Decreasingly Minimal Orientations and Flows

András Frank

Egerváry Research Group
Eötvös University of Budapest

Tenth Cargese Workshop on Combinatorial Optimization

Cargese

September 2-6, 2019

Joint work with

Kazuo Murota

(Tokyo Metropolitan University)

Reports on ARXIV

- A. Frank and K. Murota, Discrete Decreasing Minimization, Part I:

Base-polyhedra with Applications in Network Optimization https://arxiv.org/pdf/1808.07600.pdf

- A. Frank and K. Murota, Discrete Decreasing Minimization, Part II:

Views from discrete convex analysis
https://arxiv.org/pdf/1808.08477.pdf

- A. Frank and K. Murota, Discrete Decreasing Minimization, Part III:

Network flows
https://arxiv.org/pdf/1907.02673.pdf

Graph orientations

Orienting an undirected edge $u v(=v u)$: replace $u v$ with a directed edge ($=\operatorname{arc}$) $u v$ or $v u$

Orienting an undirected graph $G=(V, E)$:
orient each edge of G

In-degree ϱ of a node v and a subset Z

In-degree specified orientation

Theorem (Orientation Lemma, Hakimi, 1965)
Given an in-degree specification $m: V \rightarrow \mathbf{Z}$,
$G=(V, E)$ has an orientation with $\varrho(v)=m(v)$ for $\forall v \in V$ \qquad
$\widetilde{m}(V)=|E|$ and $\widetilde{m}(Z) \geq i_{G}(Z)$ whenever $Z \subset V$
$\left(\Leftrightarrow \tilde{m}(V)=|E|\right.$ and $\tilde{m}(Z) \leq e_{G}(Z)$ whenever $\left.Z \subset V\right)$.
$\widetilde{m}(Z):=\sum[m(v): v \in Z]$
$i_{G}(Z)$: number of edges induced by Z
$e_{G}(Z)$: number of edges with ≥ 1 end-node in Z

In-degree bounded orientation

$f: V \rightarrow \mathbf{Z}$: lower bound
$g: V \rightarrow \mathbf{Z}:$ upper bound $(f \leq g)$

Theorem (F. + Gyárfás, 1976)
$G=(V, E)$ has an orientation for which
(A) $\varrho(v) \geq f(v)$ for \forall node $v \Longleftrightarrow \widetilde{f}(Z) \leq e_{G}(Z)$ whenever $Z \subseteq V$
(B) $\varrho(v) \leq g(v)$ for \forall node $v \Longleftrightarrow \widetilde{g}(Z) \geq i_{G}(Z)$ whenever $Z \subseteq V$
(AB) linking property $f(v) \leq \varrho(v) \leq g(v)$ for \forall node v
\exists an orientation with $\varrho(v) \geq f(v)$ and \exists an orientation with $\varrho(v) \leq g(v)$.
(equivalent to earlier results on degree-bounded subgraphs of a bipartite graph)

Theorem (F. + Gyárfás, 1976)
A 2-edge-conn. graph $G=(V, E)$ has a strong orientation for which
(A) $\varrho(v) \geq f(v)$ for \forall node $v \Longleftrightarrow \widetilde{f}(Z) \leq e_{G}(Z)-c(Z)$ whenever $Z \subseteq V$
(B) $\varrho(v) \leq g(v)$ for \forall node $v \Longleftrightarrow \widetilde{g}(Z) \geq i_{G}(Z)+c(Z)$ whenever $Z \subseteq V$
(AB) linking property $f(v) \leq \varrho(v) \leq g(v)$ for \forall node $v \Longleftrightarrow$
\exists a strong orientation with $\varrho(v) \geq f(v)$ and
\exists a strong orientation with $\varrho(v) \leq g(v)$.
(c(Z): number of components of $G-Z$)
Corollary
If G has a strong orientation with $\varrho(v) \leq \beta \quad$ for $\forall v \in V$, and
G has a strong orientation with $\varrho(v) \geq \alpha$ for $\forall v \in V$, then
G has a strong orientation with $\alpha \leq \varrho(v) \leq \beta \quad$ for $\forall v \in V$.

