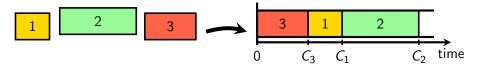
Schwiegelshohn's Proof of the Kawaguchi-Kyan Bound

Martin Skutella

TU Berlin

Single Machine Scheduling to Minimize $\sum w_j C_j$

Given: *n* jobs j = 1, ..., n, processing times $p_j > 0$, weights $w_j > 0$ Task: schedule jobs on a single machine; minimize $\sum_j w_j C_j$



Weighted Shortest Processing Time (WSPT) rule:

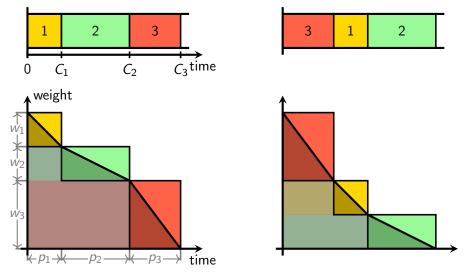
Theorem (Smith 1956).

Sequencing jobs in order of non-increasing ratios w_j/p_j is optimal.

"Photographer's Rule"

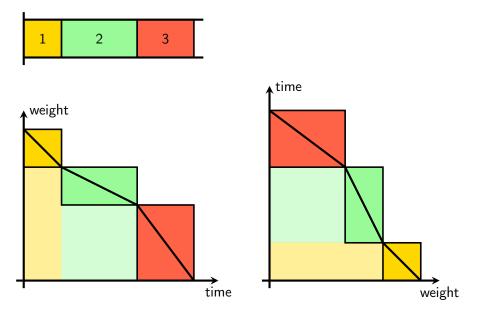
Two-Dimensional Gantt Charts

Eastman, Even & Isaacs 1964; Goemans & Williamson 2000



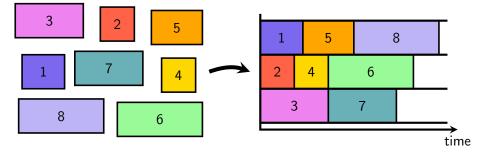
 w_j/p_j = diagonal slope of rectangle representing job j

Swap Weights and Processing Times



Parallel Machine Scheduling to Minimize $\sum w_j C_j$

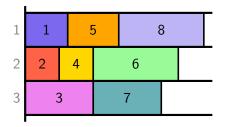
Given: *n* jobs j = 1, ..., n, processing times $p_j > 0$, weights $w_j > 0$ Task: schedule jobs on *m* parallel machines; minimize $\sum_j w_j C_j$



- weakly NP-hard for two machines (Bruno, Coffman & Sethi 1974)
- strongly NP-hard if m part of input (Garey & Johnson, problem SS13)
- PTAS (Sk. & Woeginger 2000)

List Scheduling in Order of Non-Increasing w_j/p_j

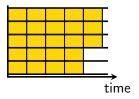
 $w_1/p_1 \ge w_2/p_2 \ge \cdots \ge w_n/p_n$



Theorem (Conway, Maxwell & Miller 1967). Optimal if $w_j = 1$ for all j (or: $p_j = 1$ for all j).

Theorem (Kawaguchi & Kyan 1986).

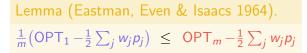
Tight performance ratio: $\frac{1+\sqrt{2}}{2} \approx 1,207...$

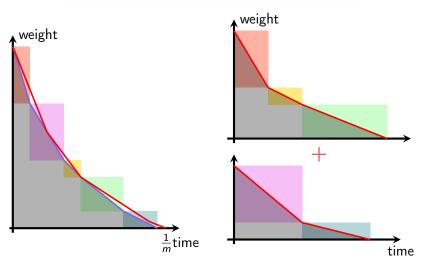


Outline

- **1** WSPT has performance ratio $\leq 3/2$
- **2** WSPT has performance ratio exactly $\frac{1}{2}(1+\sqrt{2}) \approx 1,207...$
- 8 WSEPT for stochastic scheduling
- Open problem

Fast Single Machine Lower Bound

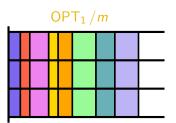




WSPT has Performance Ratio $\leq 3/2$

Lemma (Eastman, Even & Isaacs 1964). $\frac{1}{m} \left(\mathsf{OPT}_1 - \frac{1}{2} \sum_j w_j p_j \right) \leq \mathsf{OPT}_m - \frac{1}{2} \sum_j w_j p_j$

