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THIS TALK IS ABOUT

The GEOMETRY of

LINEAR OPTIMIZATION...

Minimize cTx subject to Ax = b and x ≥ 0;

Oriented Matroids part of the history of LP: Rockafellar, Bland,
Fukuda, Terlaky, Todd, etc

Main Message: Given an LP, we can insert it or embedded as part of
a larger oriented matroid and win!

MY GOAL: Show you 3 examples giving insight for the simplex
method and log-barrier interior point methods.
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OUTLINE

1 ORIENTED MATROIDS AND THE SIMPLEX-METHOD

2 ORIENTED MATROIDS AND INTERIOR-POINT METHODS
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RECALL THE SIMPLEX METHOD...

The simplex method walks along the graph of the polytope, each
time moving to a better and better cost vertex!
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BIG ISSUE 1:

Is there a polynomial bound
of the diameter in terms of
the number of facets and

dimension?
WARNING. If diameter is exponential, then all simplex algorithms
will be exponential in the worst case.

(facets(P)− dim(P)) + 1 ≤ Diameter ≤ (facets(P)− dim(P))log(dim(P)).
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FROM POLYTOPES TO ORIENTED MATROIDS
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FROM ARRANGEMENTS TO ORIENTED MATROIDS
Consider a hyperplane arrangement of n hyperplanes in Rr, intersect
it with sphere Sr−1.

The collection of sign
vectors representing cells
are covectors.

These sign vectors
constitute an abstraction of
hyperplane arrangements, an
ORIENTED MATROID!

Covectors of minimal
support are called cocircuits
of OM (Vertices!)

We can also call the
1-skeleton the cocircuit
graph.

Covectors of maximal
support are called topes of
OM. (polytopal regions!)
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DIAMETER OF ORIENTED MATROIDS

Want to bound the distance
between any two cocircuits
in the graph of an oriented
matroid.

The diameter of an Oriented
Matroid is the diameter of
the cocircuit graph.

Denote by ∆(n, r) the
largest diameter on Oriented
Matroids with cardinality n
and rank r.

KEY QUESTION

How do we bound ∆(n, r)?

This is of course related to the Hirsch conjecture for polytopes!!
8
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CONJECTURES

CONJECTURE 1
For all n and r,

∆(n, r) = n− r + 2.

Given a sign vector X, the antipodal −X has all signs reversed (that is,
for all e ∈ E, (−X)e = −Xe).

LEMMA

Antipodals are at distance at least n− r + 2. Thus diameter is at least
n− r + 2.
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SIMPLIFICATION LEMMAS

Definition: A rank r oriented matroid is uniform , when every
cocircuit X is defined by r − 1.

LEMMA (ADLER-JDL-KLEE-ZHANG)
For all n, r, ∆(n, r) is achieved by some uniform oriented matroid of
cardinality n and rank r.

CONJECTURE 2
Only the distance of antipodals can achieve the diameter length. That
is, for X,Y ∈ C∗, X 6= −Y , d(X,Y) ≤ n− r + 1.
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LOW RANK OR CORANK AND SMALL n, r

THEOREM (ADLER-JDL-KLEE-ZHANG.)
∆r(n, r) = n− r + 2 When

For r ≤ 3 and for n− r ≤ 3.

A counterexample needs to have at least 10 elements!
(Classification of small oriented matroids)

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
r = 3 1 1 4 11 135 4382 312356
r = 4 1 1 11 2628 9276595 unknown
r = 5 1 1 135 9276595 unknown
r = 6 1 1 4382 unknown
r = 7 1 1 312356
r = 8 1 1
r = 9 1
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PROOF IDEA FOR RANK 3

X

s1

s2 Z

s3

Y
W

s4

`(PW) + `(PZ) ≤ 4 + 2(n− 4) = 2n− 4. So dM(X,Y) ≤ n− 2.
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AN QUADRATIC DIAMETER UPPER BOUND

THEOREM (ADLER-JDL-KLEE-ZHANG.)
The diameter of all rank r oriented matroids with n elements satisfies

∆(n, r) ≤ max
{
dmin(r − 1, n− r + 1)

2
e(n− r + 1), n− r + 2

}
.

