Integer Linear Programming and Bin Packing in fixed Dimension

Thomas Rothvoss

10th Cargèse Workshop on Combinatorial Optimization (2019)

Integer Linear Programming

Integer Linear Programming

Integer Linear Programming

▶ Part I: Solve ILPs in time f(n) · poly(input length) [Lenstra '83], [Lenstra, Lenstra, Lovász '82]

Integer Linear Programming

- ▶ Part I: Solve ILPs in time f(n) · poly(input length) [Lenstra '83], [Lenstra, Lenstra, Lovász '82]
- ▶ Part II: Solve Bin Packing with O(1) different item types in poly-time [Goemans, R.' 14]

PART I SOLVING ILPS IN

FIXED DIMENSION

▶ Idea 1: Take coordinate $i \in [n]$ and recurse on $P \cap \{x_i = k\}$ for $k \in \mathbb{Z}$

▶ **Idea 1:** Take coordinate $i \in [n]$ and recurse on $P \cap \{x_i = k\}$ for $k \in \mathbb{Z}$

But: no bound on number of (n-1)-dim. slices!

- ▶ Idea 1: Take coordinate $i \in [n]$ and recurse on $P \cap \{x_i = k\}$ for $k \in \mathbb{Z}$ But: no bound on number of (n-1)-dim. slices!
- ▶ Idea 2: Branch on general direction $c \in \mathbb{Z}^n$

The flatness theorem

Theorem (Khintchine 1948, Lenstra 1983)

For polytope $P \subseteq \mathbb{R}^n$ in polynomial time one can find

- ightharpoonup either a point $x \in P$
- ▶ a direction $c \in \mathbb{Z}^n$ with $\max\{\langle c, x y \rangle \mid x, y \in P\} \le 2^{O(n^2)}$

The flatness theorem

Theorem (Khintchine 1948, Lenstra 1983)

For polytope $P \subseteq \mathbb{R}^n$ in polynomial time one can find

- ightharpoonup either a point $x \in P$
- ▶ a direction $c \in \mathbb{Z}^n$ with $\max\{\langle c, x y \rangle \mid x, y \in P\} \le 2^{O(n^2)}$

The flatness theorem

Theorem (Khintchine 1948, Lenstra 1983)

For polytope $P \subseteq \mathbb{R}^n$ in polynomial time one can find

- ightharpoonup either a point $x \in P$
- ▶ a direction $c \in \mathbb{Z}^n$ with $\max\{\langle c, x y \rangle \mid x, y \in P\} \le 2^{O(n^2)}$

▶ Best current non-algo bounds: $\Omega(n) \leq .. \leq \tilde{O}(n^{4/3})$

A lattice is $\Lambda = \{\sum_{i=1}^n \lambda_i \cdot b_i \mid \lambda_i \in \mathbb{Z}\}$ where $b_1, \dots, b_n \in \mathbb{R}^n$ are linearly independent vectors

A lattice is $\Lambda = \{\sum_{i=1}^n \lambda_i \cdot b_i \mid \lambda_i \in \mathbb{Z}\}$ where $b_1, \dots, b_n \in \mathbb{R}^n$ are linearly independent vectors

A lattice is $\Lambda = \{\sum_{i=1}^n \lambda_i \cdot b_i \mid \lambda_i \in \mathbb{Z}\}$ where $b_1, \dots, b_n \in \mathbb{R}^n$ are linearly independent vectors

Theorem (Lenstra, Lenstra, Lovász '82)

In poly-time one can find a basis b_1, \ldots, b_n so that the **orthogonality defect** is

$$\frac{\prod_{i=1}^{n} \|b_i\|_2}{\prod_{i=1}^{n} \|b_i^*\|_2} \le 2^{n^2/2}$$

▶ Here b_1^*, \ldots, b_n^* is the **Gram-Schmidt** orthogonalization.

▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$

▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$

▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 \le \frac{1}{n}$:

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 \le \frac{1}{n}$:

Then $<math>||b_i||_2 \le \frac{1}{n} \text{ for } i = 1, \dots, n$

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 \le \frac{1}{n}$:

- ▶ Then $||b_i||_2 \le \frac{1}{n}$ for i = 1, ..., n
- ▶ Write $a = \sum_{i=1}^{n} \lambda_i b_i$ for $\lambda_i \in \mathbb{R}$.

