Decreasingly Minimal Orientations and Flows

András Frank

Egerváry Research Group Eötvös University of Budapest

Tenth Cargese Workshop on Combinatorial Optimization

Cargese September 2 – 6, 2019

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019 1 / 49

Joint work with

Kazuo Murota

(Tokyo Metropolitan University)

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019 2 / 49

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reports on ARXIV

- A. Frank and K. Murota, *Discrete Decreasing Minimization, Part I:* Base-polyhedra with Applications in Network Optimization https://arxiv.org/pdf/1808.07600.pdf
- A. Frank and K. Murota, *Discrete Decreasing Minimization, Part II:* Views from discrete convex analysis https://arxiv.org/pdf/1808.08477.pdf
- A. Frank and K. Murota, *Discrete Decreasing Minimization, Part III:* Network flows https://arxiv.org/pdf/1907.02673.pdf

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Graph orientations

Orienting an undirected edge uv (= vu): replace uv with a directed edge (= arc) uv or vu

Orienting an undirected graph G = (V, E):

orient each edge of G

András Frank (ELTE, EGRES)

In-degree ρ of a node v and a subset Z

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

・ロト ・ 四ト ・ ヨト ・ ヨト

In-degree specified orientation

Theorem (Orientation Lemma, Hakimi, 1965) Given an in-degree specification $m : V \to Z$, G = (V, E) has an orientation with $\varrho(v) = m(v)$ for $\forall v \in V \iff$ $\widetilde{m}(V) = |E|$ and $\widetilde{m}(Z) \ge i_G(Z)$ whenever $Z \subset V$ ($\iff \widetilde{m}(V) = |E|$ and $\widetilde{m}(Z) \le e_G(Z)$ whenever $Z \subset V$).

 $\widetilde{m}(Z) := \sum [m(v) : v \in Z]$

 $i_G(Z)$: number of edges induced by Z

 $e_G(Z)$: number of edges with ≥ 1 end-node in Z

イロト 不得 トイヨト イヨト ニヨー

In-degree bounded orientation

- $f: V \rightarrow \mathbf{Z}$: lower bound
- $g: V \rightarrow \mathbf{Z}$: upper bound $(f \leq g)$

Theorem (F. + Gyárfás, 1976) G = (V, E) has an orientation for which (A) $\varrho(v) \ge f(v)$ for \forall node $v \iff \tilde{f}(Z) \le e_G(Z)$ whenever $Z \subseteq V$ (B) $\varrho(v) \le g(v)$ for \forall node $v \iff \tilde{g}(Z) \ge i_G(Z)$ whenever $Z \subseteq V$

(AB) linking property $f(v) \le \varrho(v) \le g(v)$ for \forall node $v \iff \exists$ an orientation with $\varrho(v) \ge f(v)$ and \exists an orientation with $\varrho(v) \le g(v)$.

(equivalent to earlier results on degree-bounded subgraphs of a bipartite graph)

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Theorem (F. + Gyárfás, 1976)

A 2-edge-conn. graph G = (V, E) has a strong orientation for which

(A) $\varrho(\mathbf{v}) \geq f(\mathbf{v})$ for \forall node $\mathbf{v} \iff \tilde{f}(Z) \leq e_G(Z) - c(Z)$ whenever $Z \subseteq V$

(B) $\varrho(\mathbf{v}) \leq \mathbf{g}(\mathbf{v})$ for \forall node $\mathbf{v} \iff \widetilde{g}(Z) \geq i_G(Z) + c(Z)$ whenever $Z \subseteq V$

(AB) linking property $f(v) \le \varrho(v) \le g(v)$ for \forall node $v \iff \exists$ a strong orientation with $\varrho(v) \ge f(v)$ and \exists a strong orientation with $\varrho(v) \le g(v)$.

