Minimum cuts via Breadth-First search

R. Ravi

ravi@cmu.edu

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri & Madan)
- Multicuts in undirected graphs (Calinescu, Karloff & Rabani)

Minimum s-t cut problem

Given digraph G=(V,A), with nonnegative costs/capacities on arcs, a source s and a sink t, find minimum cost arc set blocking all s-t paths

$$z_{SP} = \min \sum_{arcs \, uv} w_{uv} \, x_{uv}$$

s.t.
$$\sum_{uv \in P} x_{uv} \ge 1 \, \forall P \text{ s-t paths}$$

$$x_{uv} \ge 0 \, \forall uv \text{ arcs}$$

Compact LP formulation

$$z_{SP} = \min \sum_{arcs \, uv} w_{uv} \, x_{uv}$$

s.t.
$$d_{v} \leq d_{u} + x_{uv} \, \forall uv$$

$$d_{s} = 0$$

$$d_{t} \geq 1$$

$$x_{uv} \geq 0 \, \forall uv$$

Djikstra's algorithm to generate level cuts

- Pick random cutting radius $r \in (0,1)$
- Remove edges leaving the ball B(s,r) of nodes contained within a radius of r around the source s with respect to the distances x_{uv} on arcs $uv \in A(G)$

Every level cut is an optimal cut!

- Pick random cutting radius $r \in (0,1)$
- Cut edges leaving the ball B(s,r) of nodes contained within a radius of r around the source s with respect to the distances x_{uv} on arcs $uv \in A(G)$
- Output $\delta^+(B(s,r)) \stackrel{\text{\tiny def}}{=} level cut_r$
 - Claim: $P(uv \in cut) \le x_{uv}$ Corollary: $E(w(cut)) \le \sum_{uv} w_{uv} P(uv \in cut) \le z_{SP}$

 $w(mincut) \leq \min_{levels} w(level cut) \leq E(w(cut)) \leq z_{SP} \leq w(mincut)$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri & Madan)
- Multicuts in undirected graphs (Calinescu, Karloff & Rabani)

Multiway cut in undirected graphs

Given undirected graph G=(V,E), with nonnegative costs on edges, a source set S = $\{s_1, ..., s_k\}$, find minimum cost edge set blocking all $s_i - s_j$ paths

$$z_{UMWC} = \min \sum_{edges uv} w_{uv} x_{uv}$$

s.t.
$$\sum_{uv \in P} x_{uv} \ge 1 \ \forall P \ s_i - s_j \text{ paths}$$

$$x_{uv} \ge 0 \ \forall uv \text{ edges}$$

Natural generalization of level cuts

- Pick random cutting radius $r \in \left(0, \frac{1}{2}\right)$
- Cut edges leaving the ball $B(s_i, r)$ of nodes contained within a radius of r around the each source s_i with respect to the distances x_{uv} on edges $uv \in E(G)$
- Output all but the heaviest cut in $\bigcup_i \delta(B(s_i, r)) \stackrel{\text{\tiny def}}{=} level cut_r$

A 2-approximation algorithm

Claim: $P(uv \in cut) \leq \frac{x_{uv}}{\frac{1}{2}} = 2x_{uv}$ Corollary: $E(w(cut)) \leq 2z_{UMWC}$

$$\min_{levels r} w(level cut_r) \le \left(1 - \frac{1}{k}\right) E(w(cut))$$
$$\le 2\left(1 - \frac{1}{k}\right) z_{UMWC}$$
$$\le 2\left(1 - \frac{1}{k}\right) w(\min multiway cut)$$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri & Madan)
- Multicuts in undirected graphs (Calinescu, Karloff & Rabani)

Multiway cuts in digraphs

Given directed graph G=(V,A), with nonnegative costs on arcs, a source set S = $\{s_1, ..., s_k\}$, find minimum cost arc set blocking all $s_i \rightarrow s_j$ paths for all ordered pairs of sources $i \neq j$.

Note: Min multiway cut for $S = \{s_1, s_2\}$ is NP-hard so does not specialize to regular min-cut (Also need to cut all reverse paths)

Multiway cuts in digraphs

Given directed graph G=(V,A), with nonnegative costs on arcs, a source set S = $\{s_1, ..., s_k\}$, find minimum cost arc set blocking all $s_i \rightarrow s_j$ paths for all ordered pairs of sources $i \neq j$.

- In digraphs, node weights can be represented as arc weights by dividing nodes
- Generalizes node-weighted multiway cut in undirected graphs:

Given **undirected** graph G=(V,E), a source set S = $\{s_1, ..., s_k\}$, and nonnegative costs on non-source **nodes**, find minimum cost node set blocking all $s_i - s_j$ paths

• In undirected graphs, node weights generalize edge weights by subdividing

Multiway cuts in digraphs

Given directed graph G=(V,A), with nonnegative costs on arcs, a source set S = { $s_1, ..., s_k$ }, find minimum cost arc set blocking all $s_i \rightarrow s_j$ paths for all ordered pairs of sources $i \neq j$.

