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Graph orientations

Orienting an undirected edge uv (= vu) :

replace uv with a directed edge (= arc) uv or vu

Orienting an undirected graph G = (V , E):

orient each edge of G
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In-degree % of a node v and a subset Z

%(v) = 1 %(Z ) = 2
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In-degree specified orientation

Theorem (Orientation Lemma, Hakimi, 1965)
Given an in-degree specification m : V → Z,

G = (V , E) has an orientation with %(v) = m(v) for ∀ v ∈ V ⇐⇒

m̃(V ) = |E | and m̃(Z ) ≥ iG(Z ) whenever Z ⊂ V

( ⇐⇒ em(V ) = |E | and em(Z ) ≤ eG(Z ) whenever Z ⊂ V).

m̃(Z ) :=
∑

[m(v) : v ∈ Z ]

iG(Z ): number of edges induced by Z

eG(Z ): number of edges with ≥ 1 end-node in Z
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In-degree bounded orientation

f : V → Z: lower bound

g : V → Z: upper bound (f ≤ g)

Theorem (F. + Gyárfás, 1976)

G = (V , E) has an orientation for which

(A) %(v) ≥ f (v) for ∀ node v ⇐⇒ f̃ (Z ) ≤ eG(Z ) whenever Z ⊆ V

(B) %(v) ≤ g(v) for ∀ node v ⇐⇒ g̃(Z ) ≥ iG(Z ) whenever Z ⊆ V

(AB) linking property f (v) ≤ %(v) ≤ g(v) for ∀ node v ⇐⇒
∃ an orientation with %(v) ≥ f (v) and ∃ an orientation with %(v) ≤ g(v).

(equivalent to earlier results on degree-bounded subgraphs of a bipartite graph)
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Theorem (F. + Gyárfás, 1976)

A 2-edge-conn. graph G = (V , E) has a strong orientation for which

(A) %(v) ≥ f (v) for ∀ node v ⇐⇒ f̃ (Z ) ≤ eG(Z )− c(Z ) whenever
Z ⊆ V

(B) %(v) ≤ g(v) for ∀ node v ⇐⇒ g̃(Z ) ≥ iG(Z ) + c(Z ) whenever
Z ⊆ V

(AB) linking property f (v) ≤ %(v) ≤ g(v) for ∀ node v ⇐⇒
∃ a strong orientation with %(v) ≥ f (v) and
∃ a strong orientation with %(v) ≤ g(v).
(c(Z ): number of components of G − Z)

Corollary
If G has a strong orientation with %(v) ≤ β for ∀ v ∈ V, and
G has a strong orientation with %(v) ≥ α for ∀ v ∈ V, then
G has a strong orientation with α ≤ %(v) ≤ β for ∀ v ∈ V.
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In-degree distributions

find an (in-degree bounded) orientation of G in which

the in-degree sequence (or vector) is, intuitively

fair, equitable, egalitarian, as close to uniform as possible, . . .

a constant vector (5, 5, . . . , 5) is the most fair

the near-uniform (5, 5, 4, 4, 4) is more ‘fair’ than (7, 6, 4, 3, 2)

capture mathematically the intuitive feeling for ‘most fair’

there are several (non-equivalent) definitions:

András Frank (ELTE, EGRES) Discrete Decreasing Minimization Cargese 2019 9 / 49



Possible formal fairness concepts

the largest component of the vector is as small as possible

given k , the sum of the k largest components is as small as
possible

the largest component is as small as possible, and subject to this,
the number of largest components is minimum

symmetrically:

the smallest component is as large as possible

given k , the sum of the k smallest components is as large as possible

the smallest component is as large as possible, and subject to this,

the number of smallest components is minimum
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More global ‘fairness’ concepts

the previous fairness definitions are sensitive only for the extreme
components of the vector. More global approaches:

the total deviation
∑

s |x(s)−m(s)| from a specified vector m is
minimum (e.g. find a strong orientation with minimum in-degree deviation from m )