In-degree distributions

find an (in-degree bounded) orientation of G in which the in-degree sequence (or vector) is, intuitively
fair, equitable, egalitarian, as close to uniform as possible, ...
a constant vector $(5,5, \ldots, 5)$ is the most fair
the near-uniform $(5,5,4,4,4)$ is more 'fair' than $(7,6,4,3,2)$
capture mathematically the intuitive feeling for 'most fair'
there are several (non-equivalent) definitions:

Possible formal fairness concepts

- the largest component of the vector is as small as possible
- given k, the sum of the k largest components is as small as possible
- the largest component is as small as possible, and subject to this, the number of largest components is minimum
symmetrically:
- the smallest component is as large as possible
- given k, the sum of the k smallest components is as large as possible
- the smallest component is as large as possible, and subject to this, the number of smallest components is minimum

More global 'fairness' concepts

the previous fairness definitions are sensitive only for the extreme components of the vector. More global approaches:

- the total deviation $\sum_{s}|x(s)-m(s)|$ from a specified vector m is minimum (e.g. find a strong orientation with minimum in-degree deviation from m)
- the square-sum $\sum_{s} x(s)^{2}$ of the components is minimum
- the difference-sum $\Delta(x):=\sum[|x(s)-x(t)|: s, t \in S]$ is minimum
- decreasingly minimal (dec-min): the largest component is as small as possible, within this, the second largest component is as small as possible, etc
- increasingly maximal (inc-max):
the smallest component is as large as possible, within this, the second smallest component is as large as possible, etc

Dec-min

 reorder decreasingly the components of vector x to obtain x_{\downarrow} $x=(2,5,5,1,4) \Rightarrow x_{\downarrow}:=(5,5,4,2,1)$$x$ and y value-equivalent: $x_{\downarrow}=y_{\downarrow}$
$x<_{\operatorname{dec}} y$ (x is decreasingly smaller than y): if
x_{\downarrow} is lexicographically smaller than y_{\downarrow}
for a set B of vectors, $x \in B$ is decreasingly minimal (dec-min) if $x \leq_{\operatorname{dec}} y$ for every $y \in B$
obvious: the dec-min elements are value-equivalent

Egalitarian orientation

Borradaile, Iglesias, Migler, Ochoa, Wilfong, Zhang: BIMowz

Egalitarian graph orientation

J. of Graph Algorithms and Applications (2017)
egalitarian orientation: the in-degree sequence is dec-min motivated by a practical problem in telecommunication
apparently not a perfect name:
an increasingly maximal orientation may also be felt 'egalitarian'
but...? ??

Examples

example for an egalitarian orientation: every in-degree is ℓ or $\ell-1$. example for a non-egalitarian orientation:

Improving a non-egalitarian orientation

$$
\varrho(t)=2
$$

non-egalitarian
egalitarian

Improving an orientation

local improvement: reorient an st-dipath when $\varrho(t) \geq \varrho(s)+2$
Theorem (BIMOWZ, 2017)
An orientation of G is egalitarian there is no local improvement.
\Rightarrow dec-min and inc-max orientations are the same
(thus the original name 'egalitarian' is legitimate)

questions:

- dec-min in-degree bounded and/or strongly connected orientation (motivated by optimal routing tables of networks)
- are dec-min and inc-max the same for strong orientations, too?

Dec-min strongly connected orientation

BIMOWZ conjectured:
a strong orientation of G is decreasingly minimal \qquad
\nexists local improvement
local improvement in a strong orientation:
when $\varrho(t) \geq \varrho(s)+2$ and $\exists 2$ edge-disjoint $s t$-dipaths, reorient an st-dipath [resulting in a strong orientation with dec-smaller in-degree vector]

Theorem (2018+)
A strong orientation of G is dec-min $\Longleftrightarrow \nexists$ local improvement.
\Rightarrow dec-min and inc-max are the same for strong orientations, too
. . . but this is not so outright natural since ...

