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SDP extreme points

• Pataki, Gábor. "On the rank of extreme matrices in semidefinite programs and 
the multiplicity of optimal eigenvalues." Math of OR ‘98.

• Barvinok, Alexander. "Problems of distance geometry and convex properties of 
quadratic maps." Discrete & Computational Geometry ‘95.

• Applications.
• S-lemma [Yakubovich’ 71]
• Fair Dimensionality Reduction in Data Analysis [Tantipongpipat, Samadi, Morgernstern, 

Singh, Vempala ‘18,’19]



LP extreme points

• Consider the linear program where ௠×௡, ௠

min 𝑐்𝑥 

Theorem: Every extreme point has at most non-zero variables. Therefore, 
there exists an optimal solution that has at most non-zero variables.

Numerous generalization, applications. [Neil’s Talk tomorrow]



Semi-definite Programming
• A symmetric matrix is positive semi-definite (definite), i.e. if

• has non-negative(positive) eigenvalues.
• ் for some ௡×௥ with orthogonal columns and ௥×௥ symmetric, 

diagonal with positive entries. (r=n).
• ் for all ௡. ( ் for all ௡ )

• Let ௜௝ ௜௝
்

•

• min〈𝐶, 𝑋〉

௜ ௜



Main Result

•

௜ ௜

• Theorem[Barvinok’95, Pataki’98]: Every extreme point of the above SDP has 
rank at most where ௥ ௥ାଵ

ଶ

• Corollary 1: SDP has an optimal solution with rank at most ଵ

ସ

ଵ

ଶ

• Corollary 2: If m=2, then there is always a rank 1 optimal solution. 



Proof
• Suppose not!
• Let be rank where We find such that and are 

feasible. Contradiction.
• ் where ௡×௥ with orthonormal columns, ௥×௥ diagonal 

with positive entries.
• Search for ௥×௥, s.t. ், ் are feasible.

Want: ௜
்

௜
்



Proof (Contd)

• Claim: It is enough to ensure
• ௜

்

• symmetric. 

Proof: 
• ௜

்
௜

்
௜

்

• Eigenvalues of are same as eigenvalues of ்

• But and therefore, if will ensure .

But the above are ௥ ௥ିଵ

ଶ
constraints overs ଶ variables. 

If , then there is always a non-trivial solution. 



Main Result

•

௜ ௜

• Theorem[Barvinok’95, Pataki’98]: Every extreme point of the above SDP has 
rank at most where ௥ ௥ାଵ

ଶ

• Corollary 1: SDP (I) has an optimal solution with rank at most ଵ

ସ

ଵ

ଶ

• Corollary 2: If m=2, then there is always a rank 1 optimal solution. 



Farkas Lemmas: Linear and Quadratic.

Farkas Lemma: Suppose ଵ ௠
௡ such that ௜

் ்

Then, ଵ ଵ ଶ ଶ ௠ ௠ some non-negative ௜

S-Lemma (Yakubovich ‘79). Suppose ௡×௡ symmetric matrices such that ்
் Then for some 

Proof: Consider the SDP. 

Observe that primal optimal is rank 1. Thus ். But then objective is at least 0. This 
implies dual is at least 0. 

Dual : Max 
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Dimensionality Reduction

• Data is usually represented in high dimensions.

• There are few relevant directions. 

• Dimensionality reduction leads to representation in relevant 
directions.

• Also computationally useful for any data analysis or algorithms.



PCA (Principle Component Analysis)

• Data ௠×௡ of data points. Want to reduce from to dimensions.
• Minimize reconstruction error:

௎:୰ୟ୬୩ ௎ ୀௗ
ி
ଶ

ி
ଶ is the Frobenius norm, sum of square of error.



PCA (Principle Component Analysis)

• Data ௠×௡ of data points. Want to reduce from to dimensions.
• Minimize reconstruction error:

௎:୰ୟ୬୩ ௎ ୀௗ
ி
ଶ

ி
ଶ is the Frobenius norm, sum of square of error.