(c(Z): number of components of G - Z)

Corollary

If **G** has a strong orientation with $\varrho(\mathbf{v}) \leq \beta$ for $\forall \mathbf{v} \in \mathbf{V}$, and

G has a strong orientation with $\varrho(\mathbf{v}) \ge \alpha$ for $\forall \mathbf{v} \in \mathbf{V}$, then

G has a strong orientation with $\alpha \leq \varrho(\mathbf{v}) \leq \beta$ for $\forall \mathbf{v} \in \mathbf{V}$.

In-degree distributions

find an (in-degree bounded) orientation of G in which the in-degree sequence (or vector) is, intuitively fair, equitable, egalitarian, as close to uniform as possible, ... a constant vector $(5, 5, \ldots, 5)$ is the most fair the near-uniform (5, 5, 4, 4, 4) is more 'fair' than (7, 6, 4, 3, 2)capture mathematically the intuitive feeling for 'most fair'

there are several (non-equivalent) definitions:

Possible formal fairness concepts

- the largest component of the vector is as small as possible
- given k, the sum of the k largest components is as small as possible
- the largest component is as small as possible, and subject to this, the number of largest components is minimum

symmetrically:

- the smallest component is as large as possible
- given *k*, the sum of the *k* smallest components is as large as possible
- the smallest component is as large as possible, and subject to this, the number of smallest components is minimum

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019 10 / 49

3

More global 'fairness' concepts

the previous fairness definitions are sensitive only for the extreme components of the vector. More global approaches:

- the total deviation ∑_s |x(s) m(s)| from a specified vector m is minimum (e.g. find a strong orientation with minimum in-degree deviation from m)
- the square-sum $\sum_{s} x(s)^2$ of the components is minimum
- the difference-sum $\Delta(x) := \sum [|x(s) x(t)| : s, t \in S]$ is minimum
- decreasingly minimal (dec-min): the largest component is as small as possible, within this, the second largest component is as small as possible, etc
- increasingly maximal (inc-max): the smallest component is as large as possible, within this, the second smallest component is as large as possible, etc

reorder decreasingly the components of vector \mathbf{x} to obtain \mathbf{x}_{\downarrow} $\mathbf{x} = (2, 5, 5, 1, 4) \Rightarrow \mathbf{x}_{\downarrow} := (5, 5, 4, 2, 1)$

x and y value-equivalent: $x_{\downarrow} = y_{\downarrow}$

 $x <_{dec} y$ (x is decreasingly smaller than y): if x_{\perp} is lexicographically smaller than y_{\perp}

for a set *B* of vectors, $x \in B$ is decreasingly minimal (dec-min) if $x \leq_{dec} y$ for every $y \in B$

obvious: the dec-min elements are value-equivalent

Egalitarian orientation

Borradaile, Iglesias, Migler, Ochoa, Wilfong, Zhang: вімоwz

Egalitarian graph orientation

J. of Graph Algorithms and Applications (2017)

egalitarian orientation: the in-degree sequence is dec-min

motivated by a practical problem in telecommunication

apparently not a perfect name: an increasingly maximal orientation may also be felt 'egalitarian'

but ...???

András Frank (ELTE, EGRES)

EN 4 EN

Examples

example for an egalitarian orientation: every in-degree is ℓ or $\ell - 1$. example for a non-egalitarian orientation:

Improving a non-egalitarian orientation

 $\varrho(t) = 2$

 $\varrho(s) = 0$

non-egalitarian

egalitarian

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

E ▶ < E ▶ E クへの Cargese 2019 15/49

Improving an orientation

local improvement: reorient an *st*-dipath when $\varrho(t) \ge \varrho(s) + 2$

Theorem (BIMOWZ, 2017)

An orientation of G is egalitarian \iff there is no local improvement.

 ⇒ dec-min and inc-max orientations are the same (thus the original name 'egalitarian' is legitimate)

questions :

- dec-min in-degree bounded and/or strongly connected orientation (motivated by optimal routing tables of networks)
- are dec-min and inc-max the same for strong orientations, too?