the square-sum
∑

s x(s)2 of the components is minimum

the difference-sum ∆(x) :=
∑

[|x(s)− x(t)| : s, t ∈ S] is minimum

decreasingly minimal (dec-min):
the largest component is as small as possible, within this,
the second largest component is as small as possible, etc

increasingly maximal (inc-max):
the smallest component is as large as possible, within this,
the second smallest component is as large as possible, etc
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Dec-min

reorder decreasingly the components of vector x to obtain x↓
x = (2, 5, 5, 1, 4) ⇒ x↓ := (5, 5, 4, 2, 1)

x and y value-equivalent: x↓ = y↓

x <dec y (x is decreasingly smaller than y ): if
x↓ is lexicographically smaller than y↓

for a set B of vectors, x ∈ B is decreasingly minimal (dec-min) if
x ≤dec y for every y ∈ B

obvious: the dec-min elements are value-equivalent
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Egalitarian orientation

Borradaile, Iglesias, Migler, Ochoa, Wilfong, Zhang: BIMOWZ

Egalitarian graph orientation

J. of Graph Algorithms and Applications (2017)

egalitarian orientation: the in-degree sequence is dec-min

motivated by a practical problem in telecommunication

apparently not a perfect name:
an increasingly maximal orientation may also be felt ‘egalitarian’

but . . . ? ? ?
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Examples

example for an egalitarian orientation: every in-degree is ` or `− 1.

example for a non-egalitarian orientation:
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Improving a non-egalitarian orientation

%(t) = 2

%(s) = 0

non-egalitarian egalitarian
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Improving an orientation

local improvement: reorient an st-dipath when %(t) ≥ %(s) + 2

Theorem (BIMOWZ, 2017)
An orientation of G is egalitarian ⇐⇒
there is no local improvement.

⇒ dec-min and inc-max orientations are the same

(thus the original name ‘egalitarian’ is legitimate)

questions :

dec-min in-degree bounded and/or strongly connected
orientation (motivated by optimal routing tables of networks)

are dec-min and inc-max the same for strong orientations, too?
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Dec-min strongly connected orientation

BIMOWZ conjectured:

a strong orientation of G is decreasingly minimal ⇐⇒
6 ∃ local improvement

local improvement in a strong orientation:

when %(t) ≥ %(s) + 2 and ∃ 2 edge-disjoint st-dipaths,
reorient an st-dipath [resulting in a strong orientation with dec-smaller in-degree vector]

Theorem (2018+)
A strong orientation of G is dec-min ⇐⇒ 6 ∃ local improvement.

⇒ dec-min and inc-max are the same for strong orientations, too
. . . but this is not so outright natural since . . .

András Frank (ELTE, EGRES) Discrete Decreasing Minimization Cargese 2019 17 / 49



Strong orientation for mixed graphs

example shows for strong orientations of mixed graphs that

dec-min orientation is NOT the same as
inc-max orientation

the path reversing technique does not suffice
to find a dec-min strong orientation of a mixed graph

before proving the original BIMOWZ conjecture for undirected graphs

consider a related problem:
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Resource allocation: semi-matchings I

G = (S, T ; E): bipartite graph

F ⊆ E : semi-matching when dF (t) = 1 for t ∈ T

Harvey-Ladner-Lovász-Tamir (2006): algorithm to find such an F
minimizing the ‘total waiting time’

∑
[dF (s)(dF (s)− 1) : s ∈ S]

Scanned with CamScanner
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Resource allocation: semi-matchings II∑
[dF (s)(dF (s)− 1) : s ∈ S] =

∑
[dF (s2) : s ∈ S]− |S| implies:

minimizing total waiting time =
minimizing degree square-sum over S

??? min-max theorem for

min{
∑

[dF (s2) : s ∈ S] : F ⊆ E a semi-matching of G} ???