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 \le \frac{1}{n}$:

- ▶ Then $||b_i||_2 \leq \frac{1}{n}$ for $i = 1, \ldots, n$
- Write $a = \sum_{i=1}^{n} \lambda_i b_i$ for $\lambda_i \in \mathbb{R}$.
- ightharpoonup Return $\sum_{i=1}^{n} \lceil \lambda_i \mid \cdot b_i \in P$

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 > \frac{1}{n}$.

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 > \frac{1}{n}$.

Then $||b_n^*||_2 \ge 2^{-n^2/2} ||b_n||_2 \ge 2^{-\Theta(n^2)}$

- ▶ Rescale P so that $B(a,1) \subseteq P \subseteq B(a,n)$ and $\mathbb{Z}^n \to \Lambda$
- ► Compute lattice basis with **orthogonality defect** $\leq 2^{n^2/2}$; sort vectors s.t. $||b_1||_2 \leq \ldots \leq ||b_n||_2$

Case $||b_n||_2 > \frac{1}{n}$.

- ► Then $||b_n^*||_2 > 2^{-n^2/2} ||b_n||_2 > 2^{-\Theta(n^2)}$
- ▶ Use $c := \frac{b_n^*}{\|b_n^*\|_2^2}$. Hyperplanes intersect B(a,1) at most $2^{O(n^2)}$ times

Part II

SOLVING BIN PACKING WITH A FIXED NUMBER. OF ITEM TYPES

Input:

Input:

ltem sizes $s_1, \ldots, s_d \in [0, 1]$

Input:

Input:

- ltem sizes $s_1, \ldots, s_d \in [0, 1]$
- ▶ Multiplicities $a_1, \ldots, a_d \in \mathbb{N}$

Input:

- ltem sizes $s_1, \ldots, s_d \in [0, 1]$
- ightharpoonup Multiplicities $a_1, \ldots, a_d \in \mathbb{N}$

Goal: Pack items into minimum number of bins of size 1.

Solution:

Input:

- left Item sizes $s_1, \ldots, s_d \in [0, 1]$
- ightharpoonup Multiplicities $a_1, \ldots, a_d \in \mathbb{N}$

Goal: Pack items into minimum number of bins of size 1.

Solution:

Input:

- ltem sizes $s_1, \ldots, s_d \in [0, 1]$
- ightharpoonup Multiplicities $a_1, \ldots, a_d \in \mathbb{N}$

Goal: Pack items into minimum number of bins of size 1.

Solution:

Bin Packing / Cutting Stock

Input:

- ltem sizes $s_1, \ldots, s_d \in [0, 1]$
- ightharpoonup Multiplicities $a_1, \ldots, a_d \in \mathbb{N}$

Goal: Pack items into minimum number of bins of size 1.

Solution:

For general d:

▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]

For general d:

- NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time poly($\sum_{i=1}^d a_i$))

For general d:

- ▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time poly($\sum_{i=1}^d a_i$))
- ightharpoonup \in NP [Eisenbrand & Shmonin '06]

For general d:

- ▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time $poly(\sum_{i=1}^d a_i))$
- $ightharpoonup \in \mathbf{NP}$ [Eisenbrand & Shmonin '06]

For constant d:

For general d:

- ▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time $poly(\sum_{i=1}^d a_i))$
- $ightharpoonup \in \mathbf{NP}$ [Eisenbrand & Shmonin '06]

For constant d:

▶ Polytime for d = 2 [McCormick, Smallwood, Spieksma '97]

For general d:

- ▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time $poly(\sum_{i=1}^d a_i)$)
- $ightharpoonup \in \mathbf{NP}$ [Eisenbrand & Shmonin '06]

For constant d:

- ▶ Polytime for d = 2 [McCormick, Smallwood, Spieksma '97]
- ▶ OPT + 1 in time $2^{2^{O(d)}} \cdot \text{poly}$ [Jansen & Solis-Oba '10]

For general d:

- ▶ NP-hard to distinguish $OPT \le 2$ or $OPT \ge 3$ [Garey & Johnson '79]
- Asymptotic FPTAS $OPT + O(\log^2 d)$ [Karmarkar & Karp '82] $OPT + O(\log d)$ [Hoberg & R. '15] (running time $poly(\sum_{i=1}^d a_i)$)
- ightharpoonup \in NP [Eisenbrand & Shmonin '06]

For constant d:

- \blacktriangleright Polytime for d=2 [McCormick, Smallwood, Spieksma '97]
- ▶ OPT + 1 in time $2^{2^{O(d)}} \cdot \text{poly}$ [Jansen & Solis-Oba '10]

Open problem [MSS'97, ES'06, F'07]

Solvable in poly-time for d = 3?

• a

a

 \mathbf{a}

Define $P = \{x \in \mathbb{R}^d_{\geq 0} \mid s^T x \leq 1\}$ \mathbb{R}^d $1 \qquad s^T x \leq 1$

 $Tx \leq 1$

Problems:

▶ Points in *P* exponentially many

Tx < 1

Problems:

- ightharpoonup Points in P exponentially many
- ► Weights can be **exponential**

Main results

Theorem (Goemans, R. '13)

Bin Packing with d = O(1) item sizes can be solved in poly-time.

Solves question by

- ► [McCormick, Smallwood, Spieksma '97]: "might be **NP**-hard for d = 3"
- ► [Eisenbrand & Shmonin '06]
- ► [Filippi '07]: "hard open problem for general d"

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

Theorem (Goemans, R. '13)

For fixed-dim. polytopes $P, Q \subseteq \mathbb{R}^d$, testing int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

is doable in **poly-time** (actually input length $^{2^{O(d)}}).$

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

Theorem (Goemans, R. '13)

For fixed-dim. polytopes $P, Q \subseteq \mathbb{R}^d$, testing int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

is doable in $\mathbf{poly-time}$ (actually input length $2^{O(d)}$).

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

Theorem (Goemans, R. '13)

For fixed-dim. polytopes $P, Q \subseteq \mathbb{R}^d$, testing int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

is doable in **poly-time** (actually input length $2^{O(d)}$).

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

Theorem (Goemans, R. '13)

For fixed-dim. polytopes $P, Q \subseteq \mathbb{R}^d$, testing int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

is doable in **poly-time** (actually input length $2^{O(d)}$).

▶ **Def.:** int.cone(X) := { $\sum_{x \in X} \lambda_x \cdot x \mid \lambda_x \in \mathbb{Z}_{\geq 0}$ }

Theorem (Goemans, R. '13)

For fixed-dim. polytopes $P, Q \subseteq \mathbb{R}^d$, testing int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

is doable in $\mathbf{poly\text{-}time}$ (actually input length $^{2^{O(d)}}).$

For Bin Packing: $P := \{ {x \choose 1} \mid s^T x \le 1, \ x \ge 0 \}$ and $Q := \{ {a \choose OPT} \}$

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

needs at most 2^d points.

► Suppose $|\text{supp}(\lambda)| > 2^d$

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

- ► Suppose $|\text{supp}(\lambda)| > 2^d$
- ► Take points $x, y \in \text{supp}(\lambda)$ of same parity

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

- ► Suppose $|\text{supp}(\lambda)| > 2^d$
- Take points $x, y \in \text{supp}(\lambda)$ of same parity
- ▶ Midpoint $z = \frac{1}{2}(x+y) \in P \cap \mathbb{Z}^d$

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

- ► Suppose $|\text{supp}(\lambda)| > 2^d$
- ► Take points $x, y \in \text{supp}(\lambda)$ of same parity
- ightharpoonup Midpoint $z = \frac{1}{2}(x+y) \in P \cap \mathbb{Z}^d$
- \blacktriangleright Move weight from x, y to z

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

- ▶ Suppose $|\text{supp}(\lambda)| > 2^d$
- Take points $x, y \in \text{supp}(\lambda)$ of same parity
- ightharpoonup Midpoint $z = \frac{1}{2}(x+y) \in P \cap \mathbb{Z}^d$
- ightharpoonup Move weight from x, y to z
- ▶ Potential function $\sum_{x} \lambda_x f(x)$ decreases (f strictly convex)

Theorem (Eisenbrand & Shmonin '06)

If $P \subseteq \mathbb{R}^d$ convex, then any integer conic combination

$$a = \sum_{x \in P \cap \mathbb{Z}^d} \lambda_x \cdot x$$

- ► Suppose $|\text{supp}(\lambda)| > 2^d$
- Take points $x, y \in \text{supp}(\lambda)$ of same parity
- ightharpoonup Move weight from x, y to z
- ▶ Potential function $\sum_{x} \lambda_x f(x)$ decreases (f strictly convex)
- ▶ **Problem:** Still don't know which points to take!