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

∃ ► < ∃</p>

4 A N

Dec-min strongly connected orientation

BIMOWZ conjectured:

a strong orientation of G is decreasingly minimal \iff \nexists local improvement

local improvement in a strong orientation:

when $\varrho(t) \ge \varrho(s) + 2$ and $\exists 2 \text{ edge-disjoint } st$ -dipaths, reorient an *st*-dipath [resulting in a strong orientation with dec-smaller in-degree vector]

Theorem (2018+)

A strong orientation of G is dec-min $\iff \exists$ local improvement.

⇒ dec-min and inc-max are the same for strong orientations, too

... but this is not so outright natural since ...

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019

17/49

Strong orientation for mixed graphs

example shows for strong orientations of mixed graphs that

dec-min orientation is NOT the same as inc-max orientation

the path reversing technique does not suffice to find a dec-min strong orientation of a mixed graph

before proving the original BIMOWZ conjecture for undirected graphs

consider a related problem:

András Frank (ELTE, EGRES)

The Sec. 74

Resource allocation: semi-matchings I

- G = (S, T; E): bipartite graph
- $F \subseteq E$: semi-matching when $d_F(t) = 1$ for $t \in T$
- Harvey-Ladner-Lovász-Tamir (2006): algorithm to find such an *F* minimizing the 'total waiting time' $\sum [d_F(s)(d_F(s) 1) : s \in S]$

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Resource allocation: semi-matchings II

 $\sum [d_F(s)(d_F(s)-1):s\in S] = \sum [d_F(s^2):s\in S] - |S|$ implies:

minimizing total waiting time = minimizing degree square-sum over *S*

??? min-max theorem for min{ $\sum [d_F(s^2) : s \in S] : F \subseteq E$ a semi-matching of *G*}???

Harada-Ono-Sadakane-Yamashita (2007): algorithm for finding a cheapest semi-matching with min total waiting time

2019+: polyhedral description of semi-matchings with min total waiting time

Resource allocation: extended semi-matchings

Bokal + Brešar + Jerebic (2012): extension to m_T -semi-matching $(d_F(t) = m_T(t) \text{ for } t \in T)$

Theorem

An m_T -semi-matching F minimizes the total waiting time \iff its degree-vector $(d_F(s) : s \in S)$ on S is decreasingly minimal.

new extension:

András Frank (ELTE, EGRES)

Resource allocation: degree-bounded matchings

G = (S, T; E): bigraph, γ : positive integer $f: (S \cup T) \rightarrow \mathbf{Z}_+$: lower bound, $g: (S \cup T) \rightarrow \mathbf{Z}_+$: upper bound $(f \le g)$

find a subgraph $F \subseteq E$ of G meeting $f(v) \leq d_F(v) \leq g(v)$ for $\forall v \in S \cup T$, and $|F| = \gamma$ such that the degree-vector $(d_F(s) : s \in S)$ on S (!!!) is decreasingly minimal

2018+: algorithm to compute a dec-min F

2019+: algorithm to compute a min-cost dec-min F

based on the known fact: the set of degree-vectors on S of degree-constrained subgraphs of G with γ edges is an M-convex set

ヘロト 人間 トイヨト イヨト

Base-polyhedra and M-convex sets

S: ground-set

b: integer-valued submodular function on S

B = B(b): base-polyhedron defined by

 $\boldsymbol{B} = \{ x \in \mathbf{R}^{S} : \widetilde{x}(S) = b(S), \ \widetilde{x}(Z) \le b(Z) \ \text{for} \ \forall \ Z \subset S \}$

 $(B(b) \neq \emptyset$, but the empty set is also considered a base-polyhedron, B(b) uniquely determines b)

can also be defined by a supermodular function p: $B = B'(p) = \{x \in \mathbf{R}^S : \widetilde{x}(S) = p(S), \ \widetilde{x}(Z) \ge p(Z) \text{ for } \forall Z \subset S\}$

(p(X) := b(S) - b(S - X): the **complementary** function of **b**)

B : set of integral elements of base-polyhedron *B*

called an M-convex set in Discrete convex analysis

Discrete Decreasing Minimization

Operations on base-polyhedra and M-convex sets

the following are base-polyhedra :