Strong orientation for mixed graphs

example shows for strong orientations of mixed graphs that dec-min orientation is NOT the same as inc-max orientation
the path reversing technique does not suffice to find a dec-min strong orientation of a mixed graph
before proving the original BIMOWZ conjecture for undirected graphs
consider a related problem:

Resource allocation: semi-matchings I

$G=(S, T ; E)$: bipartite graph
$F \subseteq E$: semi-matching when $d_{F}(t)=1$ for $t \in T$ Harvey-Ladner-Lovász-Tamir (2006): algorithm to find such an F minimizing the 'total waiting time' $\sum\left[d_{F}(s)\left(d_{F}(s)-1\right): s \in S\right]$

TOTAL WAITINGTIME: $6+1+10+3$

Resource allocation: semi-matchings II

$\sum\left[d_{F}(s)\left(d_{F}(s)-1\right): s \in S\right]=\sum\left[d_{F}\left(s^{2}\right): s \in S\right]-|S| \quad$ implies: minimizing total waiting time $=$ minimizing degree square-sum over S
??? min-max theorem for $\min \left\{\sum\left[d_{F}\left(s^{2}\right): s \in S\right]: F \subseteq E\right.$ a semi-matching of $\left.G\right\} \quad ? ? ?$

Harada-Ono-Sadakane-Yamashita (2007): algorithm for finding a cheapest semi-matching with min total waiting time

2019+: polyhedral description of semi-matchings with min total waiting time

Resource allocation: extended semi-matchings

Bokal + Brešar + Jerebic (2012): extension to m_{T}-semi-matching $\left(d_{F}(t)=m_{T}(t)\right.$ for $\left.t \in T\right)$

Theorem
An m_{T}-semi-matching F minimizes the total waiting time its degree-vector $\left(d_{F}(s): s \in S\right)$ on S is decreasingly minimal.
new extension:

Resource allocation: degree-bounded matchings

$G=(S, T ; E):$ bigraph, γ : positive integer
$f:(S \cup T) \rightarrow \mathbf{Z}_{+}$: lower bound, $g:(S \cup T) \rightarrow \mathbf{Z}_{+}$: upper bound $(f \leq g)$
find a subgraph $F \subseteq E$ of G meeting
$f(v) \leq d_{F}(v) \leq g(v)$ for $\forall v \in S \cup T$, and $|F|=\gamma$ such that the degree-vector $\left(d_{F}(s): s \in S\right)$ on $S(!!!)$ is decreasingly minimal

2018+: algorithm to compute a dec-min F
2019+: algorithm to compute a min-cost dec-min F
based on the known fact: the set of degree-vectors on S of degree-constrained subgraphs of G with γ edges is an M-convex set

Base-polyhedra and M-convex sets

S: ground-set
b : integer-valued submodular function on S
$B=B(b)$: base-polyhedron defined by
$B=\left\{x \in \mathbf{R}^{S}: \widetilde{x}(S)=b(S), \widetilde{x}(Z) \leq b(Z)\right.$ for $\left.\forall Z \subset S\right\}$
$(B(b) \neq \emptyset$, but the empty set is also considered a base-polyhedron, $B(b)$ uniquely determines b)
can also be defined by a supermodular function p :
$B=B^{\prime}(p)=\left\{x \in \mathbf{R}^{S}: \widetilde{x}(S)=p(S), \widetilde{x}(Z) \geq p(Z)\right.$ for $\left.\forall Z \subset S\right\}$
$(p(X):=b(S)-b(S-X)$: the complementary function of b)
B : set of integral elements of base-polyhedron B
called an M-convex set in Discrete convex analysis

Operations on base-polyhedra and M-convex sets

 the following are base-polyhedra :- the convex hull of the bases of a matroid $M=(S, r)(=B(r))$
- the translation of $B(b)$ with a vector
(matroidal: if $b=r$ is a matroid rank-function)
- the intersection of $B(b)$ with a box $\left\{x \in \mathbf{R}^{S}: f \leq x \leq g\right\}$ (the linking property holds)
- a face of $B(b)$
- the sum $B:=B\left(b_{1}\right)+B\left(b_{2}\right)+\cdots+B\left(b_{q}\right)$ of base-polyhedra (every integral $z \in B$ can be expressed as $z=z_{1}+\cdots+z_{q}$ with integral $z_{i} \in B\left(b_{i}\right)$)
- $B^{\prime}(p)$ when p is only crossing supermodular
the corresponding statements hold for M-convex sets