Theorem (Naor-Zosin, FOCS'97): 2-approximation for multiway cuts in digraphs by exactly rounding a *relaxed multiway flow* relaxation which is within factor 2 of natural relaxation

Multiway cuts in digraphs (Chekuri & Madan, SODA '16)

Theorem: Level-cutting algorithm on the above LP gives a 2approximation

Level cuts – Attempt 1

- Pick random cutting radius $r \in (0,1)$
- Cut arcs leaving the ball $B(s_i, r)$ of nodes contained within a radius of r around the each source s_i with respect to the distances x_{uv} on arcs $uv \in A(G)$
- Output $\cup_i \delta^+(B(s_i, r)) \stackrel{\text{\tiny def}}{=} level cut_r$ for a random r
- Argue no arc is overused by more than factor 2 in expectation?

Level cuts – Attempt 1 fails

Figure 8: Edge $s_i u$ has length (i-1)/k, edge vs_i has length 1 and edge uv has length 1/k. Cost of edge uv is 1. Rest of edges have cost 0.

Level cuts of Chekuri and Madan

Algorithm 1 Rounding for DIR-MC

- 1: Given a feasible solution **x** to DIR-MC-REL
- 2: Add new vertices t_1, \ldots, t_k , edges (t_i, s_j) for all $i \neq j$ and set $x(t_i, s_j) = 0$
- 3: Pick $\theta \in (0, 1)$ uniformly at random

4:
$$C = \bigcup_{i=1}^k \delta^+(B(t_i, \theta))$$

5: Return C

A 2-approximation algorithm

For arc uv order sources so that

 $d(s_1, u) \le d(s_2, u) \le \dots \le d(s_k, u)$

Note that $d(t_2, u) = d(t_3, u) = \cdots = d(t_k, u) = d(s_1, u)$ If one of these balls cut uv then all of them do

Thus uv is either cut by the ball around t_1 or by the above set of balls.

 $P(uv \in cut) \le 2x_{uv}$

$$\min_{levels r} w(level cut_r) \le 2w(\min multiway cut)$$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri & Madan)
- Multicuts in undirected graphs (Calinescu, Karloff & Rabani)

Multicuts in undirected graphs

Given undirected graph G=(V,E), with nonnegative costs on edges, and source-sink pairs = { $(s_1, t_1), ..., (s_k, t_k)$ }, find minimum cost edge set blocking all $s_i - t_i$ paths

$$z_{UMC} = \min \sum_{edges \ uv} w_{uv} \ x_{uv}$$

s.t.
$$\sum_{uv \in P} x_{uv} \ge 1 \ \forall P \ s_i - t_i \text{ paths}$$

$$x_{uv} \ge 0 \ \forall uv \text{ edges}$$

Level cut algorithm – attempt 1

- Pick random cutting radius $r \in (0,1)$
- Cut edges leaving the ball $B(s_i, r)$ of nodes contained within a radius of r around the each source s_i with respect to the distances x_{uv} on edges $uv \in E(G)$
- Output $\cup_i \delta(B(s_i, r)) \stackrel{\text{\tiny def}}{=} level cut_r$
- Argue no arc is overused by more than factor 2 in expectation?

Caution: LP has a $\Omega(\log k)$ integrality gap

- Sort source-sink pairs in random order
- Pick random cutting radius $r \in (0,1)$
- In sorted order, cut edges leaving the ball $B(s_i, r)$ of nodes contained within a radius of r around the current source s_i with respect to the distances x_{uv} on edges $uv \in E(G)$
- "Protect" edges both of whose ends are contained in earlier balls from being cut later
- Output the unprotected parts $\cup_i \delta^u(B(s_i, r)) \stackrel{\text{\tiny def}}{=} level cut_r$ for a random r

Is the solution feasible?

Reduce cutting radius to half

- Sort source-sink pairs in random order
- Pick random cutting radius $r \in \left(0, \frac{1}{2}\right)$
- In sorted order, cut edges leaving the ball $B(s_i, r)$ of nodes contained within a radius of r around the current source s_i with respect to the distances x_{uv} on edges $uv \in E(G)$
- "Protect" edges both of whose ends are contained in earlier balls from being cut later
- Output the unprotected parts $\cup_i \delta^u(B(s_i, r)) \stackrel{\text{\tiny def}}{=} level cut_r$ for a random r

A 4 In k approximation algorithm

Fix an edge *uv*. Order sources so that

$$d(s_1, u) \le d(s_2, u) \le \dots \le d(s_k, u)$$

When does s_i cut the edge from the u side?

- When no other s_j for j < i occurs before it in the random order
- And when uv lies in the correct range: $r \in [d(s_i, u), d(s_i, u) + x_{uv}]$

$$s_{R}$$
 s_{3} s_{2} s_{1} w w
 \leq DISTANCE ORDER

A 4 In k approximation algorithm

When does s_i cut the edge from the u side?

- When no other s_j for j < i occurs before it in the random order probability $\leq \frac{1}{i}$
- And when uv lies in the correct range: $r \in [d(s_i, u), d(s_i, u) + x_{uv}]$ probability $\leq \frac{x_{uv}}{\frac{1}{2}}$

$$P(uv \in cut) = \sum_{i} P(uv \ cut \ by \ s_i) \le 2\sum_{i} \frac{1}{i} 2x_{uv} \le 4\ln k$$

A 4 In k approximation algorithm

For the CKR cutting algorithm,

$P(uv \in cut) \le 4\ln k$

Theorem (CKR): Expected cost of output multicut is $4 \ln k z_{UMC}$

Summary

• If you need to cut a graph, write a distance based linear program to round

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri & Madan)
- Multicuts in undirected graphs (Calinescu, Karloff & Rabani)