- the convex hull of the bases of a matroid M = (S, r) (= B(r))
- the translation of B(b) with a vector (matroidal: if b = r is a matroid rank-function)
- the intersection of B(b) with a box $\{x \in \mathbb{R}^S : f \le x \le g\}$ (the linking property holds)
- a face of B(b)
- the sum $B := B(b_1) + B(b_2) + \dots + B(b_q)$ of base-polyhedra (every integral $z \in B$ can be expressed as $z = z_1 + \dots + z_q$ with integral $z_i \in B(b_i)$)
- B'(p) when p is only crossing supermodular

the corresponding statements hold for M-convex sets

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

IN I DOG

Decreasingly minimal elements of B

an element $m \in B$ is **decreasingly minimal** (dec-min) in B if the largest component of m is as small as possible, within this, the next largest component of m is as small as possible, and so on

[increasingly maximal (inc-max) elements are defined analogously]

```
locally improving m \in \overline{B}:
```

when $m(t) \ge m(s) + 2$ and $m' := m - \chi_t + \chi_s$ is in B (that is, $\not\exists m$ -tight $t\bar{s}$ -set)

decrease m(t) by 1 and increase m(s) by 1 (:replace m by m')

э.

Local improving in an M-convex set

implicitly in Groenevelt (1991) and Tamir (1995):

Theorem (2018+)

For an element m of an M-convex set B, the following are equivalent. (A) $\not\exists$ local improving for m

(B1) m is dec-min in B(B2) m is inc-max in B

$$p(X) := egin{cases} i_G(X) + 1 & ext{if} \quad \emptyset \subset X \subset V \ i_G(X) & ext{if} \quad X = \emptyset \ ext{or} \quad X = V \end{cases}$$

p is crossing supermodular $\Rightarrow B := B'(p)$ is a base-polyhedron

m is an in-degree vector of a strong orientation $\iff m \in B$

⇒ BIMOWZ conjecture

András Frank (ELTE, EGRES)

∃ ► < ∃ ►</p>

Orientations covering a set-function

h ≥ 0: crossing supermodular digraph *D* covers *h*: $\rho_D(Z) \ge h(Z) \quad \forall \quad \emptyset \subset Z \subset V$ Theorem (A.F. 1980)

 $\begin{array}{l} \textbf{G} = (\textbf{V}, \textbf{E}) \ \text{has an orientation covering } h \iff \\ \textbf{e}_{\mathcal{P}} \geq \sum_{i=1}^{q} h(\textbf{V}_{i}) \ \text{ and } \ \textbf{e}_{\mathcal{P}} \geq \sum_{i=1}^{q} h(\textbf{V} - \textbf{V}_{i}) \\ \text{for } \forall \ \text{partition } \mathcal{P} = \{\textbf{V}_{1}, \ldots, \textbf{V}_{q}\} \ \text{of } \textbf{V}. \ (\textbf{e}_{\mathcal{P}}: \sharp \ \text{of edges connecting distinct } V_{i} \text{'s}) \end{array}$

for $p := h + i_G$ (crossing supermodular) and B := B'(p) (base-polyhedron) easy observation: the set of in-degree vectors of orientations of *G* covering *h* is the M-convex set \overline{B} .

\Rightarrow dec-min orientation covering h = inc-max orientation covering h

(not true (!) when h is only crossing supermodular and its non-negativity is dropped)

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Special cases

for which $\exists k+1$ edge-disjoint st-dipaths.

extends to in-degree bounded and (k, ℓ) -edge-connected orientation (a digraph is (k, ℓ) -edge-connected ($0 \le \ell \le k$) if ℓ -edge-connected and $\exists k$ edge-disjoint dipaths from a root-node to \forall other node)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characterizing decreasing minimality

- B = B'(p): base-polyhedron $m \in B$: integral element
- $Z \subseteq S$ is *m*-tight if $\widetilde{m}(Z) = p(Z)$
- X m-top-set: $m(t) \ge m(s)$ whenever $t \in X$ and $s \in S X$

Theorem (2018+)

- For $m \in B$, the following are equivalent.
- (A) $\not\exists$ local improving for **m** (= **m** is dec-min)

(C) \exists 'certificate' chain C of m-tight and m-top sets $\emptyset \subset C_1 \subset C_2 \subset \cdots \subset C_\ell$ (= *S*) such that each difference set $C_i - C_{i-1}$ is near-uniform.