Decreasingly minimal elements of B

an element $m \in B$ is decreasingly minimal (dec-min) in B if the largest component of m is as small as possible, within this, the next largest component of m is as small as possible, and so on

[increasingly maximal (inc-max) elements are defined analogously]
locally improving $m \in \dddot{B}$:
when $m(t) \geq m(s)+2$ and $m^{\prime}:=m-\chi_{t}+\chi_{s}$ is in \bar{B}
(that is, $\nexists m$-tight $t \bar{s}$-set)
decrease $m(t)$ by 1 and increase $m(s)$ by 1 (:replace m by m^{\prime})

Local improving in an M-convex set

implicitly in Groenevelt (1991) and Tamir (1995):
Theorem (2018+)
For an element m of an M-convex set B, the following are equivalent. (A) \nexists local improving for m
(B1) m is dec-min in B
(B2) m is inc-max in B

$$
p(X):= \begin{cases}i_{G}(X)+1 & \text { if } \emptyset \subset X \subset V \\ i_{G}(X) & \text { if } X=\emptyset \text { or } X=V\end{cases}
$$

p is crossing supermodular $\Rightarrow B:=B^{\prime}(p)$ is a base-polyhedron
m is an in-degree vector of a strong orientation $\Longleftrightarrow m \in B$
\Rightarrow BIMOWZ conjecture

Orientations covering a set-function

$h \geq 0$: crossing supermodular
digraph D covers $h: \varrho_{D}(Z) \geq h(Z) \quad \forall \emptyset \subset Z \subset V$
Theorem (A.F. 1980)
$G=(V, E)$ has an orientation covering $h \Longleftrightarrow$

$$
e_{\mathcal{P}} \geq \sum_{i=1}^{q} h\left(V_{i}\right) \quad \text { and } \quad e_{\mathcal{P}} \geq \sum_{i=1}^{q} h\left(V-V_{i}\right)
$$

for \forall partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{q}\right\}$ of V. (e $e_{\mathcal{P}}: \sharp$ of edges connecting distinct V_{i} 's)
for $p:=h+i_{G}$ (crossing supermodular) and $B:=B^{\prime}(p)$ (base-polyhedron)
easy observation: the set of in-degree vectors of orientations of G covering h is the M -convex set B.
\Rightarrow dec-min orientation covering $h=$ inc-max orientation covering h
(not true (!) when h is only crossing supermodular and its non-negativity is dropped)

Special cases

$f: V \rightarrow \mathbf{Z}$: lower bound
$g: V \rightarrow \mathbf{Z}$: upper bound ($f \leq g$)
Theorem (2018+)
A k-edge-con. and in-degree bounded orientation of G is dec-min
$\Longleftrightarrow \nexists$ nodes s, t with

$$
\varrho(t) \geq \varrho(s)+2, \varrho(t)>f(t), \varrho(s)<g(s)
$$

for which $\exists k+1$ edge-disjoint st-dipaths.
extends to in-degree bounded and (k, ℓ)-edge-connected orientation (a digraph is (k, ℓ)-edge-connected $(0 \leq \ell \leq k)$ if ℓ-edge-connected and $\exists k$ edge-disjoint dipaths from a root-node to \forall other node)

Characterizing decreasing minimality

$B=B^{\prime}(p)$: base-polyhedron
$m \in B$: integral element
$Z \subseteq S$ is m-tight if $\widetilde{m}(Z)=p(Z)$
$X \quad m$-top-set: $m(t) \geq m(s)$ whenever $t \in X$ and $s \in S-X$

Theorem (2018+)
For $m \in B$, the following are equivalent.
(A) \nexists local improving for $m \quad(=m$ is dec-min)
(C) \exists 'certificate' chain \mathcal{C} of m-tight and m-top sets
$\emptyset \subset C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}(=S)$ such that
each difference set $C_{i}-C_{i-1}$ is near-uniform.