Harada-Ono-Sadakane-Yamashita (2007): algorithm for finding a
cheapest semi-matching with min total waiting time

2019+: polyhedral description of semi-matchings with min total waiting
time
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Resource allocation: extended semi-matchings

Bokal + Brešar + Jerebic (2012): extension to mT -semi-matching
(dF (t) = mT (t) for t ∈ T )

Theorem
An mT -semi-matching F minimizes the total waiting time ⇐⇒
its degree-vector (dF (s) : s ∈ S) on S is decreasingly minimal.

new extension:
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Resource allocation: degree-bounded matchings

G = (S, T ; E) : bigraph, γ: positive integer
f : (S ∪ T ) → Z+: lower bound, g : (S ∪ T ) → Z+: upper bound (f ≤ g)

find a subgraph F ⊆ E of G meeting

f (v) ≤ dF (v) ≤ g(v) for ∀ v ∈ S ∪ T , and |F | = γ such that

the degree-vector (dF (s) : s ∈ S) on S (!!!) is decreasingly minimal

2018+: algorithm to compute a dec-min F

2019+: algorithm to compute a min-cost dec-min F

based on the known fact: the set of degree-vectors on S of
degree-constrained subgraphs of G with γ edges is an M-convex set
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Base-polyhedra and M-convex sets

S: ground-set
b: integer-valued submodular function on S

B = B(b): base-polyhedron defined by

B ={x ∈ RS : x̃(S) = b(S), x̃(Z ) ≤ b(Z ) for ∀ Z ⊂ S}
(B(b) 6= ∅, but the empty set is also considered a base-polyhedron, B(b) uniquely determines b)

can also be defined by a supermodular function p:

B = B′(p) ={x ∈ RS : x̃(S) = p(S), x̃(Z )≥p(Z ) for ∀ Z ⊂ S}

(p(X) := b(S)− b(S − X): the complementary function of b)

....
B : set of integral elements of base-polyhedron B

called an M-convex set in Discrete convex analysis
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Operations on base-polyhedra and M-convex sets

the following are base-polyhedra :

the convex hull of the bases of a matroid M = (S, r) (= B(r))

the translation of B(b) with a vector
(matroidal: if b = r is a matroid rank-function)

the intersection of B(b) with a box {x ∈ RS : f ≤ x ≤ g}
(the linking property holds)

a face of B(b)

the sum B := B(b1) + B(b2) + · · ·+ B(bq) of base-polyhedra
(every integral z ∈ B can be expressed as z = z1 + · · ·+ zq with integral zi ∈ B(bi ))

B′(p) when p is only crossing supermodular

the corresponding statements hold for M-convex sets
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Decreasingly minimal elements of
....

B

an element m ∈
....
B is decreasingly minimal (dec-min) in

....
B if

the largest component of m is as small as possible,
within this, the next largest component of m is as small as possible,
and so on

[increasingly maximal (inc-max) elements are defined analogously]

locally improving m ∈
....
B :

when m(t) ≥ m(s) + 2 and m′:=m − χt + χs is in
....
B

(that is, 6 ∃ m-tight ts-set)

decrease m(t) by 1 and increase m(s) by 1 (:replace m by m′)
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Local improving in an M-convex set

implicitly in Groenevelt (1991) and Tamir (1995):

Theorem (2018+)

For an element m of an M-convex set
....
B, the following are equivalent.

(A) 6 ∃ local improving for m

(B1) m is dec-min in
....
B

(B2) m is inc-max in
....
B

p(X ) :=

{
iG(X ) + 1 if ∅ ⊂ X ⊂ V
iG(X ) if X = ∅ or X = V

p is crossing supermodular ⇒ B := B′(p) is a base-polyhedron
m is an in-degree vector of a strong orientation ⇐⇒ m ∈

....
B

⇒ BIMOWZ conjecture
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Orientations covering a set-function

h ≥ 0: crossing supermodular
digraph D covers h: %D(Z ) ≥ h(Z ) ∀ ∅ ⊂ Z ⊂ V

Theorem (A.F. 1980)

G = (V , E) has an orientation covering h ⇐⇒
eP ≥

∑q
i=1 h(Vi) and eP ≥

∑q
i=1 h(V − Vi)

for ∀ partition P = {V1, . . . , Vq} of V . (eP : ] of edges connecting distinct Vi ’s)

for p := h + iG (crossing supermodular) and B := B′(p) (base-polyhedron)

easy observation: the set of in-degree vectors of orientations of G
covering h is the M-convex set

....
B .

