Minimum cuts via Breadth-First search
 R. Ravi
 ravi@cmu.edu

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri \& Madan)
- Multicuts in undirected graphs (Calinescu, Karloff \& Rabani)

Minimum s-t cut problem

Given digraph $\mathrm{G}=(\mathrm{V}, \mathrm{A})$, with nonnegative costs/capacities on arcs, a source s and a sink t, find minimum cost arc set blocking all s - t paths

$$
z_{S P}=\min \sum_{\operatorname{arcs} u v} w_{u v} x_{u v}
$$

s.t.

$$
\begin{aligned}
& \sum_{u v \in P} x_{u v} \geq 1 \quad \forall P \text { s-t paths } \\
& x_{u v} \geq 0 \forall u v \text { arcs }
\end{aligned}
$$

Compact LP formulation

$$
\begin{gathered}
z_{S P}=\min \sum_{\operatorname{arcs} u v} w_{u v} x_{u v} \\
\text { s.t. } \\
d_{v} \leq d_{u}+x_{u v} \forall u v \\
d_{s}=0 \\
d_{t} \geq 1 \\
x_{u v} \geq 0 \forall u v
\end{gathered}
$$

Djikstra's algorithm to generate level cuts

COSTS

LP values
LEVEL CUTS

- Pick random cutting radius $r \in(0,1)$
0.2 each
- Remove edges leaving the ball $B(s, r)$ of nodes contained within a radius of r around the source s with respect to the distances $x_{u v}$ on arcs $u v \in$ $A(G)$

Every level cut is an optimal cut!

- Pick random cutting radius $r \in(0,1)$
- Cut edges leaving the ball $B(s, r)$ of nodes contained within a radius of r around the source s with respect to the distances $x_{u v}$ on arcs $u v \in A(G)$
- Output $\delta^{+}(B(s, r)) \stackrel{\text { def }}{=}$ level cut r

Claim: $\quad P(u v \in c u t) \leq x_{u v}$
Corollary: $\quad E(w(c u t)) \leq \sum_{u v} w_{u v} P(u v \in c u t) \leq z_{S P}$

$$
w(\text { mincut }) \leq \min _{\text {levels }} w(\text { level cut }) \leq E(w(c u t)) \leq z_{S P} \leq w(\text { mincut })
$$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri \& Madan)
- Multicuts in undirected graphs (Calinescu, Karloff \& Rabani)

Multiway cut in undirected graphs

Given undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with nonnegative costs on edges, a source set $\mathrm{S}=\left\{s_{1}, \ldots, s_{k}\right\}$, find minimum cost edge set blocking all $s_{i}-$ s_{j} paths

$$
\begin{gathered}
z_{U M W C}=\min \sum_{e d g e s}{ }_{u v} w_{u v} x_{u v} \\
\text { s.t. } \\
\sum_{u v \in P} x_{u v} \geq 1 \forall P s_{i}-s_{j} \text { paths } \\
x_{u v} \geq 0 \forall u v \text { edges }
\end{gathered}
$$

Natural generalization of level cuts

- Pick random cutting radius $r \in\left(0, \frac{1}{2}\right)$
- Cut edges leaving the ball $B\left(s_{i}, r\right)$ of nodes contained within a radius of r around the each source s_{i} with respect to the distances $x_{u v}$ on edges $u v \in E(G)$
- Output all but the heaviest cut in $\mathrm{U}_{i} \delta\left(B\left(s_{i}, r\right)\right) \stackrel{\text { def }}{=}$ level $c u t_{r}$

A 2-approximation algorithm

Claim:
Corollary:

$$
\begin{gathered}
P(u v \in c u t) \leq \frac{x_{u v}}{\frac{1}{2}}=2 x_{u v} \\
E(w(c u t)) \leq 2 z_{U M W C}
\end{gathered}
$$

$$
\begin{array}{rl}
\min _{\text {levels } r} & w\left(\text { level cut }_{r}\right) \leq\left(1-\frac{1}{k}\right) E(w(c u t)) \\
& \leq 2\left(1-\frac{1}{k}\right) z_{U M W C} \\
& \leq 2\left(1-\frac{1}{k}\right) w(\min \text { multiway cut })
\end{array}
$$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri \& Madan)
- Multicuts in undirected graphs (Calinescu, Karloff \& Rabani)

Multiway cuts in digraphs

Given directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{A})$, with nonnegative costs on arcs, a source set $S=\left\{s_{1}, \ldots, s_{k}\right\}$, find minimum cost arc set blocking all $s_{i} \rightarrow s_{j}$ paths for all ordered pairs of sources $i \neq j$.