• Easily solved by SVD (Singular Value Decomposition). The optimal solution has a 
form 

where is projection matrix on top singular vectors of . 



PCA objective

min
௎:୰ୟ୬୩ ௎ ୀௗ

𝐷 − 𝑈 ி
ଶ   =  min

௉∈𝒫೏

𝐷 − 𝐷𝑃 ி
ଶ = 𝑇𝑟(𝐷்𝐷) − m𝑎𝑥

௉∈𝒫೏

𝐷்𝐷 ⋅ 𝑃

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}



Applications and History of PCA

• Pearson’1901 and Hotelling’1931.
• Standard tool in data analysis. 

• Widely used in sciences, humanities, finance, image recognition.
[Sirovich, Kirby’87, Turk, Pentland’91]

• Fossil Teeth Data: Kuehneotherium and Morganucodon Species.
[Gill et al, Nature 2014]

• Random Projection to lower dimensions.
• Johnson-Lindenstrauss Lemma ‘1984: All distances are preserved up to a small error.



Unfairness of the PCA problem 

Standard PCA on face data LFW of 
male and female. 

Equalizing male and female weight 
before PCA

Data belongs to users of different groups, say images of men and women.
PCA ensures average error in projection is small. Errors for two different groups are different.



Fair PCA

• Given data matrices ௜
௠೔×௡ for and a projection matrix 

௡×௡.

• ௜ ௜ ௜ ி
ଶ

௜
்

௜ ௜
்

௜

• Given target dimension .
• Fair PCA: Find a projection matrix of rank at most d that minimizes the 

maximum error.  

Fair PCA:= 
௉∈𝒫೏ ௜∈[௞]

௜

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}

Fair PCA as rank constrained SDP.

𝑧 ≥  𝑇𝑟 𝐷௜
்𝐷௜ − 𝐷௜

்𝐷௜ ⋅ 𝑃 ∀𝑖 = 1, … , 𝑘

𝑟𝑎𝑛𝑘 𝑃 = 𝑑
0 ≼ 𝑃 ≼ 𝐼



Fair Dimensionality Reduction

• More generally, we are given utility functions ௜ ௗ that measure the 
utility of each group. 

• Moreover, we are given a function ௞ that combines these utilities.

Fair DR max
௉∈𝒫೏

  𝑔 𝑢ଵ 𝑃 , 𝑢ଶ 𝑃 , … , 𝑢௞ 𝑃

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}

Fair PCA: Special case with 𝑢௜ 𝑃 = −𝐸𝑟𝑟 𝐷௜, 𝑃 and 𝑔 . = min 

𝐿𝑜𝑠𝑠௜ 𝑃 = 𝐷௜ − 𝐷௜𝑃 ଶ
ଶ − 𝐷௜ − 𝐷௜𝑃௜

∗
ଶ
ଶ

where 𝑃௜
∗ is the best rank 𝑑 projection for group 𝑖.

• Loss for being part of the other groups. 



Related Work

• Rank Constrained SDPs are widely used.

• Signal processing[Davies and Eldar’12, Ahmed and Romberg’15]

• Distance Matrices:  Localization sensors [So and Ye’07], nuclear magnetic resonance spectroscopy 
[Singer’08]

• Item Response Data, Recommendation Systems[Goldberg et al’93]

• Machine Learning: Multi-task Learning [Obozinski, Taskar, Jordan’10], Natural Language Processing[Blei’12]

• Survey by [Davenport, Romberg’2016]

• Work by Barvinok’95, Pataki’98 on characterizations of extreme points of SDPs.
• Algorithmic work by [Burer, Monteiro’03]



Our Results

• Theorem 1: The Fair PCA problem is polynomial time solvable for k=2.
• “Integrality” of SDPs.

• Theorem 2: The Fair PCA problem is polynomial time solvable for constant k and d.
• Algorithmic theory of quadratic maps. [Grigoriev and Pasechnik ’05]

• Problem is NP-hard for general k, d=1.

