have the fewest number of arcs, and the augmentation is maximal

Edmonds-Karp Max-Flow Algorithm (1972)

A maximum flow algorithm in a network: The number of augmentations in networks with $|E|$ edges and $|V|$ vertices is only $|E| \cdot|V|$ when augmentation directions are always chosen to have the fewest number of arcs, and the augmentation is maximal

WARNING:

careless augmentation process (using only a_{4}, a_{5}) does not terminate, zig-zags!!

Lemma One reaches an optimal vertex in finitely many steps if golden rule is followed:

Use an improving circuit, then, while possible, use circuits that add zeros to the solution, once there are none left, we are at a vertex.

WARNING:

careless augmentation process (using only a_{4}, a_{5}) does not terminate, zig-zags!!

Lemma One reaches an optimal vertex in finitely many steps if golden rule is followed:

Use an improving circuit, then, while possible, use circuits that add zeros to the solution, once there are none left, we are at a vertex.

HOW MANY CIRCUIT STEPS TO REACH THE OPTIMUM?

For a feasible solution \mathbf{x}_{k}, and $\mathcal{T}(A)$ set of improving circuits

DEFINITION (GREATEST IMPROVEMENT PIVOT RULE)
Choose z such that $-\alpha c T z$ is maximized among all $z \in \mathcal{T}(A)$ and $\alpha>0$ such that $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.

HOW MANY CIRCUIT STEPS TO REACH THE OPTIMUM?

Depends on the Pivoting or Augmentation rule!

For a feasible solution \mathbf{x}_{k}, and $\mathcal{T}(A)$ set of improving circuits

DEFINITION (GREATEST IMPROVEMENT PIVOT RULE)
Choose \mathbf{z} such that $-\alpha \mathbf{c}^{\top} \mathbf{z}$ is maximized among all $\mathbf{z} \in \mathcal{T}(A)$ and $\alpha>0$ such that $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.

HOW MANY CIRCUIT STEPS TO REACH THE OPTIMUM?

Depends on the Pivoting or Augmentation rule!

For a feasible solution \mathbf{x}_{k}, and $\mathcal{T}(A)$ set of improving circuits

DEFINITION (GREATEST IMPROVEMENT PIVOT RULE)

Choose \mathbf{z} such that $-\alpha \mathbf{c}^{\top} \mathbf{z}$ is maximized among all $\mathbf{z} \in \mathcal{T}(A)$ and $\alpha>0$ such that $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.

HOW MANY CIRCUIT STEPS TO REACH THE OPTIMUM?

Depends on the Pivoting or Augmentation rule!

For a feasible solution \mathbf{x}_{k}, and $\mathcal{T}(A)$ set of improving circuits

DEFINITION (GREATEST IMPROVEMENT PIVOT RULE)

Choose \mathbf{z} such that $-\alpha \mathbf{c}^{\top} \mathbf{z}$ is maximized among all $\mathbf{z} \in \mathcal{T}(A)$ and $\alpha>0$ such that $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.

Theorem (JDL, R. Hemmecke, and J. Lee

THEOREM

Let $A \in \mathbb{Z}^{d \times n}, \mathbf{b} \in \mathbb{Z}^{d}, u \in \mathbb{Z}^{n}, \mathbf{c} \in \mathbb{Z}^{n}$, define the LP

$$
\min \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{0} \leq \mathbf{x} \leq u, \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Let \mathbf{x}_{0} be an initial feasible solution, let $\mathbf{x}_{\text {min }}$ be an optimal solution, and let δ denote the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

- The number of greatest-improvement augmentations needed to reach an optimal solution of the LP is no more than $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\min }\right)\right)+n$.

We also obtained bounds (but not as nice) for Dantzig and Steepest edge. What is up for other pivot rules?

Theorem (JDL, R. Hemmecke, and J. Lee

THEOREM

Let $A \in \mathbb{Z}^{d \times n}, \mathbf{b} \in \mathbb{Z}^{d}, u \in \mathbb{Z}^{n}, \mathbf{c} \in \mathbb{Z}^{n}$, define the LP

$$
\min \left\{\mathbf{c}^{\top} \mathbf{x}: A \mathbf{x}=\mathbf{b}, \mathbf{0} \leq \mathbf{x} \leq u, \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Let \mathbf{x}_{0} be an initial feasible solution, let $\mathbf{x}_{\min }$ be an optimal solution, and let δ denote the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

- The number of greatest-improvement augmentations needed to reach an optimal solution of the LP is no more than $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\text {min }}\right)\right)+n$.

We also obtained bounds (but not as nice) for Dantzig and Steepest edge. What is up for other pivot rules?

LEMMA 1: SIGN-COMPATIBLE REPRESENTATION

Every $\mathbf{z} \in \operatorname{ker}(A) \cap \mathbb{R}^{n}$ has a sign-compatible representation using circuits $g \in \mathcal{C}(A)$.

$$
\mathbf{z}=\sum_{i=1}^{n} \lambda_{i} \mathbf{g}_{i}, \quad \lambda_{i} \in \mathbb{R}_{+}
$$

LEMMA 2: GEOMETRIC DECREASE OF OBJECTIVE FCT.