Note: Min multiway cut for $S=\left\{s_{1}, s_{2}\right\}$ is NP-hard so does not specialize to regular min-cut (Also need to cut all reverse paths)

Multiway cuts in digraphs

Given directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{A})$, with nonnegative costs on arcs, a source set S $=\left\{s_{1}, \ldots, s_{k}\right\}$, find minimum cost arc set blocking all $s_{i} \rightarrow s_{j}$ paths for all ordered pairs of sources $i \neq j$.

- In digraphs, node weights can be represented as arc weights by dividing nodes
- Generalizes node-weighted multiway cut in undirected graphs:

Given undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a source set $\mathrm{S}=\left\{s_{1}, \ldots, s_{k}\right\}$, and nonnegative costs on non-source nodes, find minimum cost node set blocking all $s_{i}-s_{j}$ paths

- In undirected graphs, node weights generalize edge weights by subdividing

Multiway cuts in digraphs

Given directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{A})$, with nonnegative costs on arcs, a source set $S=\left\{s_{1}, \ldots, s_{k}\right\}$, find minimum cost arc set blocking all $s_{i} \rightarrow s_{j}$ paths for all ordered pairs of sources $i \neq j$.

Theorem (Naor-Zosin, FOCS'97): 2-approximation for multiway cuts in digraphs by exactly rounding a relaxed multiway flow relaxation which is within factor 2 of natural relaxation

Multiway cuts in digraphs

(Chekuri \& Madan, SODA '16)

$$
\begin{gathered}
z_{U M W C}=\min \sum_{e d g e s}{ }^{u v} \\
\text { s.t. } \\
\sum_{u v} x_{u v} \\
x_{u v} \geq 1 \forall P s_{i} \rightarrow s_{j} \text { paths } \\
x_{u v} \geq 0 \forall u v \text { arcs }
\end{gathered}
$$

Theorem: Level-cutting algorithm on the above LP gives a 2approximation

Level cuts - Attempt 1

- Pick random cutting radius $r \in(0,1)$
- Cut arcs leaving the ball $B\left(s_{i}, r\right)$ of nodes contained within a radius of r around the each source s_{i} with respect to the distances $x_{u v}$ on $\operatorname{arcs} u v \in A(G)$
- Output $U_{i} \delta^{+}\left(B\left(s_{i}, r\right)\right) \xlongequal{\text { def }}$ level cut $_{r}$ for a random r
- Argue no arc is overused by more than factor 2 in expectation?

Level cuts - Attempt 1 fails

Figure 8: Edge $s_{i} u$ has length $(i-1) / k$, edge $v s_{i}$ has length 1 and edge $u v$ has length $1 / k$. Cost of edge $u v$ is 1 . Rest of edges have cost 0 .

Level cuts of Chekuri and Madan

Algorithm 1 Rounding for DIR-MC
1: Given a feasible solution \mathbf{x} to DIR-MC-REL
2: Add new vertices t_{1}, \ldots, t_{k}, edges $\left(t_{i}, s_{j}\right)$ for all $i \neq j$ and set $x\left(t_{i}, s_{j}\right)=0$
3: Pick $\theta \in(0,1)$ uniformly at random
4: $C=\cup_{i=1}^{k} \delta^{+}\left(B\left(t_{i}, \theta\right)\right)$
5: Return C

A 2-approximation algorithm

For arc $u v$ order sources so that

$$
d\left(s_{1}, u\right) \leq d\left(s_{2}, u\right) \leq \cdots \leq d\left(s_{k}, u\right)
$$

Note that $d\left(t_{2}, u\right)=d\left(t_{3}, u\right)=\cdots=d\left(t_{k}, u\right)=d\left(s_{1}, u\right)$ If one of these balls cut $u v$ then all of them do

Thus $u v$ is either cut by the ball around t_{1} or by the above set of balls.

$$
\begin{gathered}
P(u v \in c u t) \leq 2 x_{u v} \\
\min _{\text {levels } r_{r}} w\left(\text { level }^{\left.c u t_{r}\right)} \leq 2 w(\min \text { multiway cut })\right.
\end{gathered}
$$

Outline

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri \& Madan)
- Multicuts in undirected graphs (Calinescu, Karloff \& Rabani)

