Schwiegelshohn's Proof of the Kawaguchi-Kyan Bound

Martin Skutella
TU Berlin

Single Machine Scheduling to Minimize $\sum w_{j} C_{j}$

Given: n jobs $j=1, \ldots, n$, processing times $p_{j}>0$, weights $w_{j}>0$
Task: schedule jobs on a single machine; minimize $\sum_{j} w_{j} C_{j}$

Weighted Shortest Processing Time (WSPT) rule:

Theorem (Smith 1956).

Sequencing jobs in order of non-increasing ratios w_{j} / p_{j} is optimal.

Two-Dimensional Gantt Charts

Eastman, Even \& Isaacs 1964; Goemans \& Williamson 2000

$w_{j} / p_{j}=$ diagonal slope of rectangle representing job j

Swap Weights and Processing Times

Parallel Machine Scheduling to Minimize $\sum w_{j} C_{j}$

Given: n jobs $j=1, \ldots, n$, processing times $p_{j}>0$, weights $w_{j}>0$ Task: schedule jobs on m parallel machines; minimize $\sum_{j} w_{j} C_{j}$

- weakly NP-hard for two machines (Bruno, Coffman \& Sethi 1974)
- strongly NP-hard if m part of input (Garey \& Johnson, problem SS13)
- PTAS (Sk. \& Woeginger 2000)

List Scheduling in Order of Non-Increasing w_{j} / p_{j}

 $w_{1} / p_{1} \geq w_{2} / p_{2} \geq \cdots \geq w_{n} / p_{n}$

Theorem (Conway, Maxwell \& Miller 1967).
Optimal if $w_{j}=1$ for all j (or: $p_{j}=1$ for all j).

Theorem (Kawaguchi \& Kyan 1986).

Tight performance ratio: $\frac{1+\sqrt{2}}{2} \approx 1,207 \ldots$

Outline

1 WSPT has performance ratio $\leq 3 / 2$
2. WSPT has performance ratio exactly $\frac{1}{2}(1+\sqrt{2}) \approx 1,207 \ldots$

3 WSEPT for stochastic scheduling

4 Open problem

Fast Single Machine Lower Bound

Lemma (Eastman, Even \& Isaacs 1964).

$$
\frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right) \leq \mathrm{OPT}_{m}-\frac{1}{2} \sum_{j} w_{j} p_{j}
$$

WSPT has Performance Ratio $\leq 3 / 2$

$$
\begin{aligned}
& \text { Lemma (Eastman, Even \& Isaacs 1964). } \\
& \frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right) \leq \mathrm{OPT}_{m}-\frac{1}{2} \sum_{j} w_{j} p_{j}
\end{aligned}
$$

WSPT start times \leq single machine start times

Thus:

$$
\begin{aligned}
\mathrm{WSPT}_{m} & \leq \frac{1}{m}\left(\mathrm{OPT}_{1}-\frac{1}{2} \sum_{j} w_{j} p_{j}\right)+\sum_{j} w_{j} p_{j} \\
& \leq \mathrm{OPT}_{m}+\frac{1}{2} \sum_{j} w_{j} p_{j} \leq \frac{3}{2} \mathrm{OPT}_{m}
\end{aligned}
$$

Schwiegelshohn's Proof of the Kawaguchi-Kyan Bound

Theorem (Kawaguchi \& Kyan 1986).
WSPT has performance ratio exactly $\frac{1+\sqrt{2}}{2} \approx 1,207 \ldots$
Proof idea: explicit construction of worst-case instance (for $m \rightarrow \infty$)
Refined: exact performance ratio for each fixed m (Jäger \& Sk. 2018)

Sequence of reductions to worst-case instances with:
II $w_{j}=p_{j}$ for all j
[2 at most $m-1$ large jobs and many tiny jobs
(3) all but one large job are extra-large

44 all XL jobs have same size

First Reduction: $w_{j}=p_{j} \forall j$

$$
\sum_{j=1}^{n} w_{j} C_{j}=\frac{r}{R} \sum_{j=1}^{k} w_{j} C_{j}+\sum_{j=k+1}^{n} w_{j} C_{j}+\left(1-\frac{r}{R}\right) \sum_{j=1}^{k} w_{j} C_{j}
$$

$$
\Longrightarrow \quad \frac{\mathrm{WSPT}}{\mathrm{OPT}}=\frac{A_{\mathrm{WSPT}}+B_{\mathrm{WSPT}}}{A_{\mathrm{OPT}}+B_{\mathrm{OPT}}} \leq \max \left\{\frac{A_{\mathrm{WSPT}}}{A_{\mathrm{OPT}}}, \frac{B_{\mathrm{WSPT}}}{B_{\mathrm{OPT}}}\right\}
$$

Objective Function in Terms of Machine Loads $\left(\right.$ for $\left.w_{j}=p_{j}\right)$

one machine i :

$$
\sum_{j \rightarrow i} p_{j} C_{j}=\frac{1}{2}\left(\sum_{j \rightarrow i} p_{j}\right)^{2}+\frac{1}{2} \sum_{j \rightarrow i} p_{j}^{2}
$$

m-machine schedule:

$$
\sum_{j=1}^{n} p_{j} C_{j}=\frac{1}{2} \sum_{i=1}^{m} L_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}
$$

notice:
$\Rightarrow \sum_{i} L_{i}=\sum_{j} p_{j}$ (fixed)
$\triangleright \sum_{i} L_{i}^{2}$ minimal if $L_{1}=\cdots=L_{m}$