WSPT start times \leq single machine start times



Thus:

$$\begin{split} \mathsf{WSPT}_m &\leq \frac{1}{m} \big(\mathsf{OPT}_1 - \frac{1}{2} \sum_j w_j p_j \big) + \sum_j w_j p_j \\ &\leq \mathsf{OPT}_m + \frac{1}{2} \sum_j w_j p_j \leq \frac{3}{2} \mathsf{OPT}_m \end{split}$$

Schwiegelshohn's Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi & Kyan 1986). WSPT has performance ratio exactly $\frac{1+\sqrt{2}}{2} \approx 1,207...$

Proof idea: explicit construction of worst-case instance (for $m \to \infty$) Refined: exact performance ratio for each fixed *m* (Jäger & Sk. 2018)

Sequence of reductions to worst-case instances with:

$$\mathbf{1} \ w_j = p_j \text{ for all } j$$

- **2** at most m-1 large jobs and many tiny jobs
- 3 all but one large job are extra-large
- 4 all XL jobs have same size

First Reduction: $w_j = p_j \ \forall j$

$$\frac{w_j}{p_j} \ge R \quad \text{for } j = 1, \dots, k \quad \frac{w_j}{p_j} \le r \quad \text{for } j = k + 1, \dots, n$$

$$1 \quad 5 \quad 8 \quad 11$$

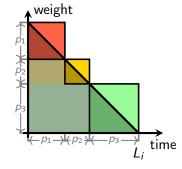
$$R > r \quad 2 \quad 4 \quad 6 \quad 9$$

$$3 \quad 7 \quad 10$$

$$\sum_{j=1}^{n} w_j C_j = \frac{r}{R} \sum_{j=1}^{k} w_j C_j + \sum_{j=k+1}^{n} w_j C_j + \left(1 - \frac{r}{R}\right) \sum_{j=1}^{k} w_j C_j$$

$$\implies \qquad \frac{\mathsf{WSPT}}{\mathsf{OPT}} = \frac{A_{\mathsf{WSPT}} + B_{WSPT}}{A_{\mathsf{OPT}} + B_{\mathsf{OPT}}} \leq \max\left\{\frac{A_{\mathsf{WSPT}}}{A_{\mathsf{OPT}}}, \frac{B_{WSPT}}{B_{\mathsf{OPT}}}\right\}$$

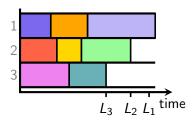
Objective Function in Terms of Machine Loads (for $w_j = p_j$)



one machine *i*:

$$\sum_{j \to i} p_j C_j = \frac{1}{2} \left(\sum_{j \to i} p_j \right)^2 + \frac{1}{2} \sum_{j \to i} p_j^2$$

m-machine schedule:



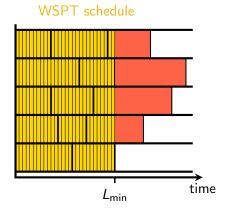
$$\sum_{j=1}^{n} p_j C_j = \frac{1}{2} \sum_{i=1}^{m} L_i^2 + \frac{1}{2} \sum_{j=1}^{n} p_j^2$$

notice:

•
$$\sum_{i} L_{i} = \sum_{j} p_{j}$$
 (fixed)
• $\sum_{i} L_{i}^{2}$ minimal if $L_{1} = \cdots = L_{m}$

Second Reduction: Large Jobs and Sand

$$\sum_{j} p_{j} C_{j} = \frac{1}{2} \sum_{i} L_{i}^{2} + \frac{1}{2} \sum_{j} p_{j}^{2}$$



WSPT:

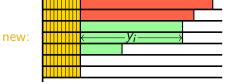
- $\sum_{i} L_{i}^{2}$ remains unchanged
- $\sum_j p_j^2$ decreases by $\delta \ge 0$

OPT:

- $\sum_{i} L_i^2$ unchanged or decreases
- $\sum_j p_j^2$ decreases by δ

 $\implies \frac{\mathsf{WSPT}}{\mathsf{OPT}}$ unchanged or increases

Third Reduction: Make Large Jobs Extra-Large WSPT schedule OPT schedule old: $x_i \rightarrow x_i \rightarrow x_i$