⇒ dec-min orientation covering h = inc-max orientation covering h

(not true (!) when h is only crossing supermodular and its non-negativity is dropped)

András Frank (ELTE, EGRES) Discrete Decreasing Minimization Cargese 2019 27 / 49



Special cases

f : V → Z: lower bound
g : V → Z: upper bound (f ≤ g)

Theorem (2018+)
A k-edge-con. and in-degree bounded orientation of G is dec-min
⇐⇒ 6 ∃ nodes s, t with

%(t) ≥ %(s) + 2, %(t) > f (t), %(s) < g(s)

for which ∃ k + 1 edge-disjoint st-dipaths.

extends to in-degree bounded and (k , `)-edge-connected orientation
(a digraph is (k , `)-edge-connected (0 ≤ ` ≤ k) if `-edge-connected and ∃ k edge-disjoint

dipaths from a root-node to ∀ other node)
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Characterizing decreasing minimality

B = B′(p): base-polyhedron
m ∈ B: integral element

Z ⊆ S is m-tight if m̃(Z ) = p(Z )

X m-top-set : m(t) ≥ m(s) whenever t ∈ X and s ∈ S − X

Theorem (2018+)

For m ∈
....
B, the following are equivalent.

(A) 6 ∃ local improving for m (= m is dec-min)

(C) ∃ ‘certificate’ chain C of m-tight and m-top sets
∅ ⊂ C1 ⊂ C2 ⊂ · · · ⊂ C` (= S) such that
each difference set Ci − Ci−1 is near-uniform.
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Chain certifying decreasing minimality

m = (8, 8, 8, 7, 7, 7, 7, 7, 6, 6, . . . , 2, 2) ∈
....
B

each Ci is m-top and m-tight (: em(Ci ) = p(Ci ) )
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Canonical certificate chain

for any dec-min element m of
....
B , define iteratively for i = 1, 2, . . . , q

βi := max{m(s) : s ∈ S − Ci−1}

Ci := smallest m-tight set containing each s ∈ S with m(s) ≥ βi

Theorem (2018-19+)
Both the value-sequence β1 > β2 > · · · > βq and the chain
C = {C1 ⊂ C2 ⊂ · · · ⊂ Cq} are independent of the choice of m.

⇒ the ‘canonical’ chain C is a certificate for ALL dec-min elements
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Algorithmic aspects

2018+: strongly polynomial algorithm for finding a dec-min element m
of

....
B and the canonical chain C

when B′(p) is small (that is, the values of p can be bounded by a polynomial of |S| ) ,
the sequence of local improvements provides a polynomial algorithm

in the general case,
the Newton-Dinkelbach algorithm is needed to maximize dp(X)

|X | e
along with a subroutine to maximize a supermodular function
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Describing the set of all dec-min elements

Theorem (2018+)
Given an integral base-polyhedron B,
∃ a small box T and a face F of B such that

an element m ∈
....
B is dec-min ⇐⇒

m is an integral member of the base-polyhedron F ∩ T .

T = {x ∈ RS : f ≤ x ≤ g} is small if g(s)− f (s) ≤ 1 for ∀ s ∈ S

Theorem (2018+)
The dec-min elements of an M-convex set form a matroidal M-convex
set.

