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Motivation and Outline

Integer Linear Programming

max{c’z | Az < b,x € Z"}

» Part I: Solve ILPs in time f(n) - poly(input length)
[Lenstra ’83], [Lenstra, Lenstra, Lovasz '82]

» Part II: Solve Bin Packing with O(1) different item
types in poly-time [Goemans, R.” 14]



PART 1

SOLVING ILPS IN
FIXED DIMENSION
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» Idea 1: Take coordinate i € [n] and recurse on
PN{z;, =k} forkeZ
But: no bound on number of (n — 1)-dim. slices!

» Idea 2: Branch on general direction ¢ € Z"
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Lattices

° ° ° .*A ° [ J [
b2f by
° ° . ().lzb41< ° °

Theorem (Lenstra, Lenstra, Lovasz '82)

In poly-time one can find a basis by, ...,b, so that the
orthogonality defect is

ngl [:l2 < 9?2
[Tz 167]]2

» Here b7,...,0; is the Gram-Schmidt
orthogonalization.
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» Rescale P so that B(a,1) C P C B(a,n) and Z" — A
» Compute lattice basis with orthogonality defect
< 2772 sort vectors s.t. ||by]l2 < ... < ||ball
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Proof of Flatness Theorem

» Rescale P so that B(a,1) C P C B(a,n) and Z" — A
» Compute lattice basis with orthogonality defect
< 2772 sort vectors s.t. ||by]l2 < ... < ||ball

Case [|b,]|> > 1.
» Then ||b*||2 > 2772||b, ||, > 2790
> Use c:= .

20(n?) times

Hyperplanes intersect B(a, 1) at most



PART 11

SOLVING BIN PACKING
WITH A FIXED NUMBER
OF ITEM TYPES
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Bin Packing / Cutting Stock
Input:

» Ttem sizes s1,...,8q4 € [0, 1]
» Multiplicities aq,...,aq € N

Goal: Pack items into minimum number of bins of size 1.
4

Input: @ many<

51T

\_
item 1 --- item d

) =
Solution: 1

binl---
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Polynomial time algorithms

For general d:

» NP-hard to distinguish OPT <2 or OPT > 3
[Garey & Johnson 79|

» Asymptotic FPTAS
OPT + O(log” d) [Karmarkar & Karp '82]
OPT + O(logd) [Hoberg & R. '15]

(running time poly (37, a;))
» ¢ NP [Eisenbrand & Shmonin '06]
For constant d:
» Polytime for d = 2 [McCormick, Smallwood, Spieksma '97]

> OPT +1 in time 22° - poly [Jansen & Solis-Oba '10]

Open problem [MSS’97, ES’06, F’07]
Solvable in poly-time for d = 37
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A geometric view

» Define P = {z e R, | sz < 1}

Rd

Problems:
» Points in P exponentially many

» Weights can be exponential




Main results

Theorem (Goemans, R. '13)

Bin Packing with d = O(1) item sizes can be solved in
poly-time.

Solves question by

» [McCormick, Smallwood, Spieksma ’97]:
“might be NP-hard for d = 3"

» [Eisenbrand & Shmonin '06]
» [Filippi '07]: “hard open problem for general d”
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Main results (2)
» Def.: int.cone(X) :={>  cx Ao 7| Ay € Zxo}
Theorem (Goemans, R. "13)

For fixed-dim. polytopes P,Q C RY, testing
int.cone(PNZHNQ #0

is doable in poly-time (actually inputlengthQO(d)).

0 1
» For Bin Packing:
P:={(}) s <1, 2>0}and Q:={(,pp)}

OPT
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Integer conic combinations

Theorem (Eisenbrand & Shmonin ’06)

If P C R? convex, then any integer conic combination

a= Z Ay - &
zEPNZ4
needs at most 2¢ points.

» Suppose |supp(\)| > 2¢

» Take points z,y € supp(\) of
same parity

Midpoint z = 3(z +y) € PN 24

Move weight from z,y to z

» Potential function ) A, f(z) -1
decreases (f strictly convex) O

» Problem: Still don’t know which points to take!

vy
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Redistributing weight

» Consider parallelepiped II 5 z
with integral vertices

Let y vertex of I, in quadrant of x
Let z € II N Z¢ be mirrored point
If A\, > 2 = redistribute weight

At most 2¢ points left inside IT

vvyyy




Redistributing weight

Lemma
For x in parallelepiped II and A\, € N, one can write

A& = int.cone(vertices of 1) + Z of 2¢ points in TN Z*

» Consider parallelepiped II 5 z
with integral vertices

» Let y vertex of II, in quadrant of x
» Let z € II N Z<¢ be mirrored point
> If A\, > 2 = redistribute weight

» At most 27 points left inside II
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The algorithm

» Input: polytopes P, in ineq. description

» Output: Coefficients for int.cone(PNZY)NQ # 0
Algorithm:
(1) Compute poly many parallelepipeds covering P
(2) Guess the 2¢ parallelepipeds containing solution

— X := vertices
(3) Solve ILP with 299 variables

Z@-x—l— Z 1-@ €qQ

zeX <22d ze pnZd

variables
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A Structure Theorem

Structure Theorem

For polytope P, 3 poly-time comp. set X C PNZ? s.t. for
all a € int.cone(P N Z%) one can express

a = int.cone(2** points in X) + Zof 2% points in P N Z*

o

P

» More recent: a = int.cone(vert(P;)) + > of 2°@ points
with weights < 227 [Jansen, Klein '16]
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Is there a 29 . poly(input) algorithm for Integer
Linear Programming?

Is there a poly(n)-factor approximation algorithm for
Shortest Vector Problem in a Lattice?

(distinguishing > O(y/n) - L from < L is in NP N coNP)
Can one find a lattice basis with orthogonality defect at
most n°™ in poly-time?

Can Bin Packing be solved in (input length)Pe(d)
time? maybe even in f(d) - poly(input length)?

Thanks for your attention