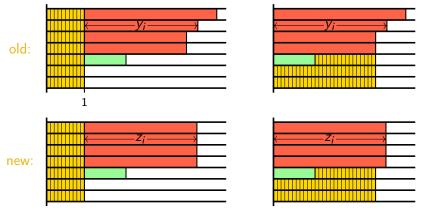


Increase in objective:

$$\begin{split} &\frac{1}{2} \sum_{i} \left((1+y_i)^2 + y_i^2 - (1+x_i)^2 - x_i^2 \right) & \frac{1}{2} \sum_{i} \left(y_i^2 - x_i^2 \right) \geq 0 \\ &= \sum_{i} \left(y_i^2 - x_i^2 \right) & \text{as } \sum_{i} x_i = \sum_{i} y_i \end{split}$$

Fourth Reduction: All XL Jobs of Same Size

WSPT schedule



OPT schedule

Increase in objective:

$$\begin{split} &\frac{1}{2} \sum_{i} \left((1+z_i)^2 + z_i^2 - (1+y_i)^2 - y_i^2 \right) \qquad \sum_{i} \left(z_i^2 - y_i^2 \right) \leq 0 \\ &= \sum_{i} \left(z_i^2 - y_i^2 \right) \qquad \text{as } \sum_{i} x_i = \sum_{i} y_i \end{split}$$

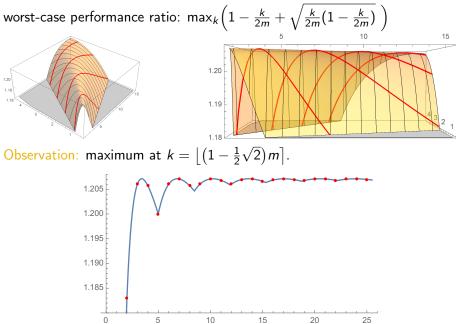
Analyzing the Performance Ratio

WSPT =
$$\frac{m}{2} + k \cdot x(1+x) + y(1+y)$$
 OPT = $k \cdot x^2 + \frac{(m+y)^2}{2(m-k)} + \frac{y^2}{2}$

$$\frac{\text{WSPT}}{\text{OPT}} = \frac{(m-k)(2kx^2+2kx+2y^2+2y+m)}{(m-k)(2kx^2+y^2)+(y+m)^2}$$

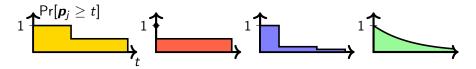
Observation: maximum at y = 0 and $x = \frac{m}{\sqrt{k(2m-k)} - k}$

Worst-Case Instance



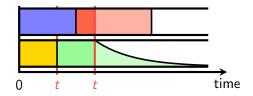
Stochastic Scheduling

Given: distributions of independent random processing times $p_j \ge 0$



Task: find scheduling policy minimizing $E\left[\sum w_j C_j\right]$

scheduling policy must be nonanticipatory, i.e., decision made at time t may only depend on the information known at time t



Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule

List scheduling in order of non-increasing $w_j / E[\mathbf{p}_j]$.

- WSEPT is optimal for single machine (Rothkopf 1966)
- WSEPT has performance ratio 1 + ¹/₂(1 + Δ) with Δ ≥ Var[p_j]/E[p_j]² for all j. (Möhring, Schulz & Uetz 1999)
- WSEPT has no constant performance ratio. (Cheung, Fischer, Matuschke & Megow 2014; Im, Moseley & Pruhs 2015)
- WSEPT has performance ratio $1 + \frac{1}{2}(\sqrt{2} 1)(1 + \Delta)$. (Jäger & Sk. 2018)

Open Problem Online setting:

- jobs arrive one by one; must be immediately assigned to machines
- on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm MinIncrease

assign job to machine minimizing increase of current objective value

Known results:

- MinIncrease has competitive ratio $\frac{3}{2} \frac{1}{2m}$.
- ▶ If jobs arrive in order of non-increasing or non-decreasing w_j/p_j , then MinIncrease achieves competitive ratio $\frac{1}{2}(1 + \sqrt{2})$.

Conjecture (Stougie 2017).

MinIncrease has competitive ratio $\frac{1}{2}(1+\sqrt{2})$.