2018+: strongly polynomial algorithm to compute a min-cost dec-min
element of

....
B
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Dec-min optimization on matroids

Edmonds + Fulkerson: given matroids M1, M2, . . . , Mk on S, find a
basis from each Mi which are disjoint

generalization: find a basis Bi from each Mi such that the vector

k∑
i=1

χBi

is decreasingly minimal (χBi is the characteristic vector of Bi )

B = B(b) : base-polyhedron defined by the submodular function
b := r1 + r2 + · · ·+ rk

⇒ find a dec-min element of
....
B

the special case M1 = M2 = · · · = Mk was solved by Levin and Onn
(2016)
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Square-sum minimization, I

Fujishige (1980) solved: find an element x of a base-polyhedron B
minimizing the square-sum w(x) :=

∑
[x(s)2 : s ∈ S]

(there is a unique solution)

discrete version: find an element m of an M-convex set
....
B

minimizing the square-sum w(m)

different orders:

(2, 3, 3, 1) <dec (3, 3, 3, 0) <dec (2, 2, 4, 1) <dec (3, 2, 4, 0)

w = 23 < w = 27 > w = 25 < w = 29

and yet . . .

András Frank (ELTE, EGRES) Discrete Decreasing Minimization Cargese 2019 35 / 49



Square-sum minimization, II

Theorem (2018+)

A member m of an M-convex set
....
B minimizes the square-sum

w(m) over the elements of
....
B if and only if

m is a dec-min member of
....
B.

Theorem (2018+)

min {
∑

[m(s)2 : s ∈ S] : m ∈
....
B} =

max {p̂(π)−
∑

s∈Sb
π(s)

2 cdπ(s)
2 e : π ∈ ZS}.

(p̂ is the linear (or Lovász-) extension of p)

the ‘easy’ inequality max ≤ min is easy
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Optima over an M-convex set

Theorem (earlier and recent equivalences)

For an element m of M-convex set
....
B, the following are equivalent.

m is dec-min

m is inc-max

m minimizes the square-sum
∑

[x(s)2 : s ∈ S]

m minimizes the difference-sum
∑

[|x(s)− x(t)| : s, t ∈ S]

m minimizes the sum of the k largest components
simultaneously for each k = 1, 2, . . . , |S|

m minimizes the total a-excess
∑

[(x(s)− a)+ : s ∈ S]
for each integer a

m minimizes
∑

ϕ(m(s)) for every strictly convex function ϕ
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Cheapest dec-min in-degree bounded orientations

G = (V , E) : undirected graph, with in-degree bounds (f , g)

given a cost c(uv) and c(vu) of both possible orientations of uv ∈ E ,
find a cheapest in-degree bounded orientation of G

reduces to : min-cost flows

find a cheapest dec-min in-degree bounded orientation

Theorem (2019+)

∃ f ∗ and g∗ with f ∗(v) ≤ g∗(v) ≤ f ∗(v) + 1 and ∃ a subset E0 ⊆ E
with an orientation A0 such that

an (f , g)-bounded orientation D = (V , A) is dec-min (f , g)-bounded
⇐⇒ D is (f ∗, g∗)-bounded and A0 ⊆ A.
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Describing dec-min extended semi-matchings

Recall:

G = (S, T ; E) : bigraph, f : (S ∪ T ) → Z+: lower bound, g : (S ∪ T ) → Z+: upper bound,

γ: positive integer

find an (f , g)-degree-bounded subgraph F ⊆ E with γ edges such that

the degree-vector (dF (s) : s ∈ S) on S (!!!) is decreasingly minimal

this is a special dec-min in-degree bounded orientation problem
⇒ even the min-cost version is tractable

BUT . . .
if decreasing minimality of dF (v) is requested for the whole S ∪ T
(or on any specified subset Z ⊆ S ∪ T ) ,
essentially new ideas are needed
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Inc-max flow optimization on source-edges, I

D = (V , A): digraph

s ∈ V : source node (with no entering arcs)

t ∈ V : sink node (with no leaving arcs)

g : A → R+: non-negative rational-valued capacity function

SA: set of source-edges (= arcs leaving s)

x : A → R+: a flow from s to t is feasible if x ≤ g

flow amount of x : δx(s) = x̃(SA)

max-flow: a feasible flow with maximum flow amount
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Inc-max flow optimization on source-edges, II

the fractional inc-max flow on SA two inc-max integral flows on SA

Megiddo (1974, 1977) solved: find a (possibly fractional) max-flow x
whose restriction to SA is ‘lexicographically optimal’ (= increasingly

maximal)

the (unique) optimal x may be fractional even if g is integer-valued
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Discrete Megiddo-flows