Which means the diameter is quadratic!!

This is an improvement on a result of Fukuda and Terlaky.
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PROOF ∆(n, r) ≤ (r − 1) (n− r + 2)
The proof is by induction on the rank r of the oriented matroid.

For r = 2. A rank two oriented matroid is a circle divided by 2n
points (these are n 0-spheres).

v1−v1

v2

−v2

v3

−v3

v4

−v4

−v5

v5

The graph is a 2n-gon, diameter equals 1 · n = (r− 1)(n− r + 2).

Now assume the theorem is true for rank r − 1.
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Take X,Y are two cocircuits. Two cases to bound d(X,Y).

CASE 1: If X,Y are both contain in the same pseudo-sphere Si,

Si is an oriented matroid with n− 1 spheres and rank r− 1. Thus
the distance from X,Y is, by induction, less than

(r − 2)(n− r + 1) which is less than (r − 1)(n− r + 2).
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CASE 2: X,Y are not contained in the same sphere.

The cocircuit Y is the intersection of r− 1 spheres. Take r− 2 of
those, consider the restriction. What is it?

It is an oriented matroid of rank 2, an arrangement of n− r − 2
many 0-spheres (points) along a circle γ.

The circle γ intersects all other spheres, at least one contains X.
Call that cocircuit W.

The distance d(X,Y) is no more than d(X,W) plus the distance
d(W,Y).

We apply induction twice:

d(X,W) ≤ 1 · (n− r − 2) ≤ n− r + 2

d(W,Y) ≤ (r − 2)((n− 1)− (r − 1) + 2) = (r − 2)(n− r + 2)

The sum yields the desired induction statement for rank r,
namely

(r − 1)(n− r + 2).
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The distance d(X,Y) is no more than d(Y,W) plus d(W,X).

We apply induction twice:
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HIRSCH CONJECTURE AND ORIENTED MATROIDS

F. Santos constructed a 20-polytope with 40 facets, with diameter 21.
It violates (polytope) Hirsch conjecture! We can construct an
Oriented Matroid containing Santos’s counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that
violates Conjecture 2.

CONJECTURE

For all cocircuits X,Y ∈ C∗(M) in the same tope T , there exists a
path P such that

d(X,Y) = `(P).

And P is inside the tope T shortest among all paths from X to Y .

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

18



HIRSCH CONJECTURE AND ORIENTED MATROIDS

F. Santos constructed a 20-polytope with 40 facets, with diameter 21.
It violates (polytope) Hirsch conjecture! We can construct an
Oriented Matroid containing Santos’s counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that
violates Conjecture 2.

CONJECTURE

For all cocircuits X,Y ∈ C∗(M) in the same tope T , there exists a
path P such that

d(X,Y) = `(P).

And P is inside the tope T shortest among all paths from X to Y .

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

18



HIRSCH CONJECTURE AND ORIENTED MATROIDS

F. Santos constructed a 20-polytope with 40 facets, with diameter 21.
It violates (polytope) Hirsch conjecture! We can construct an
Oriented Matroid containing Santos’s counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that
violates Conjecture 2.

CONJECTURE

For all cocircuits X,Y ∈ C∗(M) in the same tope T , there exists a
path P such that

d(X,Y) = `(P).

And P is inside the tope T shortest among all paths from X to Y .

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

18



HIRSCH CONJECTURE AND ORIENTED MATROIDS

F. Santos constructed a 20-polytope with 40 facets, with diameter 21.
It violates (polytope) Hirsch conjecture! We can construct an
Oriented Matroid containing Santos’s counterexample as a tope.

LEMMA

There exists an Oriented Matroid with cardinality 40 and rank 21 that
violates Conjecture 2.

CONJECTURE

For all cocircuits X,Y ∈ C∗(M) in the same tope T , there exists a
path P such that

d(X,Y) = `(P).

And P is inside the tope T shortest among all paths from X to Y .