Chain certifying decreasing minimality

$$
m=(8,8,8,7,7,7,7,7,6,6, \ldots, 2,2) \in \dddot{B}
$$

each C_{i} is m-top and m-tight $\left(: \widetilde{m}\left(C_{i}\right)=p\left(C_{i}\right)\right)$

Canonical certificate chain

for any dec-min element m of \dddot{B}, define iteratively for $i=1,2, \ldots, q$
$\beta_{i}:=\max \left\{m(s): s \in S-C_{i-1}\right\}$
$C_{i}:=$ smallest m-tight set containing each $s \in S$ with $m(s) \geq \beta_{i}$

Theorem (2018-19+)
Both the value-sequence $\beta_{1}>\beta_{2}>\cdots>\beta_{q}$ and the chain $\mathcal{C}=\left\{C_{1} \subset C_{2} \subset \cdots \subset C_{q}\right\}$ are independent of the choice of m.
\Rightarrow the 'canonical' chain \mathcal{C} is a certificate for ALL dec-min elements

Algorithmic aspects

2018+: strongly polynomial algorithm for finding a dec-min element m of \dddot{B} and the canonical chain \mathcal{C}
when $B^{\prime}(p)$ is small (that is, the values of p can be bounded by a polynomial of $|S|$), the sequence of local improvements provides a polynomial algorithm
in the general case, the Newton-Dinkelbach algorithm is needed to maximize $\left\lceil\frac{p(X)}{|X|}\right\rceil$ along with a subroutine to maximize a supermodular function

Describing the set of all dec-min elements

Theorem (2018+)
Given an integral base-polyhedron B,
\exists a small box T and a face F of B such that
an element $m \in B$ is dec-min \Longleftrightarrow
m is an integral member of the base-polyhedron $F \cap T$.
$T=\left\{x \in \mathbf{R}^{S}: f \leq x \leq g\right\}$ is small if $g(s)-f(s) \leq 1$ for $\forall s \in S$

Theorem (2018+)
The dec-min elements of an M-convex set form a matroidal M-convex set.

2018+: strongly polynomial algorithm to compute a min-cost dec-min element of B

Dec-min optimization on matroids

Edmonds + Fulkerson: given matroids $M_{1}, M_{2}, \ldots, M_{k}$ on S, find a basis from each M_{i} which are disjoint generalization: find a basis B_{i} from each M_{i} such that the vector

$$
\sum_{i=1}^{k} \chi_{B_{i}}
$$

is decreasingly minimal $\quad\left(\chi_{B_{i}}\right.$ is the characteristic vector of $\left.B_{i}\right)$
$B=B(b)$: base-polyhedron defined by the submodular function $b:=r_{1}+r_{2}+\cdots+r_{k}$
\Rightarrow find a dec-min element of \dddot{B}
the special case $M_{1}=M_{2}=\cdots=M_{k}$ was solved by Levin and Onn (2016)

Square-sum minimization, I

Fujishige (1980) solved: find an element x of a base-polyhedron B minimizing the square-sum $\quad w(x):=\sum\left[x(s)^{2}: s \in S\right]$
(there is a unique solution)
discrete version: find an element m of an M-convex set B minimizing the square-sum $\quad w(m)$
different orders:

$$
\begin{gathered}
(2,3,3,1)<_{\operatorname{dec}}(3,3,3,0)<_{\operatorname{dec}}(2,2,4,1)<_{\operatorname{dec}}(3,2,4,0) \\
w=23<w=27 \quad>\quad w=25<w=29
\end{gathered}
$$

and yet ...

Square-sum minimization, II

Theorem (2018+)
A member m of an M-convex set B minimizes the square-sum $w(m)$ over the elements of \dddot{B} if and only if m is a dec-min member of \dddot{B}.