► Consider **parallelepiped** $\Pi \ni x$ with integral vertices

- ► Consider **parallelepiped** $\Pi \ni x$ with integral vertices
- Let y vertex of Π , in quadrant of x

- ► Consider **parallelepiped** $\Pi \ni x$ with integral vertices
- Let y vertex of Π , in quadrant of x
- ▶ Let $z \in \Pi \cap \mathbb{Z}^d$ be mirrored point

- ► Consider **parallelepiped** $\Pi \ni x$ with integral vertices
- Let y vertex of Π , in quadrant of x
- ▶ Let $z \in \Pi \cap \mathbb{Z}^d$ be mirrored point
- ▶ If $\lambda_x \geq 2 \Rightarrow$ redistribute weight

- Consider **parallelepiped** $\Pi \ni x$ with integral vertices
- \blacktriangleright Let y vertex of Π , in quadrant of x
- ▶ Let $z \in \Pi \cap \mathbb{Z}^d$ be mirrored point
- ▶ If $\lambda_x \geq 2 \Rightarrow$ redistribute weight
- ightharpoonup At most 2^d points left inside Π

Lemma

For x in parallelepiped Π and $\lambda_x \in \mathbb{N}$, one can write

$$\lambda_x x = \text{int.cone}(\text{vertices of }\Pi) + \sum_{i=1}^d \text{ of } 2^d \text{ points in }\Pi \cap \mathbb{Z}^d$$

- ► Consider **parallelepiped** $\Pi \ni x$ with integral vertices
- Let y vertex of Π , in quadrant of x
- Let $z \in \Pi \cap \mathbb{Z}^d$ be mirrored point
- ▶ If $\lambda_x \geq 2 \Rightarrow$ redistribute weight
- ightharpoonup At most 2^d points left inside Π

Covering a polytope with parallelepipeds

Lemma

For fixed-dim $P \subseteq \mathbb{R}^d$, we can cover $P \cap \mathbb{Z}^d$ with **poly-many** parallelepipeds (with int. vertices and $\subseteq P$).

Covering a polytope with parallelepipeds

Lemma

For fixed-dim $P \subseteq \mathbb{R}^d$, we can cover $P \cap \mathbb{Z}^d$ with **poly-many** parallelepipeds (with int. vertices and $\subseteq P$).

Split $P = \{x \mid Ax \le b\}$ into poly many **cells**

$$C = \{x \mid \alpha_{j(i)} \le A_i x \le \alpha_{j(i)+1}\}$$

ightharpoonup Split $P = \{x \mid Ax \leq b\}$ into poly many cells

$$C = \{x \mid \alpha_{j(i)} \le A_i x \le \alpha_{j(i)+1}\}$$

- Split $P = \{x \mid Ax \le b\}$ into poly many **cells**
- $C = \{x \mid \alpha_{j(i)} \le A_i x \le \alpha_{j(i)+1}\}$
 - Consider int.hull C_I (poly many vertices)

- Split $P = \{x \mid Ax \le b\}$ into poly many **cells**
- $C = \{x \mid \alpha_{j(i)} \le A_i x \le \alpha_{j(i)+1}\}$
- Consider int.hull C_I (poly many vertices)
- Extend any d+1 vertices of C_I to parallelepiped

- Split $P = \{x \mid Ax \le b\}$ into poly many **cells**
- $C = \{x \mid \alpha_{j(i)} \le A_i x \le \alpha_{j(i)+1}\}$
- Consider int.hull C_I (poly many vertices)
- Extend any d+1 vertices of C_I to parallelepiped

- ightharpoonup Input: polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- ▶ **Input:** polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