• Results generalize to Fair Dimensionality reduction when ௜ is linear and is concave.  

Fair PCA:= min
௉∈𝒫೏

max
௜∈[௞]

𝐸𝑟𝑟 𝐷௜, 𝑃 ≔ 𝐷௜ − 𝐷௜𝑃 ி
ଶ

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}

Fair DR max
௉∈𝒫೏

  𝑔 𝑢ଵ 𝑃 , 𝑢ଶ 𝑃 , … , 𝑢௞ 𝑃

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}



Our Results: Approximation

• Theorem 3: There is a polynomial time algorithm for the Fair PCA problem that returns a rank 

at most ଵ

ସ

ଷ

ଶ
whose objective is better than the optimum.

• Extreme Points of SDPs.

• Theorem 4: There is a polynomial time algorithm for the Fair PCA problem that returns a rank 
at most whose objective is at most ,

where Δ ≔ max
ௌ⊆[௠]

∑ 𝜎௜
ଵ

ௌ
∑ 𝐷௝

்𝐷௝௝∈ௌ
ଶ ௌ

௜ୀଵ   where  𝜎௜ 𝐵  is the 𝑖௧௛ largest singular value of B.

• Iterative Rounding Framework for SDPs.

Fair PCA:= min
௉∈𝒫೏

max
௜∈[௞]

𝐸𝑟𝑟 𝐷௜, 𝑃 ≔ 𝐷௜ − 𝐷௜𝑃 ி
ଶ

𝒫ௗ = {𝑃 ∈ 𝑅௡×௡: 𝑃 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, 𝑟𝑎𝑛𝑘 𝑃 = 𝑑, 𝑃ଶ = 𝑃}



SDP extreme points

Theorem 1: Every extreme point of the SDP-Relaxation has rank at most Thus 
the objective of the two programs are identical.

Corollary: Fair PCA is polynomial time solvable for 2 groups.

Related: Barvinok’95, Pataki’98. 
S-Lemma [Yakubovich’71]. 

Rank-Constrained SDP 
min 𝐶 ⋅ 𝑋
𝐴 ⋅ 𝑋 ≤ 𝑏
𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

SDP-Relaxation
min 𝐶 ⋅ 𝑋
𝐴 ⋅ 𝑋 ≤ 𝑏
𝑇𝑟𝑎𝑐𝑒 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼



SDP extreme points

Theorem 2: Every extreme point of the SDP-Relaxation has rank at most 
.

• Corollary: There is a polynomial time algorithm for the Fair PCA problem that 

returns a rank at most ଵ

ସ

ଷ

ଶ
whose objective is better than the 

optimum.

Rank-Constrained SDP 
min 𝐶 ⋅ 𝑋

𝐴௜ ⋅ 𝑋 ≤ 𝑏௜ ∀𝑖 = 1, … , 𝑚
𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑

0 ≼ 𝑋 ≼ 𝐼

SDP-Relaxation
min 𝐶 ⋅ 𝑋

𝐴௜ ⋅ 𝑋 ≤ 𝑏௜ ∀𝑖 = 1, … , 𝑚
𝑡𝑟𝑎𝑐𝑒 𝑋 ≤ 𝑑

0 ≼ 𝑋 ≼ 𝐼



SDP extreme points

Theorem: Every extreme point of the SDP-Relaxation has rank at most Thus the 
objective of the two programs are identical.

Corollary: Fair PCA is polynomial time solvable for 2 groups.

Related: Barvinok’95, Pataki’98. 
S-Lemma [Yakubovich’71]. 

Rank-Constrained SDP 
min 𝐶 ⋅ 𝑋
𝐴 ⋅ 𝑋 ≤ 𝑏
𝑟𝑎𝑛𝑘 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

SDP-Relaxation
min 𝐶 ⋅ 𝑋
𝐴 ⋅ 𝑋 ≤ 𝑏
𝑇𝑟𝑎𝑐𝑒 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼



Proof
• Let be an extreme point with r fractional eigenvalues.