Theorem (2018+)

$$
\begin{gathered}
\min \left\{\sum\left[m(s)^{2}: s \in S\right]: m \in \dddot{B}\right\}= \\
\max \left\{\hat{p}(\pi)-\sum_{s \in S}\left\lfloor\frac{\pi(s)}{2}\right\rfloor\left\lceil\frac{\pi(s)}{2}\right\rceil: \pi \in \mathbf{Z}^{S}\right\} .
\end{gathered}
$$

(\hat{p} is the linear (or Lovász-) extension of p)
the 'easy' inequality max \leq min is easy

Optima over an M-convex set

Theorem (earlier and recent equivalences)

For an element m of M-convex set B, the following are equivalent.

- m is dec-min
- m is inc-max
- m minimizes the square-sum $\sum\left[x(s)^{2}: s \in S\right]$
- m minimizes the difference-sum $\sum[|x(s)-x(t)|: s, t \in S]$
- minimizes the sum of the k largest components simultaneously for each $k=1,2, \ldots,|S|$
- m minimizes the total a-excess $\sum\left[(x(s)-a)^{+}: s \in S\right]$ for each integer a
- m minimizes $\sum \varphi(m(s))$ for every strictly convex function

Cheapest dec-min in-degree bounded orientations

$G=(V, E)$: undirected graph, with in-degree bounds (f, g) given a cost $c(u v)$ and $c(v u)$ of both possible orientations of $u v \in E$, find a cheapest in-degree bounded orientation of G
reduces to : min-cost flows
find a cheapest dec-min in-degree bounded orientation
Theorem (2019+)
$\exists f^{*}$ and g^{*} with $f^{*}(v) \leq g^{*}(v) \leq f^{*}(v)+1$ and \exists a subset $E_{0} \subseteq E$ with an orientation A_{0} such that
an (f, g)-bounded orientation $D=(V, A)$ is dec-min (f, g)-bounded $\Longleftrightarrow D$ is $\left(f^{*}, g^{*}\right)$-bounded and $A_{0} \subseteq A$.

Describing dec-min extended semi-matchings

Recall:
$G=(S, T ; E)$: bigraph, $f:(S \cup T) \rightarrow \mathbf{Z}_{+}$: lower bound, $g:(S \cup T) \rightarrow \mathbf{Z}_{+}$: upper bound,
γ : positive integer
find an (f, g)-degree-bounded subgraph $F \subseteq E$ with γ edges such that
the degree-vector $\left(d_{F}(s): s \in S\right)$ on S (!!!) is decreasingly minimal
this is a special dec-min in-degree bounded orientation problem \Rightarrow even the min-cost version is tractable

BUT . . .

if decreasing minimality of $d_{F}(v)$ is requested for the whole $S \cup T$ (or on any specified subset $Z \subseteq S \cup T$), essentially new ideas are needed

Inc-max flow optimization on source-edges, I

$D=(V, A):$ digraph
$s \in V$: source node (with no entering arcs)
$t \in V$: sink node (with no leaving arcs)
$g: A \rightarrow \mathbf{R}_{+}$: non-negative rational-valued capacity function
S_{A} : set of source-edges (= arcs leaving s)
$x: A \rightarrow \mathbf{R}_{+}$: a flow from s to t is feasible if $x \leq g$
flow amount of $x: \delta_{x}(s)=\widetilde{x}\left(S_{A}\right)$
max-flow: a feasible flow with maximum flow amount

Inc-max flow optimization on source-edges, II

the fractional inc-max flow on S_{A}
two inc-max integral flows on S_{A}
Megiddo (1974, 1977) solved: find a (possibly fractional) max-flow x whose restriction to S_{A} is 'lexicographically optimal' (= increasingly maximal)
the (unique) optimal x may be fractional even if g is integer-valued

Discrete Megiddo-flows

(2018+) discrete version of Megiddo:
where g is integer-valued, find an integral feasible max-flow z
whose restriction to S_{A} is increasingly maximal
known: given $D=(V, A)$ with source node s and sink node t, the max-flows restricted to S_{A} span a base-polyhedron B

Strongly polynomial algorithm

the general strongly polynomial algorithm developed for finding a dec-min (= inc-max) element of an M-convex set B can be applied: in graph orientations, matroid optimizations, resource allocation, and discrete (Megiddo-type) inc-max flow problems
direct subroutines for supermodular function maximization are available via standard max-flow and matroid algorithms