Implications: Polynomial Hirsch Conjecture! Even quadratic bound!!!

18



BIG ISSUE 2: Fast pivot
rules??

Is there a pivoting rule that
turns the simplex algorithm

into a polynomial time
algorithm for solving linear

programming problems?

19



PIVOT RULES BEHAVE BADLY!!
First bad example Klee-Minty cubes
1972

TODAY 2019: For most pivot rules we have exponential examples!!
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Possible edges are Minimal Linear Dependences!
Let A be matrix that defines our LP min{cx : Ax = b, 0 ≤ x ≤ u}

A =
[

x1 x2 · · · xn
]

Consider the finite sets of all minimal linear dependent subsets of
columns

C(A) := {AS : AS has linearly dependent columns;
AS−e has linearly independent columns}.

These are the CIRCUITS of the matrix A, denoted C(A).

E = {1, 2, 3, 4, 5, 6}.

A =

 1 0 0 1 0 1
0 1 0 −1 1 0
0 0 1 0 −1 1


Example: Is {2, 3, 4, 6} ∈ C(A)?

A1: Yes. A2 + A3 + A4 − A6 = 0, yet
det[A2|A3|A4] = 1, det[A2|A3|A6] = 1,
det[A2|A4|A6] = −1, det[A3|A4|A6] = 1.
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ALL CIRCUITS ARE THE NEW LEGAL MOVES!

A =


2 1 0 1 0 0

1 2 0 0 1 0

0 0 1 0 0 1

 b =


2

2

1

 c = (1, 1,−1, 0, 0, 0).

What are the circuits of the LP?

a1 = (1, 0, 0,−2,−1, 0), a2 = (0, 1, 0,−1,−2, 0), a3 =
(0, 0, 1, 0, 0,−1), a4 = (1,−2, 0, 0, 3, 0), a5 =
(2,−1, 0,−3, 0, 0). and their negatives!

Circuits satisfy the axioms of a MATROID!

(C1) ∅ /∈ C.

(C2) X,Y ∈ C, X ⊂ Y ⇒ X = Y .

(C3) X,Y ∈ C, X 6= Y, e ∈ X ∩ Y ⇒
∃ Z ∈ C with Z ⊂ (X ∪ Y)− e.

22



ALL CIRCUITS ARE THE NEW LEGAL MOVES!

A =


2 1 0 1 0 0

1 2 0 0 1 0

0 0 1 0 0 1

 b =


2

2

1

 c = (1, 1,−1, 0, 0, 0).

What are the circuits of the LP?

a1 = (1, 0, 0,−2,−1, 0), a2 = (0, 1, 0,−1,−2, 0), a3 =
(0, 0, 1, 0, 0,−1), a4 = (1,−2, 0, 0, 3, 0), a5 =
(2,−1, 0,−3, 0, 0). and their negatives!

Circuits satisfy the axioms of a MATROID!

(C1) ∅ /∈ C.

(C2) X,Y ∈ C, X ⊂ Y ⇒ X = Y .

(C3) X,Y ∈ C, X 6= Y, e ∈ X ∩ Y ⇒
∃ Z ∈ C with Z ⊂ (X ∪ Y)− e.

22



ALL CIRCUITS ARE THE NEW LEGAL MOVES!

A =


2 1 0 1 0 0

1 2 0 0 1 0

0 0 1 0 0 1

 b =


2

2

1

 c = (1, 1,−1, 0, 0, 0).

What are the circuits of the LP?

a1 = (1, 0, 0,−2,−1, 0), a2 = (0, 1, 0,−1,−2, 0), a3 =
(0, 0, 1, 0, 0,−1), a4 = (1,−2, 0, 0, 3, 0), a5 =
(2,−1, 0,−3, 0, 0). and their negatives!

Circuits satisfy the axioms of a MATROID!

(C1) ∅ /∈ C.

(C2) X,Y ∈ C, X ⊂ Y ⇒ X = Y .