Multicuts in undirected graphs

Given undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, with nonnegative costs on edges, and source-sink pairs $=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$, find minimum cost edge set blocking all $s_{i}-t_{i}$ paths

$$
\begin{gathered}
z_{U M C}=\min \sum_{e d g e s}{ }_{c v} w_{u v} x_{u v} \\
\text { s.t. } \\
\sum_{u v \in P} x_{u v} \geq 1 \forall P s_{i}-t_{i} \text { paths } \\
x_{u v} \geq 0 \forall u v \text { edges }
\end{gathered}
$$

Level cut algorithm - attempt 1

- Pick random cutting radius $r \in(0,1)$
- Cut edges leaving the ball $B\left(s_{i}, r\right)$ of nodes contained within a radius of r around the each source s_{i} with respect to the distances $x_{u v}$ on edges $u v \in E(G)$
- Output $U_{i} \delta\left(B\left(s_{i}, r\right)\right) \stackrel{\text { def }}{=}$ level cut r_{r}
- Argue no arc is overused by more than factor 2 in expectation?

Caution: LP has a $\Omega(\log k)$ integrality gap

Level cuts of Calinescu, Karloff \& Rabani

- Sort source-sink pairs in random order
- Pick random cutting radius $r \in(0,1)$
- In sorted order, cut edges leaving the ball $B\left(s_{i}, r\right)$ of nodes contained within a radius of r around the current source s_{i} with respect to the distances $x_{u v}$ on edges $u v \in E(G)$
- "Protect" edges both of whose ends are contained in earlier balls from being cut later
- Output the unprotected parts $\mathrm{U}_{i} \delta^{u}\left(B\left(s_{i}, r\right)\right) \xlongequal{\text { def }}$ level $c u t_{r}$ for a random r

Level cuts of Calinescu, Karloff \& Rabani

Level cuts of Calinescu, Karloff \& Rabani

 Is the solution feasible?

Level cuts of Calinescu, Karloff \& Rabani

Reduce cutting radius to half

$$
\begin{aligned}
& d\left(s_{i}, t_{i}\right)<2 \pi \\
&<1
\end{aligned}
$$

Level cuts of Calinescu, Karloff \& Rabani

- Sort source-sink pairs in random order
- Pick random cutting radius $r \in\left(0, \frac{1}{2}\right)$
- In sorted order, cut edges leaving the ball $B\left(s_{i}, r\right)$ of nodes contained within a radius of r around the current source s_{i} with respect to the distances $x_{u v}$ on edges $u v \in E(G)$
- "Protect" edges both of whose ends are contained in earlier balls from being cut later
- Output the unprotected parts $U_{i} \delta^{u}\left(B\left(s_{i}, r\right)\right) \stackrel{\text { def }}{=}$ level cut t_{r} for a random r

A $4 \ln k$ approximation algorithm

Fix an edge $u v$. Order sources so that

$$
d\left(s_{1}, u\right) \leq d\left(s_{2}, u\right) \leq \cdots \leq d\left(s_{k}, u\right)
$$

When does s_{i} cut the edge from the u side?

- When no other s_{j} for $j<i$ occurs before it in the random order
- And when $u v$ lies in the correct range: $\mathrm{r} \in\left[d\left(s_{i}, u\right), d\left(s_{i}, u\right)+x_{u v}\right]$

A $4 \ln k$ approximation algorithm

When does s_{i} cut the edge from the u side?

- When no other s_{j} for $j<i$ occurs before it in the random order probability $\leq \frac{1}{i}$
- And when $u v$ lies in the correct range: $\mathrm{r} \in\left[d\left(s_{i}, u\right), d\left(s_{i}, u\right)+x_{u v}\right]$

$$
\text { probability } \leq \frac{x_{u v}}{\frac{1}{2}}
$$

$$
P(u v \in c u t)=\sum_{i} P\left(u v \text { cut by } s_{i}\right) \leq 2 \sum_{i} \frac{1}{i} 2 x_{u v} \leq 4 \ln k
$$

A 4 In k approximation algorithm

For the CKR cutting algorithm,

$$
P(u v \in c u t) \leq 4 \ln k
$$

Theorem (CKR): Expected cost of output multicut is $4 \ln k z_{U M C}$

Summary

- If you need to cut a graph, write a distance based linear program to round

- Minimum s-t cut in digraphs (folklore)
- Multiway-cuts in undirected graphs (folklore)
- Multiway-cuts in digraphs (Chekuri \& Madan)
- Multicuts in undirected graphs (Calinescu, Karloff \& Rabani)