András Frank (ELTE, EGRES)

Chain certifying decreasing minimality

 $m = (8, 8, 8, 7, 7, 7, 7, 7, 6, 6, \dots, 2, 2) \in B$

each C_i is *m*-top and *m*-tight (: $\widetilde{m}(C_i) = p(C_i)$)

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019 30 / 49

э

Canonical certificate chain

for any dec-min element *m* of B, define iteratively for i = 1, 2, ..., q $\beta_i := \max\{m(s) : s \in S - C_{i-1}\}$

 $C_i :=$ smallest *m*-tight set containing each $s \in S$ with $m(s) \ge \beta_i$

Theorem (2018-19+)

Both the value-sequence $\beta_1 > \beta_2 > \cdots > \beta_q$ and the chain $C = \{C_1 \subset C_2 \subset \cdots \subset C_q\}$ are independent of the choice of *m*.

 \Rightarrow the 'canonical' chain C is a certificate for ALL dec-min elements

Algorithmic aspects

2018+: strongly polynomial algorithm for finding a dec-min element \overline{m} of \overline{B} and the canonical chain \mathcal{C}

when B'(p) is small (that is, the values of p can be bounded by a polynomial of |S|), the sequence of local improvements provides a polynomial algorithm

in the general case, the Newton-Dinkelbach algorithm is needed to maximize $\lceil \frac{P(X)}{|X|} \rceil$ along with a subroutine to maximize a supermodular function

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

< 口 > < 同 > < 回 > < 回 > < 回 > <

Describing the set of all dec-min elements

Theorem (2018+) Given an integral base-polyhedron B, \exists a small box T and a face F of B such that an element $m \in B$ is dec-min \iff m is an integral member of the base-polyhedron $F \cap T$.

 $T = \{x \in \mathbf{R}^S : f \le x \le g\}$ is small if $g(s) - f(s) \le 1$ for $\forall s \in S$

Theorem (2018+)

The dec-min elements of an M-convex set form a matroidal M-convex set.

2018+: strongly polynomial algorithm to compute a min-cost dec-min element of \overrightarrow{B}

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019

33/49

Dec-min optimization on matroids

Edmonds + Fulkerson: given matroids M_1, M_2, \ldots, M_k on S, find a basis from each M_i which are disjoint

generalization: find a basis B_i from each M_i such that the vector

 $\sum_{i=1}^{k} \chi_{B_i}$

is decreasingly minimal $(\chi_{B_i}$ is the characteristic vector of B_i)

B = B(b): base-polyhedron defined by the submodular function $b := r_1 + r_2 + \cdots + r_k$

 \Rightarrow find a dec-min element of B

the special case $M_1 = M_2 = \cdots = M_k$ was solved by Levin and Onn (2016)

Square-sum minimization, I

Fujishige (1980) solved: find an element x of a base-polyhedron B minimizing the square-sum $w(x) := \sum [x(s)^2 : s \in S]$ (there is a unique solution)

discrete version: find an element m of an M-convex set B minimizing the square-sum w(m)

different orders:

 $(2,3,3,1) <_{dec} (3,3,3,0) <_{dec} (2,2,4,1) <_{dec} (3,2,4,0)$ w = 23 < w = 27 > w = 25 < w = 29

and yet ...

Square-sum minimization, II

Theorem (2018+)

A member m of an M-convex set B minimizes the square-sum w(m) over the elements of B if and only if m is a dec-min member of B.