(C3) X,Y ∈ C, X 6= Y, e ∈ X ∩ Y ⇒
∃ Z ∈ C with Z ⊂ (X ∪ Y)− e.
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ENDING THE “EDGES ONLY” PIVOTING POLICY:

We wish to solve

min{ cᵀx : Ax = b, 0 ≤ x ≤ u, x ∈ Rn }.

23



BUT ONE CAN ALSO GO THROUGH THE INTERIOR TOO!!

IDEA: USE all circuits OF THE MATRIX A TO IMPROVE

circuits = support minimal elements of ker(A). We may walk through
the interior of the polyhedron!

LEMMA:
Circuits C(A) contain all possible edge directions of ALL polytopes
in the family { z : Az = b, z ≥ 0 }
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EDMONDS-KARP MAX-FLOW ALGORITHM (1972)

A maximum flow algorithm in a network: The number of
augmentations in networks with |E| edges and |V| vertices is only
|E| · |V| when augmentation directions are always chosen to have the
fewest number of arcs, and the augmentation is maximal
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WARNING:
careless augmentation process (using only a4, a5) does not terminate,
zig-zags!!

Lemma One reaches an optimal vertex in finitely many steps if
golden rule is followed:

Use an improving circuit, then, while possible, use circuits that add
zeros to the solution, once there are none left, we are at a vertex.
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HOW MANY CIRCUIT STEPS TO
REACH THE OPTIMUM?

Depends on the Pivoting or
Augmentation rule!

For a feasible solution xk, and T (A) set of improving circuits

DEFINITION (GREATEST IMPROVEMENT PIVOT RULE)
Choose z such that −αcᵀz is maximized among all z ∈ T (A) and
α > 0 such that xk+1 := xk + αz is feasible.
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THEOREM (JDL, R. HEMMECKE, AND J. LEE

THEOREM

Let A ∈ Zd×n, b ∈ Zd, u ∈ Zn, c ∈ Zn, define the LP

min{ cᵀx : Ax = b, 0 ≤ x ≤ u, x ∈ Rn }.

Let x0 be an initial feasible solution, let xmin be an optimal solution,
and let δ denote the greatest absolute value of a determinant among
all d × d submatrices (i.e., bases) of A.

The number of greatest-improvement augmentations needed to
reach an optimal solution of the LP is no more than
2n log(δ cᵀ(x0 − xmin)) + n.

We also obtained bounds (but not as nice) for Dantzig and Steepest
edge. What is up for other pivot rules?
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LEMMA 1: SIGN-COMPATIBLE REPRESENTATION

Every z ∈ ker(A) ∩ Rn has a sign-compatible representation using
circuits g ∈ C(A).

z =

n∑
i=1

λigi, λi ∈ R+.

LEMMA 2: GEOMETRIC DECREASE OF OBJECTIVE FCT.
Let ε > 0 be given. Let c be an integer cost vector.
Let xmin and xmax be a minimizer and maximizer of the LP problem
and xk at the k-th iteration of an algorithm.
Let f min := cᵀxmin, f max := cᵀxmax, and f k = cᵀxk the
objective-function values.
Suppose that the algorithm guarantees that for the k-th iteration:

(f k − f k+1) ≥ β(f k − f min)

Then we reach a solution with f k − f min < ε in no more than
2 log ((f max − f min)/ε)/β augmentations.
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PROOF OF THEOREM
1 Observe that

0 > cᵀ(xmin − xk) = cᵀ
∑

αigi =
∑

αicᵀgi ≥ −n∆,

where ∆ > 0 is the largest value of −αcᵀz over all
z ∈ Circuits(A) and α > 0 for which xk + αz is feasible.

2 Rewriting this, we obtain

∆ ≥ cᵀ(xk − xmin)

n
.

3 Let αz be the greatest-descent augmentation applied to xk,
leading to xk+1 := xk + αz. Then we see that ∆ = −αcᵀz and

cᵀ(xk − xk+1) = −αcᵀz = ∆ ≥ cᵀ(xk − xmin)

n
.

We have at least a factor of β = 1/n of objective-function value
decrease at each augmentation.
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4 Take δ the greatest absolute value of a determinant among all
d × d submatrices (i.e., bases) of A.