Algorithm:

(1) Compute poly many parallelepipeds covering P

- ightharpoonup Input: polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

Algorithm:

(1) Compute poly many parallelepipeds covering P

- ightharpoonup Input: polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- (1) Compute poly many parallelepipeds covering P
- (2) Guess the 2^d parallelepipeds containing solution

- ▶ **Input:** polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- (1) Compute poly many parallelepipeds covering P
- (2) Guess the 2^d parallelepipeds containing solution

- ightharpoonup Input: polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- (1) Compute poly many parallelepipeds covering P
- (2) Guess the 2^d parallelepipeds containing solution

$$\rightarrow X := \text{vertices}$$

- ▶ **Input:** polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- (1) Compute poly many parallelepipeds covering P
- (2) Guess the 2^d parallelepipeds containing solution $\to X := \text{vertices}$
- (3) Solve ILP with $2^{O(d)}$ variables

$$\sum_{x \in X} \lambda_x \cdot x + \sum_{\leq 2^{2d}} 1 \cdot x \in Q$$

- ▶ **Input:** polytopes P, Q in ineq. description
- ▶ Output: Coefficients for int.cone $(P \cap \mathbb{Z}^d) \cap Q \neq \emptyset$

- (1) Compute poly many parallelepipeds covering P
- (2) Guess the 2^d parallelepipeds containing solution $\to X := \text{vertices}$
- (3) Solve ILP with $2^{O(d)}$ variables

Structure Theorem

For polytope P

Structure Theorem

For polytope ${\cal P}$

Structure Theorem

For polytope P, \exists poly-time comp. set $X \subseteq P \cap \mathbb{Z}^d$

Structure Theorem

For polytope P, \exists poly-time comp. set $X \subseteq P \cap \mathbb{Z}^d$

Structure Theorem

For polytope P, \exists poly-time comp. set $X \subseteq P \cap \mathbb{Z}^d$ s.t. for all $a \in \mathbf{int.cone}(P \cap \mathbb{Z}^d)$ one can express

$$a = \text{int.cone}(2^{2d} \text{ points in } X) + \sum \text{ of } 2^{2d} \text{ points in } P \cap \mathbb{Z}^d$$

Structure Theorem

For polytope P, \exists poly-time comp. set $X \subseteq P \cap \mathbb{Z}^d$ s.t. for all $a \in \mathbf{int.cone}(P \cap \mathbb{Z}^d)$ one can express

$$a = \text{int.cone}(2^{2d} \text{ points in } X) + \sum_{i=1}^{d} \text{ of } 2^{2d} \text{ points in } P \cap \mathbb{Z}^d$$

▶ More recent: $a = \text{int.cone}(\text{vert}(P_I)) + \sum_{i=1}^{n} \text{of } 2^{O(d)} \text{ points}$ with weights $\leq 2^{2^{O(d)}}$ [Jansen, Klein '16]

Open questions

- ▶ Is there a $2^{O(n)} \cdot \text{poly(input)}$ algorithm for **Integer** Linear Programming?
- ► Is there a poly(n)-factor approximation algorithm for Shortest Vector Problem in a Lattice? (distinguishing $\geq \Theta(\sqrt{n}) \cdot L$ from $\leq L$ is in $\mathbf{NP} \cap \mathbf{coNP}$)
- Can one find a lattice basis with orthogonality defect at most $n^{O(n)}$ in poly-time?
- ► Can Bin Packing be solved in (input length)^{poly(d)} time? maybe even in f(d) · poly(input length)?

Open questions

- ▶ Is there a $2^{O(n)} \cdot \text{poly(input)}$ algorithm for **Integer** Linear Programming?
- ► Is there a poly(n)-factor approximation algorithm for Shortest Vector Problem in a Lattice? (distinguishing $\geq \Theta(\sqrt{n}) \cdot L$ from $\leq L$ is in $\mathbf{NP} \cap \mathbf{coNP}$)
- Can one find a lattice basis with orthogonality defect at most $n^{O(n)}$ in poly-time?
- ► Can Bin Packing be solved in (input length)^{poly(d)} time? maybe even in f(d) · poly(input length)?

Thanks for your attention