Theorem (2018+)

min
$$\{\sum [m(s)^2 : s \in S] : m \in \widetilde{B}\} =$$

$$\max \{ \hat{p}(\pi) - \sum_{s \in S} \lfloor \frac{\pi(s)}{2} \rfloor \lceil \frac{\pi(s)}{2} \rceil : \pi \in \mathbf{Z}^S \}$$

 $(\hat{p} \text{ is the linear (or Lovász-) extension of } p)$

the 'easy' inequality $\max \leq \min$ is easy

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

Cargese 2019 36 / 49

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Optima over an M-convex set

Theorem (earlier and recent equivalences)

For an element m of M-convex set B, the following are equivalent.

- m is dec-min
- m is inc-max
- *m* minimizes the square-sum $\sum [x(s)^2 : s \in S]$
- *m* minimizes the difference-sum $\sum [|x(s) x(t)| : s, t \in S]$
- *m* minimizes the sum of the *k* largest components simultaneously for each k = 1, 2, ..., |S|
- *m* minimizes the total *a*-excess ∑[(x(s) − a)⁺ : s ∈ S] for each integer a

• *m* minimizes $\sum \varphi(m(s))$ for every strictly convex function φ András Frank (ELTE, EGRES) Discrete Decreasing Minimization Cargese 2019

37/49

Cheapest dec-min in-degree bounded orientations

G = (V, E): undirected graph, with in-degree bounds (f, g)

given a cost c(uv) and c(vu) of both possible orientations of $uv \in E$, find a cheapest in-degree bounded orientation of G

reduces to : min-cost flows

find a cheapest dec-min in-degree bounded orientation

Theorem (2019+)

 $\exists f^* \text{ and } g^* \text{ with } f^*(v) \leq g^*(v) \leq f^*(v) + 1 \text{ and } \exists \text{ a subset } E_0 \subseteq E$ with an orientation A_0 such that

an (f,g)-bounded orientation D = (V,A) is dec-min (f,g)-bounded $\iff D$ is (f^*,g^*) -bounded and $A_0 \subseteq A$.

András Frank (ELTE, EGRES)

Describing dec-min extended semi-matchings

Recall:

G = (S, T; E): bigraph, $f: (S \cup T) \rightarrow Z_+$: lower bound, $g: (S \cup T) \rightarrow Z_+$: upper bound, γ : positive integer

find an (f, g)-degree-bounded subgraph $F \subseteq E$ with γ edges such that the degree-vector $(d_F(s) : s \in S)$ on S (!!!) is decreasingly minimal

this is a special dec-min in-degree bounded orientation problem \Rightarrow even the min-cost version is tractable

BUT ...

if decreasing minimality of $d_F(v)$ is requested for the whole $S \cup T$ (or on any specified subset $Z \subseteq S \cup T$), essentially new ideas are needed

Inc-max flow optimization on source-edges, I

- D = (V, A): digraph
- $s \in V$: source node (with no entering arcs)
- $t \in V$: sink node (with no leaving arcs)

 $g: A \rightarrow \mathbf{R}_+$: non-negative rational-valued capacity function

- S_A: set of source-edges (= arcs leaving s)
- $x : A \to \mathbf{R}_+$: a flow from s to t is feasible if $x \le g$

flow amount of x: $\delta_x(s) = \widetilde{x}(S_A)$

max-flow: a feasible flow with maximum flow amount

Inc-max flow optimization on source-edges, II

the fractional inc-max flow on S_A

two inc-max integral flows on S_A

Megiddo (1974, 1977) solved: find a (possibly fractional) max-flow x whose restriction to S_A is 'lexicographically optimal' (= increasingly maximal)

the (unique) optimal x may be fractional even if g is integer-valued

Discrete Decreasing Minimization

Discrete Megiddo-flows

(2018+) discrete version of Megiddo:

where g is integer-valued, find an integral feasible max-flow zwhose restriction to S_A is increasingly maximal

known: given D = (V, A) with source node *s* and sink node *t*, the max-flows restricted to S_A span a base-polyhedron *B*

András Frank (ELTE, EGRES)

< 口 > < 同 > < 回 > < 回 > < 回 > <

- the general strongly polynomial algorithm developed for finding a dec-min (= inc-max) element of an M-convex set \overrightarrow{B} can be applied:
- in graph orientations, matroid optimizations, resource allocation, and discrete (Megiddo-type) inc-max flow problems
- direct subroutines for supermodular function maximization are available via standard max-flow and matroid algorithms