Let $\epsilon>0$ be given. Let \mathbf{c} be an integer cost vector.
Let $\mathbf{x}_{\text {min }}$ and $\mathbf{x}_{\text {max }}$ be a minimizer and maximizer of the LP problem and \mathbf{x}_{k} at the k-th iteration of an algorithm.
Let $f^{\text {min }}:=\mathbf{c}^{\top} \mathbf{x}_{\text {min }}, f^{\text {max }}:=\mathbf{c}^{\top} \mathbf{x}_{\text {max }}$, and $f^{k}=\mathbf{c}^{\top} \mathbf{x}_{k}$ the objective-function values.
Suppose that the algorithm guarantees that for the k-th iteration:

$$
\left(f^{k}-f^{k+1}\right) \geq \beta\left(f^{k}-f^{\min }\right)
$$

Then we reach a solution with $f^{k}-f^{\text {min }}<\epsilon$ in no more than $2 \log \left(\left(f^{\max }-f^{\min }\right) / \epsilon\right) / \beta$ augmentations.

Proof of Theorem

(1) Observe that

$$
0>\mathbf{c}^{\top}\left(\mathbf{x}_{\min }-\mathbf{x}_{k}\right)=\mathbf{c}^{\top} \sum \alpha_{i} \mathbf{g}_{i}=\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i} \geq-n \Delta
$$

where $\Delta>0$ is the largest value of $-\alpha \mathbf{c}^{\top} \mathbf{z}$ over all $\mathbf{z} \in \operatorname{Circuits}(A)$ and $\alpha>0$ for which $\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.

(ㄹ) Rewriting this, we obtain

(3) Let $\alpha \mathbf{z}$ be the greatest-descent augmentation applied to \mathbf{x}_{k}, leading to $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$. Then we see that $\Delta=-\alpha \mathbf{c}^{\top} \mathbf{z}$ and

Proof of Theorem

© Observe that

$$
0>\mathbf{c}^{\top}\left(\mathbf{x}_{\min }-\mathbf{x}_{k}\right)=\mathbf{c}^{\top} \sum \alpha_{i} \mathbf{g}_{i}=\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i} \geq-n \Delta
$$

where $\Delta>0$ is the largest value of $-\alpha \mathbf{c}^{\top} \mathbf{z}$ over all
$\mathbf{z} \in \operatorname{Circuits}(A)$ and $\alpha>0$ for which $\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.
(2) Rewriting this, we obtain

$$
\Delta \geq \frac{\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)}{n}
$$

(3) Let $\alpha \mathbf{z}$ be the greatest-descent augmentation applied to \mathbf{x}_{k}, leading to $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$. Then we see that $\Delta=-\alpha \mathbf{c}^{\top} \mathbf{z}$ and

Proof of Theorem

- Observe that

$$
0>\mathbf{c}^{\top}\left(\mathbf{x}_{\min }-\mathbf{x}_{k}\right)=\mathbf{c}^{\top} \sum \alpha_{i} \mathbf{g}_{i}=\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i} \geq-n \Delta
$$

where $\Delta>0$ is the largest value of $-\alpha \mathbf{c}^{\top} \mathbf{z}$ over all $\mathbf{z} \in \operatorname{Circuits}(A)$ and $\alpha>0$ for which $\mathbf{x}_{k}+\alpha \mathbf{z}$ is feasible.
(2) Rewriting this, we obtain

$$
\Delta \geq \frac{\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)}{n}
$$

(3) Let $\alpha \mathbf{z}$ be the greatest-descent augmentation applied to \mathbf{x}_{k}, leading to $\mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha \mathbf{z}$. Then we see that $\Delta=-\alpha \mathbf{c}^{\top} \mathbf{z}$ and

$$
\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{k+1}\right)=-\alpha \mathbf{c}^{\top} \mathbf{z}=\Delta \geq \frac{\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)}{n}
$$

We have at least a factor of $\beta=1 / n$ of objective-function value decrease at each augmentation.

4 Take δ the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

Applying Lemma 2 with $\beta=1 / n$ and $\epsilon=1 / \delta$ then yields a solution $\overline{\mathbf{x}}$ with $\mathbf{c}^{\top}\left(\overline{\mathbf{x}}-\mathbf{x}_{\text {min }}\right)<1 / \delta$, obtained within $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\min }\right)\right)$ augmentations.

5 A greatest descent augmentation makes progress in objective value less than ϵ / n, we have

6 any vertex with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal. Hence any feasible solution with an objective value of at most $\mathbf{c}^{\top} \overline{\mathrm{X}}$ must be optimal.

7 An optimal basic solution can be found from $\overline{\mathbf{x}}$ in at most n additional augmentations (using again greatest descent but on a sequence of face-restricted LPs).