Applying Lemma 2 with β = 1/n and ε = 1/δ then yields a
solution x̄ with cᵀ(x̄− xmin) < 1/δ, obtained within
2n log(δ cᵀ(x0 − xmin)) augmentations.

5 A greatest descent augmentation makes progress in objective
value less than ε/n, we have

cᵀ(xk − xmin) = −
∑

αicᵀgi < n · ε/n = ε.

6 any vertex with an objective value of at most cᵀx̄ must be
optimal. Hence any feasible solution with an objective value of
at most cᵀx̄ must be optimal.

7 An optimal basic solution can be found from x̄ in at most n
additional augmentations (using again greatest descent but on a
sequence of face-restricted LPs).

31



4 Take δ the greatest absolute value of a determinant among all
d × d submatrices (i.e., bases) of A.

Applying Lemma 2 with β = 1/n and ε = 1/δ then yields a
solution x̄ with cᵀ(x̄− xmin) < 1/δ, obtained within
2n log(δ cᵀ(x0 − xmin)) augmentations.

5 A greatest descent augmentation makes progress in objective
value less than ε/n, we have

cᵀ(xk − xmin) = −
∑

αicᵀgi < n · ε/n = ε.

6 any vertex with an objective value of at most cᵀx̄ must be
optimal. Hence any feasible solution with an objective value of
at most cᵀx̄ must be optimal.

7 An optimal basic solution can be found from x̄ in at most n
additional augmentations (using again greatest descent but on a
sequence of face-restricted LPs).

31



4 Take δ the greatest absolute value of a determinant among all
d × d submatrices (i.e., bases) of A.

Applying Lemma 2 with β = 1/n and ε = 1/δ then yields a
solution x̄ with cᵀ(x̄− xmin) < 1/δ, obtained within
2n log(δ cᵀ(x0 − xmin)) augmentations.

5 A greatest descent augmentation makes progress in objective
value less than ε/n, we have

cᵀ(xk − xmin) = −
∑

αicᵀgi < n · ε/n = ε.

6 any vertex with an objective value of at most cᵀx̄ must be
optimal. Hence any feasible solution with an objective value of
at most cᵀx̄ must be optimal.

7 An optimal basic solution can be found from x̄ in at most n
additional augmentations (using again greatest descent but on a
sequence of face-restricted LPs).

31



4 Take δ the greatest absolute value of a determinant among all
d × d submatrices (i.e., bases) of A.

Applying Lemma 2 with β = 1/n and ε = 1/δ then yields a
solution x̄ with cᵀ(x̄− xmin) < 1/δ, obtained within
2n log(δ cᵀ(x0 − xmin)) augmentations.

5 A greatest descent augmentation makes progress in objective
value less than ε/n, we have

cᵀ(xk − xmin) = −
∑

αicᵀgi < n · ε/n = ε.

6 any vertex with an objective value of at most cᵀx̄ must be
optimal. Hence any feasible solution with an objective value of
at most cᵀx̄ must be optimal.

7 An optimal basic solution can be found from x̄ in at most n
additional augmentations (using again greatest descent but on a
sequence of face-restricted LPs).

31



HARDNESS OF PIVOT RULES

How hard is to solve these three pivot rule optimization problems?
The set of all circuits is finite but can be exponentially large!

Theorem[JDL-Kafer-Sanità] Greatest-improvement and Dantzig
pivot rules are NP-hard. But steepest descent can be computed in
polynomial time!

Key idea for hardness: computing a circuit using
Greatest-improvement pivot rule and the Dantzig pivot rule is
hard to solve for the fractional matching polytope.

fractional matching polytope is the (half-integral) polytope
given by the standard LP-relaxation for the matching problem.
There is a circuit characterization!

Hardness follows by reduction from the NP-hard Hamiltonian
path problem
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Gracias!
Merci!
Danke!

Thank you!

33


	Oriented Matroids and the Simplex-method
	Oriented Matroids and Interior-point Methods