(2018+) discrete version of Megiddo:

where g is integer-valued,
find an integral feasible max-flow z
whose restriction to SA is increasingly maximal

known: given D = (V , A) with source node s and sink node t ,
the max-flows restricted to SA span a base-polyhedron B
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Strongly polynomial algorithm

the general strongly polynomial algorithm developed for finding a
dec-min (= inc-max) element of an M-convex set

....
B can be applied:

in graph orientations, matroid optimizations, resource allocation, and
discrete (Megiddo-type) inc-max flow problems

direct subroutines for supermodular function maximization are
available via standard max-flow and matroid algorithms
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Decreasingly minimal integer-valued flows

D = (V , A): digraph

m : V → Z with m̃(V ) = 0

z : A → Z: m-flow if %z(v)− δz(v) = m(v) for every v ∈ V

f : A → Z ∪ {−∞}: lower bound
g : A → Z ∪ {+∞}: upper bound (f ≤ g)

(f , g)-bounded m-flow z: f ≤ z ≤ g

F ⊆ A: specified subset of edges

z F -dec-min: the largest z-value on F is as small as possible, within
this, the second largest z-value on F is as small as possible, etc.

Q := set of F -dec-min (f , g)-bounded m-flows
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Decreasingly minimal flows: a special case

Kaibel + Onn + Sarrabezolles (2015) solved:
find an uncapacitated integral dec-min st-flow of given flow-amount M

original version: find M st-paths so that the largest burden of an
edge is minimal, within this, the second largest burden of an edge is
minimal, etc.

burden of e: the number of dipaths using e

(lucky case is when ∃ M edge-disjoint st-paths)

Kaibel + Onn + Sarrabezolles:
polynomial algorithm for fixed M
(but not polynomial when M is not fixed)
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The set of F -dec-min m-flows

the set of (f , g)-bounded integral m-flows is not M-convex, in general

hence dec-min is not the same as inc-max

Theorem (2018-19+)
∃ integer-valued functions f ∗ and g∗ on A with f ≤ f ∗ ≤ g∗ ≤ g
such that z ∈

....

Q is F-dec-min ⇐⇒ z is an integral (f ∗, g∗)-bounded
m-flow. Moreover, the box T (f ∗, g∗) is narrow on F:
0 ≤ g∗(e)− f ∗(e) ≤ 1 for every e ∈ F.

2019+: strongly polynomial algorithm to compute (f ∗, g∗)

2019+: strongly polynomial algorithm to compute a min-cost integral
feasible m-flow which is dec-min on F
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Extensions

for mixed graphs, dec-min strong orientation 6= inc-max strong
orientation

reason: the set of in-degree vectors of strong orientations of a mixed
graph is not an M-convex set, in general,
but the intersection of two M-convex sets

Edmonds: the intersection B := B1 ∩ B2 of two integral
base-polyhedra is an integral polyhedron

different problems:
find a dec-min element of

....
B

find a square-sum minimizer element of
....
B
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A new min-max theorem on square-sum

Theorem (2018+)

Let B1 = B′(p1) and B2 = B′(p2) be integral base-polyhedra defined
by supermodular functions p1 and p2 for which B = B1 ∩ B2 is
non-empty. Then

min {
∑

[m(s)2 : s ∈ S] : m ∈
....
B} =

max {p̂1(π1) + p̂2(π2)−
∑

s∈Sb
π1(s)+π2(s)

2 cdπ1(s)+π2(s)
2 e : π1, π2 ∈ ZS}.

the proof uses tools from Discrete convex analysis
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difficulties:

dec-min 6= inc-max
local improvement does not suffice

more general framework: submodular flows

Theorem (2018+)
Given a feasible submodular flow polyhedron Q ,

∃ a small box T and a face F of Q such that z ∈
....

Q is dec-min
⇐⇒

z ∈ F ∩ T .

∃ polynomial algorithm
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