4 Take δ the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

Applying Lemma 2 with $\beta=1 / n$ and $\epsilon=1 / \delta$ then yields a solution $\overline{\mathbf{x}}$ with $\mathbf{c}^{\top}\left(\overline{\mathbf{x}}-\mathbf{x}_{\text {min }}\right)<1 / \delta$, obtained within $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\text {min }}\right)\right)$ augmentations.

5 A greatest descent augmentation makes progress in objective value less than ϵ / n, we have

$$
\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)=-\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i}<n \cdot \epsilon / n=\epsilon
$$

6 any vertex with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal. Hence any feasible solution with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal.

7 An optimal basic solution can be found from $\overline{\mathbf{x}}$ in at most n additional augmentations (using again greatest descent but on a sequence of face-restricted LPs).

4 Take δ the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

Applying Lemma 2 with $\beta=1 / n$ and $\epsilon=1 / \delta$ then yields a solution $\overline{\mathbf{x}}$ with $\mathbf{c}^{\top}\left(\overline{\mathbf{x}}-\mathbf{x}_{\text {min }}\right)<1 / \delta$, obtained within $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\min }\right)\right)$ augmentations.

5 A greatest descent augmentation makes progress in objective value less than ϵ / n, we have

$$
\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)=-\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i}<n \cdot \epsilon / n=\epsilon .
$$

6 any vertex with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal. Hence any feasible solution with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal.

An optimal basic solution can be found from \bar{x} in at most n additional augmentations (using again greatest descent but on a sequence of face-restricted LPs).

4 Take δ the greatest absolute value of a determinant among all $d \times d$ submatrices (i.e., bases) of A.

Applying Lemma 2 with $\beta=1 / n$ and $\epsilon=1 / \delta$ then yields a solution $\overline{\mathbf{x}}$ with $\mathbf{c}^{\top}\left(\overline{\mathbf{x}}-\mathbf{x}_{\text {min }}\right)<1 / \delta$, obtained within $2 n \log \left(\delta \mathbf{c}^{\top}\left(\mathbf{x}_{0}-\mathbf{x}_{\min }\right)\right)$ augmentations.

5 A greatest descent augmentation makes progress in objective value less than ϵ / n, we have

$$
\mathbf{c}^{\top}\left(\mathbf{x}_{k}-\mathbf{x}_{\min }\right)=-\sum \alpha_{i} \mathbf{c}^{\top} \mathbf{g}_{i}<n \cdot \epsilon / n=\epsilon .
$$

6 any vertex with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal. Hence any feasible solution with an objective value of at most $\mathbf{c}^{\top} \overline{\mathbf{x}}$ must be optimal.

7 An optimal basic solution can be found from $\overline{\mathbf{x}}$ in at most n additional augmentations (using again greatest descent but on a sequence of face-restricted LPs).

Hardness of Pivot rules

How hard is to solve these three pivot rule optimization problems? The set of all circuits is finite but can be exponentially large!

- Theorem[JDL-Kafer-Sanità] Greatest-improvement and Dantzig pivot rules are NP-hard. But steepest descent can be computed in polynomial time!
- Key idea for hardness: computing a circuit using Greatest-improvement pivot rule and the Dantzig pivot rule is hard to solve for the fractional matching polytope.
- fractional matching polytope is the (half-integral) polytope given by the standard LP-relaxation for the matching problem. There is a circuit characterization!
- Hardness follows by reduction from the NP-hard Hamiltonian path problem

Hardness of Pivot rules

How hard is to solve these three pivot rule optimization problems? The set of all circuits is finite but can be exponentially large!

- Theorem[JDL-Kafer-Sanità] Greatest-improvement and Dantzig pivot rules are NP-hard. But steepest descent can be computed in polynomial time!
- Key idea for hardness: computing a circuit using Greatest-improvement pivot rule and the Dantzig pivot rule is hard to solve for the fractional matching polytope.
- fractional matching polytope is the (half-integral) polytope given by the standard LP-relaxation for the matching problem. There is a circuit characterization!
- Hardness follows by reduction from the NP-hard Hamiltonian path problem

Hardness of Pivot rules

How hard is to solve these three pivot rule optimization problems? The set of all circuits is finite but can be exponentially large!

- Theorem[JDL-Kafer-Sanità] Greatest-improvement and Dantzig pivot rules are NP-hard. But steepest descent can be computed in polynomial time!
- Key idea for hardness: computing a circuit using Greatest-improvement pivot rule and the Dantzig pivot rule is hard to solve for the fractional matching polytope.
- fractional matching polytope is the (half-integral) polytope given by the standard LP-relaxation for the matching problem. There is a circuit characterization!
- Hardness follows by reduction from the NP-hard Hamiltonian path problem

Gracias!

Merci!

Danke! Thank you!

[^0]: KEY QUESTION
 How do we bound $\Delta(n, r)$?

[^1]: KEY QUESTION
 How do we bound $\Delta(n, r)$?