Second Reduction: Large Jobs and Sand

$$
\sum_{j} p_{j} C_{j}=\frac{1}{2} \sum_{i} L_{i}^{2}+\frac{1}{2} \sum_{j} p_{j}^{2}
$$

WSPT schedule

WSPT:

- $\sum_{i} L_{i}^{2}$ remains unchanged
- $\sum_{j} p_{j}^{2}$ decreases by $\delta \geq 0$

OPT:
$\downarrow \sum_{i} L_{i}^{2}$ unchanged or decreases
$\Rightarrow \sum_{j} p_{j}{ }^{2}$ decreases by δ
$\Longrightarrow \frac{\text { WSPT }}{\text { OPT }}$ unchanged or increases

Third Reduction: Make Large Jobs Extra-Large

Increase in objective:

$$
\begin{aligned}
& \frac{1}{2} \sum_{i}\left(\left(1+y_{i}\right)^{2}+y_{i}^{2}-\left(1+x_{i}\right)^{2}-x_{i}^{2}\right) \quad \frac{1}{2} \sum_{i}\left(y_{i}^{2}-x_{i}^{2}\right) \geq 0 \\
& =\sum_{i}\left(y_{i}^{2}-x_{i}^{2}\right) \quad \text { as } \sum_{i} x_{i}=\sum_{i} y_{i}
\end{aligned}
$$

Fourth Reduction: All XL Jobs of Same Size

Increase in objective:

$$
\begin{gathered}
\frac{1}{2} \sum_{i}\left(\left(1+z_{i}\right)^{2}+z_{i}^{2}-\left(1+y_{i}\right)^{2}-y_{i}^{2}\right) \quad \sum_{i}\left(z_{i}^{2}-y_{i}^{2}\right) \leq 0 \\
=\sum_{i}\left(z_{i}{ }^{2}-y_{i}^{2}\right) \quad \text { as } \sum_{i} x_{i}=\sum_{i} y_{i}
\end{gathered}
$$

Analyzing the Performance Ratio

WSPT schedule

OPT schedule

$\mathrm{OPT}=k \cdot x^{2}+\frac{(m+y)^{2}}{2(m-k)}+\frac{y^{2}}{2}$

$$
\frac{\mathrm{WSPT}}{\mathrm{OPT}}=\frac{(m-k)\left(2 k x^{2}+2 k x+2 y^{2}+2 y+m\right)}{(m-k)\left(2 k x^{2}+y^{2}\right)+(y+m)^{2}}
$$

Observation: maximum at $y=0$ and $x=\frac{m}{\sqrt{k(2 m-k)}-k}$

Worst-Case Instance

worst-case performance ratio: $\max _{k}\left(1-\frac{k}{2 m}+\sqrt{\frac{k}{2 m}\left(1-\frac{k}{2 m}\right)}\right)$

Observation: maximum at $k=\left\lfloor\left(1-\frac{1}{2} \sqrt{2}\right) m\right\rceil$.

Stochastic Scheduling

Given: distributions of independent random processing times $\boldsymbol{p}_{j} \geq 0$

Task: find scheduling policy minimizing $\mathrm{E}\left[\sum w_{j} C_{j}\right]$

- scheduling policy must be nonanticipatory, i.e., decision made at time t may only depend on the information known at time t

Weighted Shortest Expected Processing Time (WSEPT)

WSEPT Rule

List scheduling in order of non-increasing $w_{j} / \mathrm{E}\left[\boldsymbol{p}_{j}\right]$.

- WSEPT is optimal for single machine (Rothkopf 1966)
- WSEPT has performance ratio $1+\frac{1}{2}(1+\Delta)$ with $\Delta \geq \frac{\operatorname{Var}\left[p_{j}\right]}{\mathrm{E}\left[p_{j}\right]^{2}}$ for all j. (Möhring, Schulz \& Uetz 1999)
- WSEPT has no constant performance ratio. (Cheung, Fischer, Matuschke \& Megow 2014; Im, Moseley \& Pruhs 2015)
- WSEPT has performance ratio $1+\frac{1}{2}(\sqrt{2}-1)(1+\Delta)$. (Jäger \& Sk. 2018)

Open Problem

Online setting:

- jobs arrive one by one; must be immediately assigned to machines
- on each machine, assigned jobs are optimally sequenced (WSPT)

Algorithm Minlncrease

- assign job to machine minimizing increase of current objective value

Known results:

- MinIncrease has competitive ratio $\frac{3}{2}-\frac{1}{2 m}$.
- If jobs arrive in order of non-increasing or non-decreasing w_{j} / p_{j}, then Minlncrease achieves competitive ratio $\frac{1}{2}(1+\sqrt{2})$.

Conjecture (Stougie 2017).
MinIncrease has competitive ratio $\frac{1}{2}(1+\sqrt{2})$.

