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Single Machine Scheduling to Minimize
∑

wjCj

Given: n jobs j = 1, . . . , n, processing times pj > 0, weights wj > 0

Task: schedule jobs on a single machine; minimize
∑

j wjCj
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Weighted Shortest Processing Time (WSPT) rule:

Theorem (Smith 1956).

Sequencing jobs in order of non-increasing ratios wj/pj is optimal.

“Photographer’s Rule”



Two-Dimensional Gantt Charts
Eastman, Even & Isaacs 1964; Goemans & Williamson 2000
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wj/pj = diagonal slope of rectangle representing job j



Swap Weights and Processing Times
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Parallel Machine Scheduling to Minimize
∑

wjCj

Given: n jobs j = 1, . . . , n, processing times pj > 0, weights wj > 0

Task: schedule jobs on m parallel machines; minimize
∑

j wjCj
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I weakly NP-hard for two machines (Bruno, Coffman & Sethi 1974)

I strongly NP-hard if m part of input (Garey & Johnson, problem SS13)

I PTAS (Sk. & Woeginger 2000)



List Scheduling in Order of Non-Increasing wj/pj

w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn
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Theorem (Conway, Maxwell & Miller 1967).

Optimal if wj = 1 for all j (or: pj = 1 for all j).

Theorem (Kawaguchi & Kyan 1986).

Tight performance ratio: 1+
√

2
2 ≈ 1, 207. . .

time



Outline

1 WSPT has performance ratio ≤ 3/2

2 WSPT has performance ratio exactly 1
2(1 +

√
2) ≈ 1,207 . . .

3 WSEPT for stochastic scheduling

4 Open problem



Fast Single Machine Lower Bound

Lemma (Eastman, Even & Isaacs 1964).
1
m
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OPT1−1
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WSPT has Performance Ratio ≤ 3/2

Lemma (Eastman, Even & Isaacs 1964).
1
m

(
OPT1−1

2
∑

j wjpj
)
≤ OPTm−1

2
∑

j wjpj

WSPT
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WSPT start times ≤ single machine start times

Thus:

WSPTm ≤ 1
m

(
OPT1− 1

2
∑

j wjpj
)

+
∑

j wjpj

≤ OPTm + 1
2
∑

j wjpj ≤ 3
2 OPTm



Schwiegelshohn’s Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi & Kyan 1986).

WSPT has performance ratio exactly 1+
√

2
2 ≈ 1, 207. . .

Proof idea: explicit construction of worst-case instance (for m→∞)

Refined: exact performance ratio for each fixed m (Jäger & Sk. 2018)

Sequence of reductions to worst-case instances with:

1 wj = pj for all j

2 at most m − 1 large jobs and many tiny jobs

3 all but one large job are extra-large

4 all XL jobs have same size



First Reduction: wj = pj ∀ j
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wj

pj
≥ R for j = 1, . . . , k wj

pj
≤ r for j = k + 1, . . . , n

R > r

n∑
j=1

wjCj =
r

R

k∑
j=1

wjCj +
n∑

j=k+1

wjCj︸ ︷︷ ︸
=: A

+
(
1− r

R

) k∑
j=1

wjCj︸ ︷︷ ︸
=: B

=⇒ WSPT
OPT

=
AWSPT + BWSPT

AOPT + BOPT
≤ max

{
AWSPT

AOPT
,
BWSPT

BOPT

}



Objective Function in Terms of Machine Loads (for wj = pj)
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j→i

pjCj = 1
2

(∑
j→i

pj︸ ︷︷ ︸
Li

)2

+ 1
2

∑
j→i

pj
2

m-machine schedule:
n∑

j=1

pjCj = 1
2

m∑
i=1

Li
2 + 1

2

n∑
j=1

pj
2

notice:
I
∑

i Li =
∑

j pj (fixed)

I
∑

i Li
2 minimal if L1 = · · · = Lm



Second Reduction: Large Jobs and Sand

∑
j

pjCj = 1
2

∑
i

Li
2 + 1

2

∑
j

pj
2

WSPT schedule

timeLmin

WSPT:
I
∑

i Li
2 remains unchanged

I
∑

j pj
2 decreases by δ ≥ 0

OPT:
I
∑

i Li
2 unchanged or decreases

I
∑

j pj
2 decreases by δ

=⇒ WSPT
OPT

unchanged or increases



Third Reduction: Make Large Jobs Extra-Large

old:

WSPT schedule

xixi

Lmin = 1

OPT schedule

xixi

Lmin

new: yi yi

Increase in objective:
1
2
∑

i

(
(1 + yi )

2 + yi
2 − (1 + xi )

2 − xi
2) 1

2
∑

i

(
yi

2 − xi
2) ≥ 0

=
∑

i

(
yi

2 − xi
2) as

∑
i xi =

∑
i yi



Fourth Reduction: All XL Jobs of Same Size

old:

WSPT schedule

yi

1

OPT schedule

yi

new:

zi zi

Increase in objective:
1
2
∑

i

(
(1 + zi )

2 + zi
2 − (1 + yi )

2 − yi
2) ∑

i

(
zi

2 − yi
2) ≤ 0

=
∑

i

(
zi

2 − yi
2) as

∑
i xi =

∑
i yi



Analyzing the Performance Ratio

WSPT schedule

x

y

1

OPT schedule

x

y

m+y
m−k

1
...

k
...

m

WSPT =
m

2
+ k · x(1 + x) + y(1 + y) OPT = k · x2 +

(m + y)2

2(m − k)
+

y2

2

WSPT
OPT

=
(m − k)(2kx2 + 2kx + 2y2 + 2y + m)

(m − k)(2kx2 + y2) + (y + m)2

Observation: maximum at y = 0 and x =
m√

k(2m − k)− k



Worst-Case Instance
worst-case performance ratio: maxk

(
1− k

2m +
√

k
2m (1− k

2m )
)

Observation: maximum at k =
⌊(
1− 1

2

√
2
)
m
⌉
.
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Stochastic Scheduling

Given: distributions of independent random processing times pj ≥ 0

t

Pr[pj ≥ t]
1 1 1 1

Task: find scheduling policy minimizing E
[∑

wjCj

]
I scheduling policy must be nonanticipatory, i.e., decision made at

time t may only depend on the information known at time t

t t time0



Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule
List scheduling in order of non-increasing wj/E[pj ].

I WSEPT is optimal for single machine (Rothkopf 1966)

I WSEPT has performance ratio 1 + 1
2(1 + ∆) with ∆ ≥ Var[pj ]

E[pj ]2
for all j .

(Möhring, Schulz & Uetz 1999)

I WSEPT has no constant performance ratio. (Cheung, Fischer,
Matuschke & Megow 2014; Im, Moseley & Pruhs 2015)

I WSEPT has performance ratio 1 + 1
2(
√
2− 1)(1 + ∆).

(Jäger & Sk. 2018)



Open Problem
Online setting:

I jobs arrive one by one; must be immediately assigned to machines
I on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm MinIncrease

I assign job to machine minimizing increase of current objective value

Known results:
I MinIncrease has competitive ratio 3

2 − 1
2m .

I If jobs arrive in order of non-increasing or non-decreasing wj/pj , then
MinIncrease achieves competitive ratio 1

2(1 +
√
2).

Conjecture (Stougie 2017).

MinIncrease has competitive ratio 1
2(1+

√
2).