Decreasingly minimal integer-valued flows

- D = (V, A): digraph
- $m: V \rightarrow \mathbf{Z}$ with $\widetilde{m}(V) = 0$

 $z: A \rightarrow \mathbf{Z}$: *m*-flow if $\varrho_z(v) - \delta_z(v) = m(v)$ for every $v \in V$

 $\begin{aligned} f: A \to \mathbf{Z} \cup \{-\infty\}: \text{ lower bound} \\ g: A \to \mathbf{Z} \cup \{+\infty\}: \text{ upper bound } (\mathbf{f} \leq \mathbf{g}) \end{aligned}$

(f,g)-bounded *m*-flow *z*: $f \le z \le g$

$F \subseteq A$: specified subset of edges

z F-dec-min: the largest *z*-value on *F* is as small as possible, within this, the second largest *z*-value on *F* is as small as possible, etc.

Q := set of *F*-dec-min (*f*, *g*)-bounded *m*-flows

Decreasingly minimal flows: a special case

Kaibel + Onn + Sarrabezolles (2015) solved: find an uncapacitated integral dec-min *st*-flow of given flow-amount *M*

original version: find M st-paths so that the largest burden of an edge is minimal, within this, the second largest burden of an edge is minimal, etc.

burden of e: the number of dipaths using e

(lucky case is when \exists *M* edge-disjoint *st*-paths)

Kaibel + Onn + Sarrabezolles: polynomial algorithm for fixed *M* (but not polynomial when *M* is not fixed)

The set of *F*-dec-min *m*-flows

the set of (f,g)-bounded integral *m*-flows is not M-convex, in general hence dec-min is not the same as inc-max

Theorem (2018-19+)

∃ integer-valued functions f^* and g^* on A with $f \le f^* \le g^* \le g$ such that $z \in Q$ is F-dec-min $\iff z$ is an integral (f^*, g^*) -bounded m-flow. Moreover, the box $T(f^*, g^*)$ is narrow on F: $0 \le g^*(e) - f^*(e) \le 1$ for every $e \in F$.

2019+: strongly polynomial algorithm to compute (f^*, g^*)

2019+: strongly polynomial algorithm to compute a min-cost integral feasible m-flow which is dec-min on F

イロト 不得 トイヨト イヨト

Extensions

for mixed graphs, dec-min strong orientation \neq inc-max strong orientation

reason: the set of in-degree vectors of strong orientations of a mixed graph is not an M-convex set, in general, but the intersection of two M-convex sets

Edmonds: the intersection $B := B_1 \cap B_2$ of two integral base-polyhedra is an integral polyhedron

different problems: find a dec-min element of Bfind a square-sum minimizer element of B

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

A new min-max theorem on square-sum

Theorem (2018+)

Let $B_1 = B'(p_1)$ and $B_2 = B'(p_2)$ be integral base-polyhedra defined by supermodular functions p_1 and p_2 for which $B = B_1 \cap B_2$ is non-empty. Then

min {
$$\sum [m(s)^2 : s \in S] : m \in B$$
} =

 $\max \{ \hat{p}_1(\pi_1) + \hat{p}_2(\pi_2) - \sum_{s \in S} \lfloor \frac{\pi_1(s) + \pi_2(s)}{2} \rfloor \lceil \frac{\pi_1(s) + \pi_2(s)}{2} \rceil : \pi_1, \pi_2 \in \mathbf{Z}^S \}.$

the proof uses tools from Discrete convex analysis

András Frank (ELTE, EGRES)

Discrete Decreasing Minimization

difficulties:

- o dec-min ≠ inc-max
- local improvement does not suffice

more general framework: submodular flows

Theorem (2018+)

Given a feasible submodular flow polyhedron Q,

 \exists a small box T and a face F of Q such that $z \in Q$ is dec-min \Leftrightarrow

$z \in F \cap T$.

polynomial algorithm F

크 > - - - - >