Decreasingly minimal integer-valued flows

$D=(V, A)$: digraph
$m: V \rightarrow \mathbf{Z}$ with $\widetilde{m}(V)=0$
$z: A \rightarrow \mathbf{Z}: m$-flow if $\varrho_{z}(v)-\delta_{z}(v)=m(v)$ for every $v \in V$
$f: A \rightarrow \mathbf{Z} \cup\{-\infty\}$: lower bound
$g: A \rightarrow \mathbf{Z} \cup\{+\infty\}$: upper bound ($f \leq g$)
(f, g)-bounded m-flow z : $f \leq z \leq g$
$F \subseteq A$: specified subset of edges
z F-dec-min: the largest z-value on F is as small as possible, within this, the second largest z-value on F is as small as possible, etc.
$Q:=$ set of F-dec-min (f, g)-bounded m-flows

Decreasingly minimal flows: a special case

Kaibel + Onn + Sarrabezolles (2015) solved:
find an uncapacitated integral dec-min st-flow of given flow-amount M
original version: find M st-paths so that the largest burden of an edge is minimal, within this, the second largest burden of an edge is minimal, etc.
burden of e : the number of dipaths using e
(lucky case is when $\exists M$ edge-disjoint st-paths)
Kaibel + Onn + Sarrabezolles:
polynomial algorithm for fixed M
(but not polynomial when M is not fixed)

The set of F-dec-min m-flows

the set of (f, g)-bounded integral m-flows is not M -convex, in general hence dec-min is not the same as inc-max

Theorem (2018-19+)
\exists integer-valued functions f^{*} and g^{*} on A with $f \leq f^{*} \leq g^{*} \leq g$ such that $z \in Q$ is F-dec-min $\Longleftrightarrow z$ is an integral $\left(f^{*}, g^{*}\right)$-bounded m-flow. Moreover, the box $T\left(f^{*}, g^{*}\right)$ is narrow on F :
$0 \leq g^{*}(e)-f^{*}(e) \leq 1$ for every $e \in F$.
2019+: strongly polynomial algorithm to compute $\left(f^{*}, g^{*}\right)$
2019+: strongly polynomial algorithm to compute a min-cost integral feasible m-flow which is dec-min on F

Extensions

for mixed graphs, dec-min strong orientation \neq inc-max strong orientation
reason: the set of in-degree vectors of strong orientations of a mixed graph is not an M-convex set, in general, but the intersection of two M-convex sets

Edmonds: the intersection $B:=B_{1} \cap B_{2}$ of two integral base-polyhedra is an integral polyhedron

different problems:

find a dec-min element of B
find a square-sum minimizer element of B

A new min-max theorem on square-sum

Theorem (2018+)
Let $B_{1}=B^{\prime}\left(p_{1}\right)$ and $B_{2}=B^{\prime}\left(p_{2}\right)$ be integral base-polyhedra defined by supermodular functions p_{1} and p_{2} for which $B=B_{1} \cap B_{2}$ is non-empty. Then

$$
\min \left\{\sum\left[m(s)^{2}: s \in S\right]: m \in \dddot{B}\right\}=
$$

$\max \left\{\hat{p}_{1}\left(\pi_{1}\right)+\hat{p}_{2}\left(\pi_{2}\right)-\sum_{s \in S}\left\lfloor\frac{\pi_{1}(s)+\pi_{2}(s)}{2}\right\rfloor\left\lceil\frac{\pi_{1}(s)+\pi_{2}(s)}{2}\right\rceil: \pi_{1}, \pi_{2} \in \mathbf{Z}^{S}\right\}$.
the proof uses tools from Discrete convex analysis

difficulties:

- dec-min \neq inc-max
- local improvement does not suffice
more general framework: submodular flows

Theorem (2018+)
Given a feasible submodular flow polyhedron Q,
\exists a small box T and a face F of Q such that $z \in Q$ is dec-min \Longleftrightarrow
$z \in F \cap T$.
\exists polynomial algorithm