• ଵ ௙ ଴ ଵ ௙ ଴
୘

ଵ ଵ
୘

୤ ୤
୘

• D is diagonal matrix with ௜௜ and ଵ ௙ ଴ is a orthogonal matrix of eigenvectors.

Claim: If ௥ ௥ାଵ

ଶ
then there exists a symmetric matrix such that 

ଵ ଵ
୘

୤ ୤
୘ and ଵ ଵ

୘
୤ ୤

୘ are feasible. 

Assuming the claim, we obtain a contradiction to extreme point. 

Fact: Eigenvalues of are same as eigenvalues of and eigenvalues of are same as 
eigenvalues of .

min 𝐶 ⋅ 𝑋
𝐴௜ ⋅ 𝑋 ≤ 𝑏௜ ∀𝑖 = 1, … , 𝑚.

𝑇𝑟 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼



Proof
• Claim: If ௥ ௥ାଵ

ଶ
then there exists a symmetric matrix such that 

ଵ ଵ
୘

୤ ୤
୘ and ଵ ଵ

୘
୤ ୤

୘ are feasible. 
• Proof:  Consider the linear system.

• ௜ ௙ ௙
்

• ௙ ௙
்

• ௜௝ ௝௜

Number of equations ୰ ୰ିଵ

ଶ
.  Number of variables ଶ

If ଶ ୰ ୰ିଵ

ଶ
, then there is a line of solutions, i.e. , G such that all satisfy 

the above constraints.
Consider F= for small enough . 
• Observe that UଵUଵ

୘ + U୤(𝐷 ± F)U୤
୘ satisfies the linear constraints. 

• Eigenvalues of  = are bounded away from 0 and 1.

min 𝐶 ⋅ 𝑋
𝐴௜ ⋅ 𝑋 ≤ 𝑏௜ ∀𝑖 = 1, … , 𝑚.

𝑇𝑟 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼



Technical Result SDP extreme points

Theorem: Every extreme point of the SDP 

௜ ௜

has rank at most ଷ

ଶ
• m=1 we obtain rank is at most d.

Generalizes Barvinok’95, Pataki’98.
• Similar results for SDPs with affine constraints.



Iterative Rounding
Theorem: There is an iterative rounding algorithm that given

min 𝐶 ⋅ 𝑋
𝐴௜ ⋅ 𝑋 ≤ 𝑏௜ ∀𝑖 = 1, … , 𝑚
𝑇𝑟 𝑋 ≤ 𝑑
0 ≼ 𝑋 ≼ 𝐼

with optimal solution 𝑋∗ returns a feasible solution 𝑌 s.t.
1. rank 𝑌 ≤ 𝑑.
2. C ⋅ 𝑌 ≤ 𝐶 ⋅ 𝑋∗ .
3. 𝐴௜ ⋅ 𝑌 ≥ 𝐴௜ ⋅ 𝑋∗ − Δ

Where Δ = max
ௌ⊆[௠]

∑ 𝜎௜
ଵ

ௌ
∑ 𝐴௝௝∈ௌ

ଶ ௌ

௜ୀଵ where  𝜎௜ 𝐵 is the 𝑖௧௛ largest singular value of B.

Idea: Fix eigenvalues to 0 and 1.
Maintain two subspaces ଴ and ଵ for corresponding eigenfaces.
Update SDP to work only in the orthogonal space F. 
Show a constraint can be removed or one of the eigenvalues is 0 or 1.



Iterative Algorithm



Conclusion

• Low rank SDP solutions under affine constraints. (Pataki, Barvinok).

• Low rank SDP solutions under PSD constraint .
• Applications to fair PCA problem.

• In practice, these algorithms take 10-15 PCAs for 2 groups using MW update.
• Code and data available at https://github.com/samirasamadi/Fair-PCA

• Other applications to low rank models in other areas? Thanks!


